JPH0593538A - Air conditioning plan evaluating system in building designing stage - Google Patents

Air conditioning plan evaluating system in building designing stage

Info

Publication number
JPH0593538A
JPH0593538A JP3054774A JP5477491A JPH0593538A JP H0593538 A JPH0593538 A JP H0593538A JP 3054774 A JP3054774 A JP 3054774A JP 5477491 A JP5477491 A JP 5477491A JP H0593538 A JPH0593538 A JP H0593538A
Authority
JP
Japan
Prior art keywords
air conditioning
air
building
room temperature
room
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3054774A
Other languages
Japanese (ja)
Other versions
JP2939912B2 (en
Inventor
Akihiro Yagawa
矢川明弘
Katsuhiro Asano
浅野勝弘
Tanji Kitashiro
北代丹士
Sadamitsu Mizuta
水田定光
Teruo Yamada
山田照雄
Koichi Higashiyama
東山恒一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP3054774A priority Critical patent/JP2939912B2/en
Publication of JPH0593538A publication Critical patent/JPH0593538A/en
Application granted granted Critical
Publication of JP2939912B2 publication Critical patent/JP2939912B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To optimally plan in terms of both comfortableness and energy conser vation of an environment in a room by predicting room temperature variations of a plurality of conditioned rooms over a year after a building is completed in a building designing stage. CONSTITUTION:When building conditions such as a building shape, using states of a plurality of rooms, a target value of room temperature, etc., are inputted (1), input data for calculating air conditioning thermal load is automatically formed (2), and an air conditioning thermal load calculated result is analyzed based on the input data (3). Further, when an air conditioning system plan is input at each room (4), yearly temperature variations and yearly energy consumption amounts of respective rooms are automatically calculated, and an air conditioning system plan is evaluated based on it (5). If it is modified, it is again evaluated by returning to building condition input means 1 or air conditioning system planing means 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、オフィスビルの建築設
計段階において室内環境の快適性と省エネルギーの両面
で最適な空調設備を提供することが可能な空調計画評価
システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioning plan evaluation system capable of providing optimum air conditioning equipment in terms of both comfort of indoor environment and energy saving in the architectural design stage of an office building.

【0002】[0002]

【従来の技術】従来の空調設備の計画手法は、熱負荷変
動に基づいて空調方式を計画する手法が殆どであり、例
えばオフィスビルの空調のように複数室を複数の空調装
置で空調する場合の室温変動を算出する手法がなく、そ
の空調計画によって室内空間がどのようになるか予測す
る適切な手法がなかった。従って、オフィスビルの設計
段階においてオフィスの使用形態に対応した最適な空調
方式を提供する計画システムは知られていない。
2. Description of the Related Art Most conventional air-conditioning equipment planning methods plan air-conditioning systems based on heat load fluctuations. For example, when air-conditioning a plurality of rooms with a plurality of air-conditioning devices, such as air-conditioning in an office building. There was no method to calculate the room temperature fluctuation of the room, and there was no appropriate method to predict what the indoor space would look like by the air conditioning plan. Therefore, there is no known planning system that provides an optimum air conditioning system corresponding to the usage pattern of the office in the design stage of the office building.

【0003】[0003]

【発明が解決しようとする課題】近年、オフィスの知的
生産性向上のために、オフィス環境の快適化が重要視さ
れると共にエネルギー消費量が増大し続けている。一
方、地球環境問題や中東情勢の不安定化に代表されるよ
うに、将来のエネルギー事情は予断を許さない。オフィ
スが大部屋で画一的な使用形態であった時代と違い、現
在はOAコーナーやミーティングコーナー等空調上の配
慮が異なるゾーンが混在しており、しかも組織改変に伴
うレイアウト変更が頻繁に行われ、将来にわたって最小
の消費エネルギーで快適な環境を維持してゆくために
は、ビルの設計段階からオフィスプランニングと空調計
画を併せて相互に検討してゆく必要が生じている。しか
しながら、従来の空調方式の計画手法は、熱負荷変動に
基づいて空調方式を計画する手法であり、その空調計画
によって室内環境がどの様になるかを予測する適切な手
段がなかった。
In recent years, in order to improve the intellectual productivity of the office, it has been emphasized to make the office environment comfortable and the energy consumption continues to increase. On the other hand, the future energy situation is unpredictable, as typified by global environmental problems and instability in the Middle East. Unlike the era when offices were in a large room and used in a uniform manner, there are currently mixed zones such as OA corners and meeting corners that have different air conditioning considerations, and layout changes frequently due to organizational changes. Therefore, in order to maintain a comfortable environment with minimum energy consumption in the future, it is necessary to consider both office planning and air conditioning plan from the building design stage. However, the conventional air-conditioning system planning method is a method of planning the air-conditioning system based on heat load fluctuations, and there is no appropriate means for predicting what the indoor environment will be like by the air-conditioning plan.

