JPH0593214A - Production of fine copper powder - Google Patents

Production of fine copper powder

Info

Publication number
JPH0593214A
JPH0593214A JP8481591A JP8481591A JPH0593214A JP H0593214 A JPH0593214 A JP H0593214A JP 8481591 A JP8481591 A JP 8481591A JP 8481591 A JP8481591 A JP 8481591A JP H0593214 A JPH0593214 A JP H0593214A
Authority
JP
Japan
Prior art keywords
aqueous solution
acidic aqueous
copper powder
temperature
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8481591A
Other languages
Japanese (ja)
Inventor
Tadao Nagai
忠雄 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Nikko Kyodo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd, Nikko Kyodo Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP8481591A priority Critical patent/JPH0593214A/en
Publication of JPH0593214A publication Critical patent/JPH0593214A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To stably and industrially produce a fine copper powder consisting of the uniform grains having a narrow grain size distribution and having sufficient oxidation resistance. CONSTITUTION:A fine copper powder is produced utilizing disproportionation reaction. In this case, a first aq. acidic soln. contg. cuprous ion and kept at <=pH2.5 and a second aq. acidic soln. kept at <=pH2.5 and having the temp. lower than that of the first soln. are mixed to cause a reaction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、粒度分布の幅が狭
く、しかも耐酸化性に優れ、導電ペ−スト用等として好
適な銅微粉の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing fine copper powder which has a narrow particle size distribution and is excellent in oxidation resistance and is suitable for conductive paste and the like.

【0002】[0002]

【従来技術とその課題】近年、塗料,ペ−スト,樹脂成
形品等の導電フィラ−用として銅微粉の需要が増大して
いるが、このような用途に供される銅微粉には a) 形状に統一性がある, b) 比表面積があまり大きくない, c) 分散性が良い, d) 粒度分布の幅が狭い, e) 耐酸化性に優れる, 等が要求されている。特に、導電ペ−スト用の銅微粉で
は上記特性に対する要求は非常に厳しく、これらを十分
に満足する粒径が0.2 〜5μm程度の銅微粉を工業規模
で量産し得る手段が切望されていた。このような状況下
において、最近、好適な粒度分布の幅が狭い銅微粉の製
造手段として、高温状態の硫酸第一銅水溶液を急冷する
ことにより該水溶液中のCu+ を不安定にし の右向きの反応(冷却反応)を起こさせて銅微粉を析出
させる、所謂“不均化反応”による銅粉の製造方法が提
案され(特開昭63−310910号)注目されてい
る。
2. Description of the Related Art In recent years, there is an increasing demand for fine copper powder for use in conductive fillers such as paints, pastes, and resin molded products. It is required that the shapes are uniform, b) the specific surface area is not so large, c) the dispersibility is good, d) the width of the particle size distribution is narrow, and e) the oxidation resistance is excellent. In particular, in the case of fine copper powder for conductive paste, the requirements for the above characteristics are very strict, and there has been a strong demand for a means capable of mass-producing copper fine powder having a particle size of 0.2 to 5 μm, which satisfies these requirements, on an industrial scale. Under such circumstances, recently, as a suitable means for producing fine copper powder having a narrow width of particle size distribution, by rapidly cooling an aqueous solution of cuprous sulfate in a high temperature state, Cu + in the aqueous solution becomes unstable. A method for producing copper powder by a so-called "disproportionation reaction", which causes a rightward reaction (cooling reaction) to precipitate fine copper powder, has been proposed (Japanese Patent Laid-Open No. 63-310910).

【0003】しかしながら、この方法で得られる銅微粉
は、従来から採用されてきた「硫酸銅水溶液の水素加圧
還元法」等によるものと比較して確かに粒度バラツキの
格段に小さい均一粒となってはいるが、耐酸化性が十分
でなく、或る程度の期間空気中に放置すると変色しやす
いという問題があった。なお、この種の銅微粉において
は「耐酸化性に優れること」も導電性等に係わる安定し
た効果を確保する上で欠かせない要求特性であり、実用
のためには耐酸化性の改善が必要であることは言うまで
もなかった。
However, the fine copper powder obtained by this method is surely a uniform particle having a remarkably small particle size variation as compared with the conventionally used method such as "a method of hydrogen pressure reduction of an aqueous solution of copper sulfate". However, there is a problem in that the oxidation resistance is not sufficient and the color tends to change when left in the air for a certain period of time. In addition, in this kind of fine copper powder, "excellent oxidation resistance" is also a required characteristic in order to secure a stable effect related to conductivity, etc., and improvement of oxidation resistance is necessary for practical use. Needless to say, it was necessary.

