JP2939912B2 - Air conditioning plan evaluation system at the architectural design stage - Google Patents

Air conditioning plan evaluation system at the architectural design stage

Info

Publication number
JP2939912B2
JP2939912B2 JP3054774A JP5477491A JP2939912B2 JP 2939912 B2 JP2939912 B2 JP 2939912B2 JP 3054774 A JP3054774 A JP 3054774A JP 5477491 A JP5477491 A JP 5477491A JP 2939912 B2 JP2939912 B2 JP 2939912B2
Authority
JP
Japan
Prior art keywords
air
air conditioning
heat load
conditioning
perimeter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3054774A
Other languages
Japanese (ja)
Other versions
JPH0593538A (en
Inventor
矢川明弘
浅野勝弘
北代丹士
水田定光
山田照雄
東山恒一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Original Assignee
Shimizu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd filed Critical Shimizu Construction Co Ltd
Priority to JP3054774A priority Critical patent/JP2939912B2/en
Publication of JPH0593538A publication Critical patent/JPH0593538A/en
Application granted granted Critical
Publication of JP2939912B2 publication Critical patent/JP2939912B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、オフィスビルの建築設
計段階において室内環境の快適性と省エネルギーの両面
で最適な空調設備を提供することが可能な空調計画評価
システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air-conditioning plan evaluation system capable of providing an optimum air-conditioning system in terms of both indoor environment comfort and energy saving in an architectural design stage of an office building.

【0002】[0002]

【従来の技術】従来の空調設備の計画手法は、熱負荷変
動に基づいて空調方式を計画する手法が殆どであり、例
えばオフィスビルの空調のように複数室を複数の空調装
置で空調する場合の室温変動を算出する手法がなく、そ
の空調計画によって室内空間がどのようになるか予測す
る適切な手法がなかった。従って、オフィスビルの設計
段階においてオフィスの使用形態に対応した最適な空調
方式を提供する計画システムは知られていない。
2. Description of the Related Art Most conventional air conditioning equipment planning methods are based on a method of planning an air conditioning system based on a change in heat load. For example, in a case where a plurality of rooms are air-conditioned by a plurality of air conditioners as in an office building. There is no method for calculating the room temperature fluctuation of the room, and there is no appropriate method for predicting what the indoor space will be based on the air conditioning plan. Accordingly, there is no known planning system that provides an optimal air conditioning system corresponding to the usage of offices in the design stage of an office building.

【0003】[0003]

【発明が解決しようとする課題】近年、オフィスの知的
生産性向上のために、オフィス環境の快適化が重要視さ
れると共にエネルギー消費量が増大し続けている。一
方、地球環境問題や中東情勢の不安定化に代表されるよ
うに、将来のエネルギー事情は予断を許さない。オフィ
スが大部屋で画一的な使用形態であった時代と違い、現
在はOAコーナーやミーティングコーナー等空調上の配
慮が異なるゾーンが混在しており、しかも組織改変に伴
うレイアウト変更が頻繁に行われ、将来にわたって最小
の消費エネルギーで快適な環境を維持してゆくために
は、ビルの設計段階からオフィスプランニングと空調計
画を併せて相互に検討してゆく必要が生じている。しか
しながら、従来の空調方式の計画手法は、熱負荷変動に
基づいて空調方式を計画する手法であり、その空調計画
によって室内環境がどの様になるかを予測する適切な手
段がなかった。
In recent years, in order to improve intellectual productivity of offices, emphasis has been placed on comfort of office environments and energy consumption has been increasing. On the other hand, the future energy situation is unpredictable, as typified by global environmental problems and the unstable situation in the Middle East. Unlike the times when offices were large rooms with uniform usage, zones with different air-conditioning considerations, such as OA corners and meeting corners, are now mixed, and layout changes are frequently made due to organizational changes. In order to maintain a comfortable environment with minimum energy consumption in the future, it is necessary to mutually examine office planning and air conditioning planning from the building design stage. However, the conventional air-conditioning method planning method is a method of planning an air-conditioning method based on a change in heat load, and there is no appropriate means for predicting what the indoor environment will be based on the air-conditioning plan.