【0004】本発明は、上記課題を解決するものであっ
て、建築設計段階において、建物完成後の空調された複
数室の室温変動及びエネルギー消費量を年間にわたって
予測でき、室内環境の快適性と省エネルギーの両面で最
適な計画を行うことができる建築設計段階における空調
計画評価システムを提供することを目的とする。
The present invention is to solve the above-mentioned problems, and in the building design stage, it is possible to predict the room temperature fluctuation and energy consumption of a plurality of air-conditioned rooms after the building is completed, and to improve the comfort of the indoor environment. It is an object of the present invention to provide an air-conditioning plan evaluation system at the architectural design stage, which enables optimal planning in terms of both energy saving.

【0005】[0005]

【課題を解決するための手段】そのために本発明の建築
設計段階における空調計画評価システムは、建築形状、
複数の室の使用形態及び室温の目標値を入力する建築条
件入力手段1と、該入力手段に入力された情報に基づい
て空調熱負荷計算用入力データを自動作成する作成手段
2と、前記入力データに基づいて空調熱負荷計算結果を
分析する空調熱負荷分析手段3と、前記空調熱負荷に基
づいて空調方式を計画する空調方式計画手段4と、前記
複数の室の温度変動及びエネルギー消費量を算出し前記
空調方式計画を評価する評価手段5とを備えることを特
徴とする。なお、上記構成に付加した番号は、理解を容
易にするために図面と対比させるためのもので、これに
より本発明の構成が何等限定されるものではない。
Therefore, the air conditioning plan evaluation system in the building design stage of the present invention is
Building condition input means 1 for inputting usage patterns and room temperature target values of a plurality of rooms; creation means 2 for automatically creating air-conditioning heat load calculation input data based on information input to the input means; Air-conditioning heat load analysis means 3 for analyzing the air-conditioning heat load calculation result based on data, air-conditioning system planning means 4 for planning an air-conditioning system based on the air-conditioning heat load, temperature fluctuations and energy consumption of the plurality of rooms And an evaluation unit 5 for evaluating the air conditioning system plan. It should be noted that the numbers added to the above-mentioned configurations are for comparison with the drawings for easy understanding, and the configurations of the present invention are not limited by these.

【0006】[0006]

【作用】本発明においては、複数の室の使用形態及び室
温の目標値等の建築条件を入力すると、空調熱負荷を分
析し、さらに、各室毎に空調設備計画を入力すると、年
間の各室毎の温度変動及び年間のエネルギー消費量が自
動的に算出され、これに基づいて空調方式計画の評価を
行い、変更する場合には、建築条件入力手段1又は空調
方式計画手段4に戻って再評価が行われる。
In the present invention, when the building condition such as the usage pattern of a plurality of rooms and the target value of the room temperature is input, the air conditioning heat load is analyzed, and when the air conditioning equipment plan is input for each room, Temperature fluctuations for each room and annual energy consumption are automatically calculated, and based on this, the air conditioning system plan is evaluated, and when changing, return to the building condition input means 1 or the air conditioning system planning means 4. Re-evaluation is done.