【0004】このようなことから、本発明が目的とした
のは、粒度分布の幅が小さい均一粒であって、しかも十
分な耐酸化性をも備えた銅微粉を、格別に大掛かりな設
備や高価な薬品類を要することなく安定して製造し得る
工業的手段を確立することであった。
In view of the above, the object of the present invention is to prepare a fine copper powder having uniform particle size distribution with a narrow width and having sufficient oxidation resistance, in a particularly large-scale equipment and It was to establish an industrial means capable of stable production without requiring expensive chemicals.

【0005】[0005]

【課題を解決するための手段】本発明者等は、上記目的
を達成すべく、まず前記特開昭63−310910号と
して提案された方法で得られた銅微粉が耐酸化性に劣る
原因について検討を行ったところ、「該方法は“高温状
態の硫酸第一銅水溶液を冷却槽へ移送して急冷すること
で不均化反応を生起させる点を特徴としているが、 この
方法によって析出生成する銅微粉はどうしても表面の粗
い不定形のものとなりがちで、 これが耐酸化性の不良に
つながるものである」との認識を持つに至った。
In order to achieve the above-mentioned object, the inventors of the present invention firstly explained the reason why the fine copper powder obtained by the method proposed in JP-A-63-310910 is inferior in oxidation resistance. As a result of an examination, "the method is characterized in that a disproportionation reaction is caused by transferring a high temperature cuprous sulfate aqueous solution to a cooling tank and rapidly cooling it. Fine copper powder tends to have an irregular shape with a rough surface, which leads to poor oxidation resistance. "

【0006】そこで、本発明者等は更に、不均化反応に
て表面が平滑な銅微粉を析出させ得る可能性について研
究を重ねた結果、「第一銅イオンを含有する高温の酸性
水溶液を準備しておき、 これをより温度の低い酸性水溶
液と混合すると、 の右向きの反応が比較的円滑に進行し、 高温の第一銅イ
オン含有酸性水溶液をそのまま急冷した場合とは異なっ
て“平滑な結晶面を有した狭い粒度分布の均一銅微粉”
が安定して析出することとなり、 しかも前記混合操作以
降の冷却条件調整によって析出する銅微粉の平均粒径を
制御することも可能である」との知見が得られたのであ
る。
Therefore, the present inventors have further studied the possibility of depositing fine copper powder having a smooth surface by a disproportionation reaction, and as a result, "a high-temperature acidic aqueous solution containing cuprous ions is prepared. Prepared and mixed with a lower temperature acidic aqueous solution, The reaction in the right direction of "No.1" progresses relatively smoothly, and unlike the case where the high temperature cuprous ion-containing acidic aqueous solution is rapidly cooled as it is, "fine copper powder with a narrow grain size distribution and a smooth crystal surface"
Will be stably deposited, and it is possible to control the average particle size of the fine copper powder to be deposited by adjusting the cooling conditions after the above-mentioned mixing operation. "

【0007】本発明は、上記知見事項等を基に完成され
たものであり、「不均化反応を利用して銅微粉を製造す
るに当り、 準備した第一銅イオンを含む温度:50℃以
上,pH:2.5以下の第一の酸性水溶液と、 pH:2.5 以
下で前記第一の酸性水溶液よりも低温の第二の酸性水溶
液とを混合して反応を起こさせることによって、 耐酸化
性に優れた均一粒度の銅微粉を安定して得られるように
した点」に大きな特徴を有している。
The present invention has been completed on the basis of the above-mentioned findings and the like. "When producing fine copper powder by utilizing a disproportionation reaction, the temperature containing the prepared cuprous ion: 50 ° C As described above, by mixing a first acidic aqueous solution having a pH of 2.5 or less and a second acidic aqueous solution having a pH of 2.5 or less and having a temperature lower than that of the first acidic aqueous solution to cause a reaction, oxidation resistance is improved. The point is that stable and fine copper powder with a uniform particle size can be obtained ”.