【0004】本発明は、上記課題を解決するものであっ
て、建築設計段階において、建物完成後の空調された複
数室の室温変動及びエネルギー消費量を年間にわたって
予測でき、室内環境の快適性と省エネルギーの両面で最
適な計画を行うことができる建築設計段階における空調
計画評価システムを提供することを目的とする。
[0004] The present invention solves the above-mentioned problems. In the architectural design stage, room temperature fluctuation and energy consumption of a plurality of air-conditioned rooms after completion of a building can be predicted over a year, thereby improving indoor environment comfort and comfort. It is an object of the present invention to provide an air-conditioning plan evaluation system in an architectural design stage that can perform an optimal plan in both energy saving.

【0005】[0005]

【課題を解決するための手段】そのために本発明の建築
設計段階における空調計画評価システムは、建築形状、
複数の室の使用形態及び室温の目標値を入力する建築条
件入力手段1と、該入力手段に入力された情報に基づい
て空調熱負荷計算用入力データを自動作成する作成手段
2と、前記入力データに基づいて空調熱負荷計算結果を
分析する空調熱負荷分析手段3と、前記空調熱負荷に基
づいて空調方式を計画する空調方式計画手段4と、前記
複数の室の温度変動及びエネルギー消費量を算出し前記
空調方式計画を評価する評価手段5とを備えることを特
徴とする。なお、上記構成に付加した番号は、理解を容
易にするために図面と対比させるためのもので、これに
より本発明の構成が何等限定されるものではない。
For that purpose, the air conditioning plan evaluation system in the architectural design stage according to the present invention comprises:
A building condition input means 1 for inputting a use form of a plurality of rooms and a target value of a room temperature; a generating means 2 for automatically generating input data for air-conditioning heat load calculation based on information input to the input means; Air-conditioning heat load analyzing means 3 for analyzing the result of air-conditioning heat load calculation based on data; air-conditioning method planning means 4 for planning an air-conditioning method based on the air-conditioning heat load; temperature fluctuation and energy consumption of the plurality of rooms And evaluating means 5 for calculating the air conditioning scheme plan. The numbers added to the above configuration are for comparison with the drawings for easy understanding, and do not limit the configuration of the present invention at all.

【0006】[0006]

【作用】本発明においては、複数の室の使用形態及び室
温の目標値等の建築条件を入力すると、空調熱負荷を分
析し、さらに、各室毎に空調設備計画を入力すると、年
間の各室毎の温度変動及び年間のエネルギー消費量が自
動的に算出され、これに基づいて空調方式計画の評価を
行い、変更する場合には、建築条件入力手段1又は空調
方式計画手段4に戻って再評価が行われる。
In the present invention, when the building conditions such as the usage form of a plurality of rooms and the target value of the room temperature are input, the air conditioning heat load is analyzed. Further, when the air conditioning equipment plan is input for each room, the annual The temperature fluctuation and the annual energy consumption for each room are automatically calculated, and based on this, the air conditioning system plan is evaluated. If the air conditioning system plan is changed, the process returns to the building condition input means 1 or the air conditioning system planning means 4. Re-evaluation is performed.