【0007】[0007]

【実施例】以下本発明の実施例を図面を参照しつつ説明
する。図1は本発明の建築設計段階における空調計画評
価システムの1実施例を示す構成図である。本発明の空
調計画評価システムは、建築形状、複数の室の使用形態
及び室温の目標値を入力する建築条件入力手段1と、該
入力手段に入力された情報に基づいて空調熱負荷計算用
入力データを自動作成する作成手段2と、前記入力デー
タに基づいて空調熱負荷計算結果を分析する空調熱負荷
分析手段3と、前記空調熱負荷に基づいて空調方式を計
画する空調方式計画手段4と、前記複数の室の温度変動
及びエネルギー消費量を算出し前記空調方式計画を評価
する評価手段5とを備える。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing an embodiment of an air conditioning plan evaluation system in the architectural design stage of the present invention. The air-conditioning plan evaluation system of the present invention includes a building condition input means 1 for inputting a building shape, a usage pattern of a plurality of rooms, and a target value of room temperature, and an input for air-conditioning heat load calculation based on the information input to the input means. A creation unit 2 for automatically creating data, an air conditioning heat load analysis unit 3 for analyzing an air conditioning heat load calculation result based on the input data, and an air conditioning system planning unit 4 for planning an air conditioning system based on the air conditioning heat load. And an evaluation unit 5 that calculates temperature fluctuations and energy consumption of the plurality of rooms and evaluates the air conditioning system plan.

【0008】建築条件入力手段1において、建築条件を
入力する。これは、OAコーナーやミーティングコーナ
ー等のオフィスの使用形態、OA機器等の発熱機器の配
置、室温等の室内環境目標値を入力する。次に、作成手
段2において、入力手段1に入力された情報に基づいて
空調熱負荷計算用入力データを自動作成する。
The building condition input means 1 inputs building conditions. For this, the usage pattern of the office such as the OA corner and the meeting corner, the arrangement of the heat generating equipment such as the OA equipment, and the indoor environment target value such as room temperature are input. Next, the creating means 2 automatically creates the air-conditioning heat load calculation input data based on the information input to the input means 1.

【0009】図2はCADを使用して空調熱負荷計算用
入力データを自動作成する方法を示し、先ず、ステップ
S1において、建築形状、壁・床・天井・窓等の材料を
入力し、計算対象エリアの指定を行う。次いで、ステッ
プS2において、室の分割状態、室の使用形態、室温の
目標値を入力する。次いで、ステップS3において、ペ
リメータゾーンを設定する外壁を指定すると、ペリメー
タゾーンとインテリアゾーンの自動認識が行われる。最
後に、ステップS4において、ステップS1、S2の条
件により空調熱負荷計算単位(スペース)の自動認識が
行われ、負荷計算プログラムの入力データが自動的に作
成される。
FIG. 2 shows a method for automatically creating input data for air conditioning heat load calculation using CAD. First, in step S1, materials such as building shape, walls, floors, ceilings and windows are input and calculated. Specify the target area. Next, in step S2, the division state of the room, the usage pattern of the room, and the target value of the room temperature are input. Next, in step S3, when the outer wall for setting the perimeter zone is designated, the perimeter zone and the interior zone are automatically recognized. Finally, in step S4, the air-conditioning heat load calculation unit (space) is automatically recognized under the conditions of steps S1 and S2, and the input data of the load calculation program is automatically created.

【0010】図1に戻り、空調熱負荷分析手段3におい
て、作成手段2のデータを使用し負荷計算プログラムに
より、年間365日×24時間の空調熱負荷分析結果を
自動的に作成する。
Returning to FIG. 1, the air-conditioning heat load analyzing means 3 automatically creates an air-conditioning heat load analysis result for 365 days × 24 hours by a load calculation program using the data of the creating means 2.

【0011】空調方式計画手段4においては、インテリ
アゾーン、ペリメータゾーンへの空調をどうするか、省
エネルギー方式、空調方式及び制御方式の選択、機器容
量の設計等を如何に選択するかの空調計画を入力する。
In the air-conditioning system planning means 4, an air-conditioning plan is entered as to how to air-condition the interior zone and perimeter zone, how to select the energy-saving system, the air-conditioning system and the control system, and the design of the device capacity. To do.