【0008】[0008]

【作用】さて、同じ不均化反応を利用して銅微粉を製造
する方法であるのに、前記特開昭63−310910号
として提案された「高温状態の硫酸第一銅水溶液を冷却
槽へ移送して急冷する方法」では析出する銅粉が表面の
粗い不定形のものとなり平滑な結晶面を有したものとな
らない理由として、次のことが考えられる。即ち、高温
状態のCu+ イオン含有酸性水溶液は冷却されると核発生
及び核成長(結晶成長)が起きて銅微粉を形成するが、
平滑な表面につながる結晶面を綺麗に出すためには銅の
析出速度をゆっくりとすることが望ましく、核発生後は
低温でかつ相当量のCu+ イオンが残留した状態(或る過
飽和度を有した状態)で新たな核発生を押えつつ結晶成
長を行わしめることが重要であるのに対し、上記提案法
では「微小粒度」に拘泥して冷却を単に“急冷”とした
ため、核発生と結晶成長が急激に進んで表面の粗い不定
形微粉しか得られなかった。
Despite the method for producing fine copper powder using the same disproportionation reaction, the method of "high-temperature cuprous sulfate aqueous solution to a cooling tank proposed in JP-A-63-310910 is used. In the method of "transferring and rapidly cooling", the following is considered as the reason why the precipitated copper powder does not have a rough and irregular surface and does not have a smooth crystal surface. That is, when the high temperature Cu + ion-containing acidic aqueous solution is cooled, nucleus generation and nucleus growth (crystal growth) occur to form fine copper powder.
It is desirable to slow down the copper deposition rate in order to make the crystal plane that leads to a smooth surface beautiful, and a state where a considerable amount of Cu + ions remain after the nucleation at a low temperature (with a certain degree of supersaturation). While it is important to carry out crystal growth while suppressing new nucleation in the above condition), in the above proposed method, cooling was simply “quick cooling” with a focus on “fine grain size”. The growth proceeded rapidly and only amorphous fine powder with a rough surface was obtained.

【0009】これに対して、本発明に係わる方法では、
“第一銅イオンを含有する高温の酸性水溶液”を“これ
をよりも低温の酸性水溶液”と混合することにより冷却
して不均化反応を生起・進行せしめるため、初期の核発
生期以降の冷却が比較的緩慢で、十分な過飽和度を有し
た状態から核発生が起こった後、結晶成長期においては
銅の析出速度がゆっくりとなって結晶面の綺麗に現れた
平滑な銅微粉が形成される。しかも、両液混合後の冷却
条件を調整する余裕もあることからこれにより粒成長を
加減することも可能で、従って銅微粉の平均粒径制御も
容易に実施できることとなる。
On the other hand, in the method according to the present invention,
In order to cause and proceed the disproportionation reaction by cooling the “high-temperature acidic aqueous solution containing cuprous ion” with the “lower-temperature acidic aqueous solution”, it is possible to After nucleation occurred from a state where the cooling was relatively slow and the supersaturation was sufficient, the copper deposition rate slowed down during the crystal growth stage, forming a smooth fine copper powder with a well-defined crystal surface. To be done. Moreover, since there is a room to adjust the cooling conditions after mixing the two liquids, it is possible to control the grain growth, and thus it is possible to easily control the average grain size of the fine copper powder.

【0010】なお、本発明において、“第一の酸性水溶
液”及び“第二の酸性水溶液”の酸濃度については、亜
酸化銅の生成や銅以外の不純物の析出を避けるためにp
Hを2.5 以下(2.5よりも強酸性側)とするが、“第一の
酸性水溶液”がより高温の場合であっても上記作用が確
実に発揮されるためにはpHを1.0 以下に調整するのが
望ましい。また、“Cu+ イオンを含有する第一の酸性水
溶液”及び“第二の酸性水溶液”は全ての無機酸酸性水
溶液で良いが、工業的利用の見地、更には繰り返し利用
の容易さという観点からは両者共に“硫酸酸性の硫酸銅
水溶液”が好ましい。しかし、この場合、“第一の酸性
水溶液”の温度が50℃よりも低いと過飽和度を考慮し
てもCu+ イオン濃度が安定しないで高濃度を確保でき
ず、一回の反応での銅微粉回収量が十分でなくなるた
め、該液温は50℃以上とすべきである。ただ、前記不
均化反応においてはCu+ イオン濃度は高温ほど安定でそ
の濃度が高くなるので、一回の冷却反応における回収銅
微粉量を高めるには或る程度高い温度(好ましくは15
0℃以上)に“第一の酸性水溶液”の液温を保持するの
が良い。100℃以下であっても、Cu+ イオンの安定
剤、例えば塩酸やアセトニトリル等を加えておけば簡易
化された装置でしかも回収量をさほど低下させることな
く銅微粉を得ることができる。
In the present invention, the acid concentrations of the "first acidic aqueous solution" and the "second acidic aqueous solution" are p in order to avoid formation of cuprous oxide and precipitation of impurities other than copper.
H is 2.5 or less (more strongly acidic than 2.5), but the pH is adjusted to 1.0 or less to ensure the above action even when the "first acidic aqueous solution" is at a higher temperature. Is desirable. Also, "first acidic aqueous solution containing Cu + ions" and "second acidic aqueous solution" may be all inorganic acid acidic aqueous solutions, but from the viewpoint of industrial use and ease of repeated use. Both are preferably "sulfuric acid-acidified copper sulfate aqueous solution". However, in this case, if the temperature of the “first acidic aqueous solution” is lower than 50 ° C., the Cu + ion concentration is not stable and a high concentration cannot be secured even if the supersaturation degree is taken into consideration. The liquid temperature should be 50 ° C. or higher because the amount of fines collected will not be sufficient. However, in the above-mentioned disproportionation reaction, the Cu + ion concentration is more stable and the concentration becomes higher as the temperature becomes higher.
It is preferable to keep the liquid temperature of the "first acidic aqueous solution" at 0 ° C or higher). Even if the temperature is 100 ° C. or less, a fine copper powder can be obtained by adding a stabilizer for Cu + ions, such as hydrochloric acid or acetonitrile, with a simplified apparatus and without significantly reducing the recovery amount.