【0007】[0007]

【実施例】以下本発明の実施例を図面を参照しつつ説明
する。図1は本発明の建築設計段階における空調計画評
価システムの1実施例を示す構成図である。本発明の空
調計画評価システムは、建築形状、複数の室の使用形態
及び室温の目標値を入力する建築条件入力手段1と、該
入力手段に入力された情報に基づいて空調熱負荷計算用
入力データを自動作成する作成手段2と、前記入力デー
タに基づいて空調熱負荷計算結果を分析する空調熱負荷
分析手段3と、前記空調熱負荷に基づいて空調方式を計
画する空調方式計画手段4と、前記複数の室の温度変動
及びエネルギー消費量を算出し前記空調方式計画を評価
する評価手段5とを備える。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram showing one embodiment of an air conditioning plan evaluation system in a building design stage of the present invention. An air-conditioning plan evaluation system according to the present invention includes a building condition input unit 1 for inputting a building shape, a use form of a plurality of rooms and a target value of room temperature, and an input for air-conditioning heat load calculation based on information input to the input unit. Creation means 2 for automatically creating data; air conditioning heat load analysis means 3 for analyzing the air conditioning heat load calculation result based on the input data; and air conditioning scheme planning means 4 for planning an air conditioning scheme based on the air conditioning heat load. Evaluation means 5 for calculating temperature fluctuations and energy consumption of the plurality of rooms and evaluating the air conditioning system plan.

【0008】建築条件入力手段1において、建築条件を
入力する。これは、OAコーナーやミーティングコーナ
ー等のオフィスの使用形態、OA機器等の発熱機器の配
置、室温等の室内環境目標値を入力する。次に、作成手
段2において、入力手段1に入力された情報に基づいて
空調熱負荷計算用入力データを自動作成する。
In the construction condition input means 1, construction conditions are inputted. For this, an office use form such as an OA corner or a meeting corner, an arrangement of a heating device such as an OA device, and an indoor environment target value such as a room temperature are input. Next, the creating means 2 automatically creates air conditioning heat load calculation input data based on the information input to the input means 1.

【0009】図2はCADを使用して空調熱負荷計算用
入力データを自動作成する方法を示し、先ず、ステップ
S1において、建築形状、壁・床・天井・窓等の材料を
入力し、計算対象エリアの指定を行う。次いで、ステッ
プS2において、室の分割状態、室の使用形態、室温の
目標値を入力する。次いで、ステップS3において、ペ
リメータゾーンを設定する外壁を指定すると、ペリメー
タゾーンとインテリアゾーンの自動認識が行われる。最
後に、ステップS4において、ステップS1、S2の条
件により空調熱負荷計算単位(スペース)の自動認識が
行われ、負荷計算プログラムの入力データが自動的に作
成される。
FIG. 2 shows a method for automatically creating input data for air conditioning heat load calculation using CAD. First, in step S1, an architectural shape and materials such as walls, floors, ceilings, windows, etc. are input and calculated. Specify the target area. Next, in step S2, the division state of the room, the use form of the room, and the target value of the room temperature are input. Next, in step S3, when an outer wall for setting a perimeter zone is designated, the perimeter zone and the interior zone are automatically recognized. Finally, in step S4, the air conditioning heat load calculation unit (space) is automatically recognized under the conditions of steps S1 and S2, and input data of the load calculation program is automatically created.

【0010】図1に戻り、空調熱負荷分析手段3におい
て、作成手段2のデータを使用し負荷計算プログラムに
より、年間365日×24時間の空調熱負荷分析結果を
自動的に作成する。
Returning to FIG. 1, the air-conditioning heat load analyzing means 3 automatically generates an air-conditioning heat load analysis result of 365 days a year × 24 hours by a load calculation program using the data of the generating means 2.

【0011】空調方式計画手段4においては、インテリ
アゾーン、ペリメータゾーンへの空調をどうするか、省
エネルギー方式、空調方式及び制御方式の選択、機器容
量の設計等を如何に選択するかの空調計画を入力する。
The air-conditioning system planning means 4 inputs an air-conditioning plan for how to air-condition the interior zone and perimeter zone, how to select an energy-saving system, an air-conditioning system and a control system, and how to select a device capacity design. I do.