【0012】検討可能な省エネルギー方式としては、外
気導入制御、空調機ファン風量制御及びポンプ流量制御
が挙げられる。外気導入制御には、顕熱基準制御、エン
タルピー基準制御のいずれか又は組み合わせによる外気
冷房、全熱交換器、外気量CO2制御があり、空調機フ
ァン風量制御導入制御には、吐出ダンパ制御、スクロー
ルダンパ制御、サクションベーン制御、回転数制御があ
り、ポンプ流量制御には、定流量方式、台数制御方式、
回転数制御方式および、台数制御と回転数制御の組合わ
せ方式がある。
Energy saving methods that can be considered include outside air introduction control, air conditioner fan air flow rate control, and pump flow rate control. The outside air introduction control includes outside air cooling, total heat exchanger, and outside air amount CO2 control by any or combination of sensible heat reference control and enthalpy reference control, and air conditioner fan air flow rate control introduction control includes discharge damper control, scroll. There are damper control, suction vane control, and rotation speed control.For pump flow control, constant flow system, unit control system,
There are a rotation speed control method and a combination method of unit number control and rotation speed control.

【0013】検討可能な空調方式としては、単一ダクト
(ペリメータ処理なし)定風量方式、単一ダクト(ペリ
メータ処理なし)可変風量方式、インテリア定風量・ペ
リメータ可変風量方式、インテリア可変風量方式・ペリ
メータ可変風量方式、インテリア定風量方式・ペリメー
タファンコイルユニット方式、インテリア可変風量方式
・ペリメータファンコイルユニット方式、各室ファンコ
イルユニット方式等がある。
The air conditioning systems that can be considered are a single duct (without perimeter processing) constant air volume system, a single duct (without perimeter processing) variable air volume system, an interior constant air volume / perimeter variable air volume system, an interior variable air volume system / perimeter. There are variable air volume system, interior constant air volume system / perimeter fan coil unit system, interior variable air volume system / perimeter fan coil unit system, fan coil unit system for each room, etc.

【0014】検討可能な制御方式としては、定風量方式
として、代表室温度制御又はレターン温度制御があり、
可変風量方式として、各室制御、ゾーン一括制御、送風
温度一定、送風温度可変方式があり、ファンコイルユニ
ット方式として、2管式、4管式、各室制御、ゾーン一
括制御、系統一括制御等がある。
As a control method that can be considered, there is a representative room temperature control or a return temperature control as a constant air volume method.
Variable air volume methods include room control, batch zone control, constant blast temperature, variable blast temperature, and fan coil unit methods such as 2-tube type, 4-tube type, room control, zone collective control, system collective control, etc. There is.