【0011】ところで、Cu+ イオンを含有した酸性水溶
液においては、調整後の温度経過等によって核発生及び
結晶成長が生じることも考えられる。そして、使用する
酸性水溶液にこのような現象が起きていると、回収され
る銅微粉の粒度分布が広くなってしまう等の問題が生じ
る。そのため、このような問題が懸念される時には、Cu
+ イオン含有酸性水溶液(本発明では少なくとも“第一
の酸性水溶液”がCu+ イオン含有酸性水溶液であるの
で、 少なくとも“第一の酸性水溶液”)を濾過した上で
使用することが望ましい。更に、微粉相互の凝集を抑制
し単分散させるために特開昭63−310911号公報
に示されるような保護コロイドの共存下で不均化反応を
生ぜしめることは、粒度分布をシャ−プにする上で有効
である。
By the way, in an acidic aqueous solution containing Cu + ions, it is considered that nucleation and crystal growth may occur due to temperature elapse after adjustment. When such a phenomenon occurs in the acidic aqueous solution to be used, there arises a problem that the particle size distribution of the recovered fine copper powder becomes broad. Therefore, when such a problem is concerned, Cu
It is desirable that the + ion-containing acidic aqueous solution (in the present invention, at least the “first acidic aqueous solution” is a Cu + ion-containing acidic aqueous solution, so at least the “first acidic aqueous solution”) is used after filtering. Further, in order to suppress the coagulation of the fine powders and to make them monodisperse, to cause a disproportionation reaction in the presence of a protective colloid as disclosed in JP-A-63-310911, the particle size distribution is sharpened. It is effective in doing.

【0012】“第一の酸性水溶液”及び“第二の酸性水
溶液”の混合した時の溶液温度(これは両液の温度差並
びに液量によって決まる)については、どの程度の平均
粒径の銅微粉を回収するかによって種々調整することが
できるが、装置の簡易化という観点からは100℃以下
とすることが好ましい。そして、上記両液を混合する際
の雰囲気としては、液温が低温の場合には格別な制限は
ないが、高い液温の場合にはCu+ イオンの再酸化が無視
できないことから、このような場合には非酸化性雰囲気
とすることが望ましい。但し、このような再酸化が起こ
っても、得られる銅微粉の回収率が低下するのみで、そ
の粒子径や形状には影響を及ぼさないことが確認され
た。
Regarding the solution temperature when the "first acidic aqueous solution" and the "second acidic aqueous solution" are mixed (this is determined by the temperature difference between the two solutions and the amount of the solution), what is the average particle size of copper? Although various adjustments can be made depending on whether the fine powder is collected, it is preferably 100 ° C. or lower from the viewpoint of simplifying the apparatus. The atmosphere for mixing the above two liquids is not particularly limited when the liquid temperature is low, but when the liquid temperature is high, the reoxidation of Cu + ions cannot be ignored. In such cases, it is desirable to use a non-oxidizing atmosphere. However, it was confirmed that even if such reoxidation occurs, the recovery rate of the obtained copper fine powder only decreases and does not affect the particle size and shape.

【0013】次いで、本発明を実施例によって更に具体
的に説明する。
Next, the present invention will be described more specifically by way of examples.