【0012】検討可能な省エネルギー方式としては、外
気導入制御、空調機ファン風量制御及びポンプ流量制御
が挙げられる。外気導入制御には、顕熱基準制御、エン
タルピー基準制御のいずれか又は組み合わせによる外気
冷房、全熱交換器、外気量CO2制御があり、空調機フ
ァン風量制御導入制御には、吐出ダンパ制御、スクロー
ルダンパ制御、サクションベーン制御、回転数制御があ
り、ポンプ流量制御には、定流量方式、台数制御方式、
回転数制御方式および、台数制御と回転数制御の組合わ
せ方式がある。
The energy saving methods that can be considered include outside air introduction control, air conditioner fan air flow control, and pump flow control. The outside air introduction control includes outside air cooling, a total heat exchanger, and the outside air amount CO2 control by any or a combination of the sensible heat reference control and the enthalpy reference control, and the air conditioning fan air flow control introduction control includes discharge damper control, scrolling There are damper control, suction vane control, rotation speed control, and pump flow control includes constant flow method, number control method,
There are a number-of-rotations control method and a combination method of number-of-units control and number-of-rotations control.

【0013】検討可能な空調方式としては、単一ダクト
(ペリメータ処理なし)定風量方式、単一ダクト(ペリ
メータ処理なし)可変風量方式、インテリア定風量・ペ
リメータ可変風量方式、インテリア可変風量方式・ペリ
メータ可変風量方式、インテリア定風量方式・ペリメー
タファンコイルユニット方式、インテリア可変風量方式
・ペリメータファンコイルユニット方式、各室ファンコ
イルユニット方式等がある。
The air conditioning systems that can be considered include a single duct (without perimeter processing) constant air volume system, a single duct (without perimeter processing) variable air volume system, an interior constant air volume / perimeter variable air volume system, an interior variable air volume system / perimeter. There are a variable air volume system, an interior constant air volume system, a perimeter fan coil unit system, an interior variable air volume system, a perimeter fan coil unit system, and a fan coil unit system for each room.

【0014】検討可能な制御方式としては、定風量方式
として、代表室温度制御又はレターン温度制御があり、
可変風量方式として、各室制御、ゾーン一括制御、送風
温度一定、送風温度可変方式があり、ファンコイルユニ
ット方式として、2管式、4管式、各室制御、ゾーン一
括制御、系統一括制御等がある。
As a control method that can be considered, there is a representative room temperature control or a return temperature control as a constant air volume method.
The variable air volume method includes room control, zone collective control, constant air temperature, and variable air temperature. Fan coil unit method includes two-tube type, four-tube type, individual room control, zone collective control, system collective control, etc. There is.