【0015】以上の検討項目から考慮される空調計画を
以下に列挙する。 (A)単一ダクト(ペリメータ処理なし)定風量方式 A1:インテリア(代表室温度制御) A2:インテリア(レターン温度制御) (B)単一ダクト(ペリメータ処理なし)可変風量方式 B1:インテリア(各室温度制御) (C)インテリア定風量・ペリメータ可変風量方式 C1:インテリア(代表室温度制御)+ペリメータ(代
表室温度制御) C2:インテリア(レターン温度制御)+ペリメータ
(代表室温度制御) (D)インテリア可変風量・ペリメータ可変風量方式 D1:インテリア(各室温度制御)+ペリメータ(代表
室温度制御) D2:インテリア(各室温度制御)+ペリメータ(各室
温度制御) (E)インテリア定風量・ペリメータファンコイルユニ
ット方式 E1:インテリア(代表室温度制御)+ペリメータ(2
管式、代表室温度制御) E2:インテリア(レターン温度制御)+ペリメータ
(2管式、代表室温度制御) E3:インテリア(代表室温度制御)+ペリメータ(2
管式、系統一括制御) E4:インテリア(レターン温度制御)+ペリメータ
(2管式、系統一括制御) E5:インテリア(代表室温度制御)+ペリメータ(4
管式、各室温度制御) E6:インテリア(レターン温度制御)+ペリメータ
(4管式、各室温度制御) E7:インテリア(代表室温度制御)+ペリメータ(4
管式、代表室温度制御) E8:インテリア(レターン温度制御)+ペリメータ
(4管式、代表室温度制御) (F)インテリア可変風量・ペリメータファンコイルユ
ニット方式 F1:インテリア(各室温度制御)+ペリメータ(2管
式、代表室温度制御) F2:インテリア(各室温度制御)+ペリメータ(2管
式、系統一括制御) F3:インテリア(各室温度制御)+ペリメータ(4管
式、代表室温度制御) F4:インテリア(各室温度制御)+ペリメータ(4管
式、各室温度制御) (G)各室ファンコイルユニット方式 G1:2管式 G2:4管式 上記空調方式計画を各室、各ゾーン毎に入力すると、評
価手段5において、年間の各室毎の温度変動及び年間の
エネルギー消費量が自動的に算出され、これに基づいて
空調計画の評価を行い、変更する場合には、建築条件入
力手段1又は空調方式計画手段4に戻って再評価が行わ
れる。
The air conditioning plans considered from the above examination items are listed below. (A) Single duct (without perimeter processing) constant air volume method A1: Interior (representative room temperature control) A2: Interior (return temperature control) (B) Single duct (without perimeter processing) Variable air volume method B1: Interior (each) Room temperature control) (C) Interior constant air volume / perimeter variable air volume system C1: Interior (representative room temperature control) + perimeter (representative room temperature control) C2: Interior (return temperature control) + perimeter (representative room temperature control) (D ) Interior variable air volume / perimeter variable air volume method D1: Interior (temperature control of each room) + Perimeter (representative room temperature control) D2: Interior (temperature control of each room) + Perimeter (temperature control of each room) (E) Interior constant air volume Perimeter fan coil unit system E1: Interior (representative room temperature control) + perimeter (2
Tube type, representative room temperature control) E2: Interior (return temperature control) + perimeter (2-tube type, representative room temperature control) E3: Interior (representative room temperature control) + perimeter (2
Tube type, system batch control) E4: Interior (return temperature control) + perimeter (2-tube type, system batch control) E5: Interior (representative room temperature control) + perimeter (4
Tube type, temperature control for each room) E6: Interior (return temperature control) + perimeter (4 tube type, temperature control for each room) E7: Interior (temperature control for representative room) + perimeter (4
Tube type, representative room temperature control) E8: Interior (return temperature control) + perimeter (4 tube type, representative room temperature control) (F) Interior variable air volume / perimeter fan coil unit method F1: Interior (each room temperature control) + Perimeter (2-tube type, representative room temperature control) F2: Interior (temperature control of each room) + Perimeter (2-tube type, system batch control) F3: Interior (temperature control of each room) + Perimeter (4-tube type, representative room temperature) Control) F4: Interior (temperature control of each room) + Perimeter (4 tube type, temperature control of each room) (G) Fan coil unit method of each room G1: 2 tube type G2: 4 tube type When inputting for each zone, the evaluation means 5 automatically calculates the annual temperature fluctuation for each room and the annual energy consumption, and evaluates the air conditioning plan based on this. When making a change, the process is returned to the building condition input means 1 or the air conditioning system planning means 4 and re-evaluated.

【0016】図3は空調方式毎に室温変動を算出するた
めの処理を示し、ステップ11において自然室温の基準
室温からの差DBN(K)を算出し、ステップ12にお
いて、ゾーン、室毎の顕熱負荷QSL(Z,K)を算出
し、以上の処理をゾーン、室毎に繰り返し、ステップ1
3において前記した空調方式を考慮した実際の部屋毎の
除去熱量QS(K)を算出し、ステップ14において、
各室毎の室温が算出され、さらに、月、日、時毎に上記
処理を繰り返すことにより、年間の各室毎の温度変動を
得ることができる。
FIG. 3 shows a process for calculating the room temperature fluctuation for each air conditioning system. In step 11, the difference DBN (K) from the reference room temperature of the natural room temperature is calculated, and in step 12, the difference between the zones and rooms is calculated. Calculate the heat load QSL (Z, K) and repeat the above process for each zone and room.
In step 3, the actual heat removal quantity QS (K) for each room in consideration of the above-mentioned air conditioning system is calculated, and in step 14,
By calculating the room temperature of each room and repeating the above process every month, day, and hour, it is possible to obtain the temperature variation for each room for the year.