【0015】以上の検討項目から考慮される空調計画を
以下に列挙する。 (A)単一ダクト(ペリメータ処理なし)定風量方式 A1:インテリア(代表室温度制御) A2:インテリア(レターン温度制御) (B)単一ダクト(ペリメータ処理なし)可変風量方式 B1:インテリア(各室温度制御) (C)インテリア定風量・ペリメータ可変風量方式 C1:インテリア(代表室温度制御)+ペリメータ(代
表室温度制御) C2:インテリア(レターン温度制御)+ペリメータ
(代表室温度制御) (D)インテリア可変風量・ペリメータ可変風量方式 D1:インテリア(各室温度制御)+ペリメータ(代表
室温度制御) D2:インテリア(各室温度制御)+ペリメータ(各室
温度制御) (E)インテリア定風量・ペリメータファンコイルユニ
ット方式 E1:インテリア(代表室温度制御)+ペリメータ(2
管式、代表室温度制御) E2:インテリア(レターン温度制御)+ペリメータ
(2管式、代表室温度制御) E3:インテリア(代表室温度制御)+ペリメータ(2
管式、系統一括制御) E4:インテリア(レターン温度制御)+ペリメータ
(2管式、系統一括制御) E5:インテリア(代表室温度制御)+ペリメータ(4
管式、各室温度制御) E6:インテリア(レターン温度制御)+ペリメータ
(4管式、各室温度制御) E7:インテリア(代表室温度制御)+ペリメータ(4
管式、代表室温度制御) E8:インテリア(レターン温度制御)+ペリメータ
(4管式、代表室温度制御) (F)インテリア可変風量・ペリメータファンコイルユ
ニット方式 F1:インテリア(各室温度制御)+ペリメータ(2管
式、代表室温度制御) F2:インテリア(各室温度制御)+ペリメータ(2管
式、系統一括制御) F3:インテリア(各室温度制御)+ペリメータ(4管
式、代表室温度制御) F4:インテリア(各室温度制御)+ペリメータ(4管
式、各室温度制御) (G)各室ファンコイルユニット方式 G1:2管式 G2:4管式 上記空調方式計画を各室、各ゾーン毎に入力すると、評
価手段5において、年間の各室毎の温度変動及び年間の
エネルギー消費量が自動的に算出され、これに基づいて
空調計画の評価を行い、変更する場合には、建築条件入
力手段1又は空調方式計画手段4に戻って再評価が行わ
れる。
The air conditioning plans considered from the above examination items are listed below. (A) Single duct (without perimeter processing) Constant air volume system A1: Interior (representative room temperature control) A2: Interior (return temperature control) (B) Single duct (without perimeter processing) Variable air volume system B1: Interior (each (C) Interior constant air volume / perimeter variable air volume method C1: Interior (representative room temperature control) + perimeter (representative room temperature control) C2: Interior (return temperature control) + perimeter (representative room temperature control) (D ) Interior variable air volume / perimeter variable air volume system D1: Interior (temperature control of each room) + Perimeter (temperature control of representative room) D2: Interior (temperature control of each room) + Perimeter (temperature control of each room) (E) Constant air volume of interior Perimeter fan coil unit method E1: Interior (representative room temperature control) + perimeter (2
E2: Interior (return temperature control) + perimeter (two-tube type, representative room temperature control) E3: Interior (representative room temperature control) + perimeter (2
E4: Interior (return temperature control) + perimeter (two-tube, system collective control) E5: Interior (representative room temperature control) + perimeter (4
E6: Interior (return temperature control) + perimeter (4-tube, each room temperature control) E7: Interior (representative room temperature control) + perimeter (4
E8: Interior (return temperature control) + Perimeter (4-tube, representative room temperature control) (F) Interior variable airflow / perimeter fan coil unit system F1: Interior (temperature control of each room) + Perimeter (two-tube type, representative room temperature control) F2: Interior (each room temperature control) + perimeter (two-tube type, system collective control) F3: Interior (each room temperature control) + perimeter (four-tube type, representative room temperature) Control) F4: Interior (temperature control for each room) + Perimeter (4 tube type, temperature control for each room) (G) Fan coil unit type for each room G1: 2 tube type G2: 4 tube type When input is made for each zone, the evaluation means 5 automatically calculates the annual temperature fluctuation of each room and the annual energy consumption, and evaluates the air conditioning plan based on this. If it is to be changed, the procedure returns to the building condition input means 1 or the air-conditioning scheme planning means 4 to perform a re-evaluation.

【0016】図3は空調方式毎に室温変動を算出するた
めの処理を示し、ステップ11において自然室温の基準
室温からの差DBN(K)を算出し、ステップ12にお
いて、ゾーン、室毎の顕熱負荷QSL(Z,K)を算出
し、以上の処理をゾーン、室毎に繰り返し、ステップ1
3において前記した空調方式を考慮した実際の部屋毎の
除去熱量QS(K)を算出し、ステップ14において、
各室毎の室温が算出され、さらに、月、日、時毎に上記
処理を繰り返すことにより、年間の各室毎の温度変動を
得ることができる。
FIG. 3 shows a process for calculating a room temperature variation for each air conditioning system. In step 11, the difference DBN (K) from the natural room temperature to the reference room temperature is calculated. The heat load QSL (Z, K) is calculated, and the above processing is repeated for each zone and each room.
In step 3, the actual amount of heat removed QS (K) for each room in consideration of the air conditioning method described above is calculated.
The room temperature of each room is calculated, and the above process is repeated every month, day, and hour, so that annual temperature fluctuation of each room can be obtained.

【0017】評価に使用する出力データは、次の5種類
のカラーグラフと3種類の数値表である。 カラーグラフ 室温・日変動グラフ:各室毎に室温の日時変化を表
したグラフ 室温変動頻度分布グラフ:各室毎にどの温度の頻度
が高いかを表したグラフ 処理熱量・日変動グラフ:冷房負荷及び暖房負荷の
日時変化を表したグラフでインテリアゾーン及びペリメ
ータゾーンの内訳が表示される。
The output data used for the evaluation are the following five types of color graphs and three types of numerical tables. Color graph Room temperature / daily fluctuation graph: A graph showing the change of room temperature in each room on a daily basis Room temperature fluctuation frequency distribution graph: A graph showing which frequency is high in each room Processing heat / daily fluctuation graph: Cooling load Further, the breakdown of the interior zone and the perimeter zone is displayed in a graph representing the change in date and time of the heating load.

【0018】 処理熱量・期間変動グラフ:冷房負荷
及び暖房負荷の月日変化を表したグラフでインテリアゾ
ーン及びペリメータゾーンの内訳が表示される。
Processing heat amount / period variation graph: Breakdown of interior zone and perimeter zone is displayed in a graph showing the monthly change of cooling load and heating load.

【0019】 月別統計年間熱量グラフ:月間及び年
間の冷房負荷及び暖房負荷を表したグラフでインテリア
ゾーン及びペリメータゾーンの内訳が表示される。
Monthly statistical annual calorie graph: A graph showing the monthly and annual cooling load and heating load, and the details of the interior zone and the perimeter zone are displayed.

【0020】数値表 ゾーン熱負荷表:インテリアゾーン及びペリメータ
ゾーンの月別、冷暖房別のエネルギー消費量 不足・過剰熱量表:室温の目標値に対する不足熱量
又は過剰熱量を表した表 処理熱量・電力消費量表 以上の入出力処理は、CRT画面上で対話形式で行われ
るため、設計段階での繰り返しの検討が容易にでき、オ
フィスプランニングと空調計画の両面から最適の計画を
行うことができる。
Numerical Table Zone heat load table: Energy consumption of each interior zone and perimeter zone for each month and cooling and heating Insufficient / excess heat table: A table showing insufficient or excess heat for the target value of room temperature Processing heat / power consumption Table The input / output processing described above is performed interactively on the CRT screen, so that it is easy to consider repetition at the design stage, and an optimal plan can be made from both the office planning and the air conditioning plan.

【0021】[0021]

【発明の効果】以上説明したように本発明によれば、建
築形状、複数の室の使用形態及び室温の目標値を入力す
る建築条件入力手段と、該入力手段に入力された情報に
基づいて空調熱負荷計算用入力データを自動作成する作
成手段と、前記入力データに基づいて空調熱負荷計算結
果を分析する空調熱負荷分析手段と、前記空調熱負荷に
基づいて空調方式を計画する空調方式計画手段と、前記
複数の室の温度変動及びエネルギー消費量を算出し前記
空調方式計画を評価する評価手段とを備えるため、建築
設計段階において建物完成後の年間の室温変動及びエネ
ルギー消費量を予測できるため、室内環境の快適性と省
エネルギーの両面で最適な建築設計及び空調計画を行う
ことができる。また一般的に分かりやすい室温変動によ
って空調方式計画の適否を判断できるので、発注者との
意志疎通を容易に行うことができる。
As described above, according to the present invention, building condition input means for inputting a building shape, a use form of a plurality of rooms, and a target value of room temperature, and information based on the information input to the input means. Creating means for automatically creating input data for air-conditioning heat load calculation, air-conditioning heat load analyzing means for analyzing the air-conditioning heat load calculation result based on the input data, and air-conditioning method for planning an air-conditioning method based on the air-conditioning heat load In order to include a planning means and an evaluation means for calculating the temperature fluctuation and the energy consumption of the plurality of rooms and evaluating the air conditioning system plan, predict the annual room temperature fluctuation and the energy consumption after the building is completed in the architectural design stage. Therefore, it is possible to perform an optimal architectural design and an air conditioning plan in both the comfort of the indoor environment and the energy saving. In addition, since the suitability of the air-conditioning scheme plan can be determined based on room temperature fluctuation which is generally easy to understand, it is possible to easily communicate with the orderer.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の建築設計段階における空調計画評価シ
ステムの1実施例を示す構成図
FIG. 1 is a configuration diagram showing one embodiment of an air conditioning plan evaluation system in a building design stage of the present invention.