【0017】評価に使用する出力データは、次の5種類
のカラーグラフと3種類の数値表である。 カラーグラフ 室温・日変動グラフ:各室毎に室温の日時変化を表
したグラフ 室温変動頻度分布グラフ:各室毎にどの温度の頻度
が高いかを表したグラフ 処理熱量・日変動グラフ:冷房負荷及び暖房負荷の
日時変化を表したグラフでインテリアゾーン及びペリメ
ータゾーンの内訳が表示される。
The output data used for evaluation are the following five types of color graphs and three types of numerical tables. Color graph Room temperature / daily fluctuation graph: Graph showing room temperature changes over time for each room. Room temperature fluctuation frequency distribution graph: Graph showing which temperature is high in each room. Treatment heat quantity / day fluctuation graph: Cooling load. And, the breakdown of the interior zone and the perimeter zone is displayed in a graph showing the change over time of the heating load.

【0018】 処理熱量・期間変動グラフ:冷房負荷
及び暖房負荷の月日変化を表したグラフでインテリアゾ
ーン及びペリメータゾーンの内訳が表示される。
Treatment heat quantity / period variation graph: A graph showing the monthly change of the cooling load and the heating load, in which the details of the interior zone and the perimeter zone are displayed.

【0019】 月別統計年間熱量グラフ:月間及び年
間の冷房負荷及び暖房負荷を表したグラフでインテリア
ゾーン及びペリメータゾーンの内訳が表示される。
Monthly statistical annual calorific value graph: A graph showing monthly and annual cooling loads and heating loads, showing the breakdown of interior zones and perimeter zones.

【0020】数値表 ゾーン熱負荷表:インテリアゾーン及びペリメータ
ゾーンの月別、冷暖房別のエネルギー消費量 不足・過剰熱量表:室温の目標値に対する不足熱量
又は過剰熱量を表した表 処理熱量・電力消費量表 以上の入出力処理は、CRT画面上で対話形式で行われ
るため、設計段階での繰り返しの検討が容易にでき、オ
フィスプランニングと空調計画の両面から最適の計画を
行うことができる。
Numerical table Zone heat load table: Energy consumption of interior zone and perimeter zone by month and by heating / cooling Shortage / excessive heat quantity table: Table showing insufficient heat quantity or excess heat quantity against the target value of room temperature Processing heat quantity / power consumption quantity Since the input / output processing described above is performed interactively on the CRT screen, it is possible to easily study the repetition at the design stage, and it is possible to make an optimal plan from both office planning and air conditioning planning.

【0021】[0021]

【発明の効果】以上説明したように本発明によれば、建
築形状、複数の室の使用形態及び室温の目標値を入力す
る建築条件入力手段と、該入力手段に入力された情報に
基づいて空調熱負荷計算用入力データを自動作成する作
成手段と、前記入力データに基づいて空調熱負荷計算結
果を分析する空調熱負荷分析手段と、前記空調熱負荷に
基づいて空調方式を計画する空調方式計画手段と、前記
複数の室の温度変動及びエネルギー消費量を算出し前記
空調方式計画を評価する評価手段とを備えるため、建築
設計段階において建物完成後の年間の室温変動及びエネ
ルギー消費量を予測できるため、室内環境の快適性と省
エネルギーの両面で最適な建築設計及び空調計画を行う
ことができる。また一般的に分かりやすい室温変動によ
って空調方式計画の適否を判断できるので、発注者との
意志疎通を容易に行うことができる。
As described above, according to the present invention, a building condition input means for inputting a building shape, a usage pattern of a plurality of rooms, and a target value of room temperature, and based on information input to the input means Creating means for automatically creating input data for air conditioning heat load calculation, air conditioning heat load analyzing means for analyzing air conditioning heat load calculation results based on the input data, and air conditioning method for planning an air conditioning method based on the air conditioning heat load In order to include the planning means and the evaluation means for calculating the temperature fluctuations and energy consumptions of the plurality of rooms and evaluating the air conditioning system plan, predict the annual room temperature fluctuations and energy consumptions after the building is completed at the building design stage. Therefore, optimal building design and air conditioning plan can be performed in terms of both indoor environment comfort and energy saving. In addition, the suitability of the air-conditioning system plan can be determined based on the generally easy-to-understand room temperature fluctuation, so that it is possible to easily communicate with the orderer.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の建築設計段階における空調計画評価シ
ステムの1実施例を示す構成図
FIG. 1 is a configuration diagram showing an embodiment of an air conditioning plan evaluation system in a building design stage of the present invention.

【図2】CADを使用して空調熱負荷計算用入力データ
を自動作成する方法を説明するためのフロー図
FIG. 2 is a flowchart for explaining a method of automatically creating input data for air conditioning heat load calculation using CAD.

【図3】空調方式毎に室温変動を算出するための処理を
示すフロー図
FIG. 3 is a flowchart showing a process for calculating a room temperature change for each air conditioning system.

【符号の説明】[Explanation of symbols]

1…建築条件入力手段、2…空調熱負荷計算用入力デー
タ自動作成手段、3…空調熱負荷分析手段、4…空調方
式計画手段、5…空調方式計画評価手段。
1 ... Building condition input means, 2 ... Air-conditioning heat load calculation input data automatic generation means, 3 ... Air-conditioning heat load analysis means, 4 ... Air-conditioning system planning means, 5 ... Air-conditioning system plan evaluation means.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 水田定光 東京都中央区京橋二丁目16番1号 清水建 設株式会社内 (72)発明者 山田照雄 東京都中央区京橋二丁目16番1号 清水建 設株式会社内 (72)発明者 東山恒一 東京都中央区京橋二丁目16番1号 清水建 設株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Sadako Mizuta Inventor Sadamitsu Kyobashi 2-16-1 Chuo-ku, Tokyo Shimizu Construction Co., Ltd. (72) Inventor Teruo Yamada 2-16-1 Kyobashi, Chuo-ku, Tokyo Shimizu Inside Construction Co., Ltd. (72) Inventor Koichi Higashiyama 2-16-1 Kyobashi, Chuo-ku, Tokyo Shimizu Construction Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】建築形状、複数の室の使用形態及び室温の
目標値を入力する建築条件入力手段と、該入力手段に入
力された情報に基づいて空調熱負荷計算用入力データを
自動作成する作成手段と、前記入力データに基づいて空
調熱負荷計算結果を分析する空調熱負荷分析手段と、前
記空調熱負荷に基づいて空調方式を計画する空調方式計
画手段と、前記複数の室の温度変動及びエネルギー消費
量を算出し前記空調方式計画を評価する評価手段とを備
えることを特徴とする建築設計段階における空調計画評
価システム。
1. A building condition input means for inputting a building shape, a usage pattern of a plurality of rooms, and a target value of room temperature, and input data for air-conditioning heat load calculation are automatically created based on information input to the input means. Creating means, air conditioning heat load analyzing means for analyzing the air conditioning heat load calculation result based on the input data, air conditioning method planning means for planning an air conditioning method based on the air conditioning heat load, and temperature fluctuations of the plurality of rooms And an evaluation means for calculating an energy consumption amount and evaluating the air conditioning system plan, the air conditioning plan evaluation system in a building design stage.
JP3054774A 1991-03-19 1991-03-19 Air conditioning plan evaluation system at the architectural design stage Expired - Lifetime JP2939912B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3054774A JP2939912B2 (en) 1991-03-19 1991-03-19 Air conditioning plan evaluation system at the architectural design stage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3054774A JP2939912B2 (en) 1991-03-19 1991-03-19 Air conditioning plan evaluation system at the architectural design stage

Publications (2)

Publication Number Publication Date
JPH0593538A true JPH0593538A (en) 1993-04-16
JP2939912B2 JP2939912B2 (en) 1999-08-25

Family

ID=12980124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3054774A Expired - Lifetime JP2939912B2 (en) 1991-03-19 1991-03-19 Air conditioning plan evaluation system at the architectural design stage

Country Status (1)