【図2】CADを使用して空調熱負荷計算用入力データ
を自動作成する方法を説明するためのフロー図
FIG. 2 is a flowchart for explaining a method of automatically creating input data for air conditioning heat load calculation using CAD.

【図3】空調方式毎に室温変動を算出するための処理を
示すフロー図
FIG. 3 is a flowchart showing a process for calculating room temperature fluctuation for each air conditioning system.

【符号の説明】[Explanation of symbols]

1…建築条件入力手段、2…空調熱負荷計算用入力デー
タ自動作成手段、3…空調熱負荷分析手段、4…空調方
式計画手段、5…空調方式計画評価手段。
DESCRIPTION OF SYMBOLS 1 ... Building condition input means, 2 ... Air-conditioning heat load calculation input data automatic preparation means, 3 ... Air conditioning heat load analysis means, 4 ... Air conditioning scheme planning means, 5 ... Air conditioning scheme planning evaluation means.

フロントページの続き (72)発明者 水田定光 東京都中央区京橋二丁目16番1号 清水 建設株式会社内 (72)発明者 山田照雄 東京都中央区京橋二丁目16番1号 清水 建設株式会社内 (72)発明者 東山恒一 東京都中央区京橋二丁目16番1号 清水 建設株式会社内 (56)参考文献 特開 昭62−17560(JP,A) (58)調査した分野(Int.Cl.6,DB名) F24F 11/02 Continued on the front page (72) Inventor: Sadamitsu Mizuta 2-16-1, Kyobashi, Chuo-ku, Tokyo Shimizu Construction Co., Ltd. (72) Inventor: Teruo Yamada 2-1-1, Kyobashi, Chuo-ku, Tokyo Shimizu Corporation (72) Inventor Koichi Higashiyama 2-6-1 Kyobashi, Chuo-ku, Tokyo Shimizu Construction Co., Ltd. (56) References JP-A-62-17560 (JP, A) (58) Fields investigated (Int. . 6, DB name) F24F 11/02

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】建築形状、複数の室の使用形態及び室温の
目標値を入力する建築条件入力手段と、該入力手段に入
力された情報に基づいて空調熱負荷計算用入力データを
自動作成する作成手段と、前記入力データに基づいて空
調熱負荷計算結果を分析する空調熱負荷分析手段と、前
記空調熱負荷に基づいて空調方式を計画する空調方式計
画手段と、前記複数の室の温度変動及びエネルギー消費
量を算出し前記空調方式計画を評価する評価手段とを備
えることを特徴とする建築設計段階における空調計画評
価システム。
1. A building condition input means for inputting a building shape, a use form of a plurality of rooms and a target value of room temperature, and input data for air-conditioning heat load calculation are automatically created based on information input to the input means. Creating means; air conditioning heat load analyzing means for analyzing the air conditioning heat load calculation result based on the input data; air conditioning scheme planning means for planning an air conditioning scheme based on the air conditioning heat load; and temperature fluctuations of the plurality of rooms. And an evaluation means for calculating energy consumption and evaluating the air conditioning scheme plan. An air conditioning plan evaluation system in a building design stage.
JP3054774A 1991-03-19 1991-03-19 Air conditioning plan evaluation system at the architectural design stage Expired - Lifetime JP2939912B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3054774A JP2939912B2 (en) 1991-03-19 1991-03-19 Air conditioning plan evaluation system at the architectural design stage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3054774A JP2939912B2 (en) 1991-03-19 1991-03-19 Air conditioning plan evaluation system at the architectural design stage

Publications (2)

Publication Number Publication Date
JPH0593538A JPH0593538A (en) 1993-04-16
JP2939912B2 true JP2939912B2 (en) 1999-08-25

Family

ID=12980124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3054774A Expired - Lifetime JP2939912B2 (en) 1991-03-19 1991-03-19 Air conditioning plan evaluation system at the architectural design stage

Country Status (1)

Country Link
JP (1) JP2939912B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0894150A (en) * 1994-09-28 1996-04-12 Tadashi Yamamoto Automatic air conditioning designing apparatus
JP4643038B2 (en) * 2001-03-12 2011-03-02 株式会社ミサワホーム総合研究所 Energy consumption evaluation system and computer-readable recording medium recording an energy consumption evaluation program
JP4609690B2 (en) * 2001-08-31 2011-01-12 清水建設株式会社 Thermal load pattern calculation system and method, and computer program
JP2014010732A (en) * 2012-07-02 2014-01-20 Ohbayashi Corp Air-conditioning design method and architectural cad system
AU2019436880B2 (en) * 2019-03-27 2022-02-24 Mitsubishi Electric Corporation Risk calculation apparatus, risk calculation program, and risk calculation method

Also Published As

Publication number Publication date
JPH0593538A (en) 1993-04-16

Similar Documents

Publication Publication Date Title
Shin et al. Thermal zoning for building HVAC design and energy simulation: A literature review
Yang et al. Building occupancy diversity and HVAC (heating, ventilation, and air conditioning) system energy efficiency
Al-Homoud Computer-aided building energy analysis techniques
US7164972B2 (en) Method and apparatus for representing a building system
Zhang et al. Energy performance index of air distribution: Thermal utilization effectiveness
Lu et al. An integrated decision-making framework for existing building retrofits based on energy simulation and cost-benefit analysis
JP2939912B2 (en) Air conditioning plan evaluation system at the architectural design stage
Selamat et al. Review on HVAC System Optimization Towards Energy Saving Building Operation.
CN117035325A (en) Regional energy planning partitioning method based on dynamic planning method
Shin et al. A procedure for automating thermal zoning for building energy simulation
JP2001344294A (en) System for supporting design of heat transfer and air flowing in building
Feng et al. CHAMPS-Multizone—A combined heat, air, moisture and pollutant simulation environment for whole-building performance analysis
Ng et al. Airflow and indoor air quality models of DOE prototype commercial buildings
Kim et al. An integrated comfort control with cooling, ventilation, and humidification systems for thermal comfort and low energy consumption
Yau et al. Numerical simulation of a novel VRF-SV hybrid system performance in a large retail facility in the tropics
JP3185086B2 (en) Air conditioning monitoring device
JPH03291445A (en) Hot heat environmental evaluation support system
Shah et al. Dynamic modelling and multivariable control of buildings climate by using sliding mode control
Shin Development of a Procedure for Automating Thermal Zoning for Building Energy Simulation
JP7280525B2 (en) Area notification system
Hussin et al. Preliminary Study on Energy Consumption at UiTMCPP library using IES< VE> simulation
Chilukuri et al. Modeling and Optimization of Energy Performance for a Water-Cooled Chiller Plant deployed in Multi-story Office Building
Kim et al. Impact of thermal zone modeling on a small office building with all-electric HVAC systems in hot-humid and cold-humid climates
Im et al. Development of a supermarket prototype building model
Gärtner Office Space Design for Flexibility: An Approach to Guarantee Thermal Comfort During the Entire Operation Phase