Country Link
JP (1) JP2939912B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0894150A (en) * 1994-09-28 1996-04-12 Tadashi Yamamoto Automatic air conditioning designing apparatus
JP2002269172A (en) * 2001-03-12 2002-09-20 Misawa Homes Institute Of Research & Development Co Ltd System and method for evaluating energy consumption and computer readable recording medium having energy consumption evaluating program recorded thereon
JP2003076935A (en) * 2001-08-31 2003-03-14 Shimizu Corp System and method for calculating heat load pattern and computer program
JP2014010732A (en) * 2012-07-02 2014-01-20 Ohbayashi Corp Air-conditioning design method and architectural cad system
WO2020194602A1 (en) * 2019-03-27 2020-10-01 三菱電機株式会社 Risk calculation device, risk calculation program, and risk calculation method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0894150A (en) * 1994-09-28 1996-04-12 Tadashi Yamamoto Automatic air conditioning designing apparatus
JP2002269172A (en) * 2001-03-12 2002-09-20 Misawa Homes Institute Of Research & Development Co Ltd System and method for evaluating energy consumption and computer readable recording medium having energy consumption evaluating program recorded thereon
JP4643038B2 (en) * 2001-03-12 2011-03-02 株式会社ミサワホーム総合研究所 Energy consumption evaluation system and computer-readable recording medium recording an energy consumption evaluation program
JP2003076935A (en) * 2001-08-31 2003-03-14 Shimizu Corp System and method for calculating heat load pattern and computer program
JP4609690B2 (en) * 2001-08-31 2011-01-12 清水建設株式会社 Thermal load pattern calculation system and method, and computer program
JP2014010732A (en) * 2012-07-02 2014-01-20 Ohbayashi Corp Air-conditioning design method and architectural cad system
WO2020194602A1 (en) * 2019-03-27 2020-10-01 三菱電機株式会社 Risk calculation device, risk calculation program, and risk calculation method
JPWO2020194602A1 (en) * 2019-03-27 2021-09-13 三菱電機株式会社 Risk calculation device, risk calculation program and risk calculation method
GB2596473A (en) * 2019-03-27 2021-12-29 Mitsubishi Electric Corp Risk calculation device, risk calculation program, and risk calculation method
GB2596473B (en) * 2019-03-27 2022-05-18 Mitsubishi Electric Corp Risk calculation apparatus, risk calculation program, and risk calculation method

Also Published As

Publication number Publication date
JP2939912B2 (en) 1999-08-25

Similar Documents

Publication Publication Date Title
Shin et al. Thermal zoning for building HVAC design and energy simulation: A literature review
Yang et al. Building occupancy diversity and HVAC (heating, ventilation, and air conditioning) system energy efficiency
Mossolly et al. Optimal control strategy for a multi-zone air conditioning system using a genetic algorithm
Zhuang et al. Coordinated demand-controlled ventilation strategy for energy-efficient operation in multi-zone cleanroom air-conditioning systems
Kim et al. Model calibration of a variable refrigerant flow system with a dedicated outdoor air system: A case study
KR102500304B1 (en) CO2 control method for variable air volume system
Taylor et al. Optimizing thermal comfort and energy use for learning environments
Nagarathinam et al. Centralized management of HVAC energy in large multi-AHU zones
Berquist et al. An investigation of generative design for heating, ventilation, and air-conditioning
CN117035325A (en) Regional energy planning partitioning method based on dynamic planning method
Mao et al. A simplified numerical study on the energy performance and thermal environment of a bedroom TAC system
JP2939912B2 (en) Air conditioning plan evaluation system at the architectural design stage
Shin et al. A procedure for automating thermal zoning for building energy simulation
CN112484250A (en) HVAC (heating ventilation and ventilation air conditioning) online monitoring system based on indoor heat source information and control method
Im et al. Empirical validation of building energy modeling using flexible research platform
JPH03291445A (en) Hot heat environmental evaluation support system
Jacob et al. Energy-saving potential in Indian open-plan offices using micro-zonal occupant centric control (MZOCC)
Kim et al. Optimum duct design for variable air volume systems, Part 2: Optimization of VAV duct systems
Topak et al. Analysis of Thermal Distribution Patterns in Multi-Occupancy Environments
Bauman et al. Energy performance of underfloor air distribution systems
Shaviv et al. An integrated knowledge-based and procedural system for the design of energy conscious buildings
Gärtner Office Space Design for Flexibility: An Approach to Guarantee Thermal Comfort During the Entire Operation Phase
Grygierek et al. Multi-variable optimization models for building envelope design using EnergyPlus simulation and metaheuristic algorithms
JP7280525B2 (en) Area notification system
Chilukuri et al. Modeling and Optimization of Energy Performance for a Water-Cooled Chiller Plant deployed in Multi-story Office Building