【実施例】実施例 1 細い銅線を充填したオ−トクレ−ブに硫酸酸性硫酸銅水
溶液(Cu:48g/L,FreeH2 SO4 :50g/L)1L(リットル) を
入れ、雰囲気をN2 ガスで置換した後、220℃に昇温
して なる不均化反応の左向き反応を進行させて30分間保持
し、Cu+ イオン濃度28g/L の酸性水溶液を調整した。
EXAMPLES Example 1 1 L (liter) of sulfuric acid acidic copper sulfate aqueous solution (Cu: 48 g / L, FreeH 2 SO 4 : 50 g / L) was put into an autoclave filled with a thin copper wire, and the atmosphere was changed to N. After replacing with 2 gas, raise the temperature to 220 ° C The leftward disproportionation reaction was allowed to proceed and held for 30 minutes to prepare an acidic aqueous solution having a Cu + ion concentration of 28 g / L.

【0014】一方、大型ステンレス鋼製ポットをも準備
し、これに上記オ−トクレ−ブ中へ入れたものと同じ組
成で室温(20℃)の硫酸銅水溶液4L を収容し、その
雰囲気をN2 ガスで置換した。
On the other hand, a large stainless steel pot was also prepared, and 4 L of an aqueous copper sulfate solution at room temperature (20 ° C.) having the same composition as that in the autoclave was stored in the pot and the atmosphere was set to N 2. It was replaced with 2 gases.

【0015】次に、上記オ−トクレ−ブ中の高温水溶液
(220℃)を常圧・常温の上記ステンレス鋼製ポット
中に噴射して該ポット中に収容されている4Lの硫酸銅
水溶液と混合させた。この噴射によって常圧となった高
温水溶液の温度は104℃であり、混合により液温は7
0℃程度になった。続いて、この混合液をゆるく撹拌し
ながら12hr保持した。
Next, the high temperature aqueous solution (220 ° C.) in the autoclave is jetted into the stainless steel pot at normal pressure and room temperature to obtain a 4 L copper sulfate aqueous solution contained in the pot. Mixed. The temperature of the high-temperature aqueous solution, which became normal pressure by this injection, was 104 ° C, and the liquid temperature was 7 by mixing.
It has reached 0 ° C. Subsequently, this mixed solution was held for 12 hours while being gently stirred.

【0016】その後、銅粉が析出し懸濁した上記混合液
を濾過し洗浄したところ、平均粒径が約 0.7μmの非常
に狭い粒度分布を持つ銅微粉11gが回収された。
Then, the mixed solution in which the copper powder was deposited and suspended was filtered and washed, and 11 g of fine copper powder having a very narrow particle size distribution with an average particle size of about 0.7 μm was recovered.

【0017】この銅微粉の表面を電子顕微鏡観察したと
ころ、図1の電子顕微鏡写真図で示されるように平滑な
結晶面で囲まれていることが確認された。また、得られ
た銅微粉を3ケ月間にわたり空気中に放置しても、変色
は全く認められなかった。
When the surface of this copper fine powder was observed with an electron microscope, it was confirmed that it was surrounded by smooth crystal faces as shown in the electron microscope photograph of FIG. Even when the obtained fine copper powder was left in the air for 3 months, no discoloration was observed.

【0018】実施例 2 ステンレス鋼製ポット中に収容した4L の硫酸銅水溶液
の液温を予め70℃に加温しておいた以外は、実施例1
と同一の装置を使用し、ほぼ同様条件で銅微粉の製造試
験を行った。
Example 2 Example 1 was repeated except that the liquid temperature of 4 L of the copper sulfate aqueous solution contained in the stainless steel pot was preheated to 70 ° C.
Using the same equipment as above, a production test of fine copper powder was conducted under substantially the same conditions.

【0019】なお、この場合には、オ−トクレ−ブ中の
高温水溶液を噴射してステンレス鋼製ポット中の硫酸銅
水溶液と混合した際にポット中の液温は95℃にまで上
昇したが、その後70℃まで冷却したところでその温度
に2hr保持し、放冷した。この試験によって、平均粒径
が約5μmの結晶性銅微粉が回収された。
In this case, when the high temperature aqueous solution in the autoclave was jetted and mixed with the copper sulfate aqueous solution in the stainless steel pot, the liquid temperature in the pot rose to 95 ° C. Then, after cooling to 70 ° C., the temperature was maintained for 2 hours and allowed to cool. By this test, crystalline copper fine powder having an average particle size of about 5 μm was recovered.

【0020】回収された銅微粉は、実施例1にて得られ
たものと同じく表面が平滑な結晶面で囲まれ、耐酸化性
に優れたもので、3ケ月間空気中に放置しても変色しな
かった。
The fine copper powder recovered was surrounded by a smooth crystal plane as in the case of Example 1 and was excellent in oxidation resistance, and was left in the air for 3 months. It did not discolor.

【0021】実施例 3 実施例1におけると同様にオ−トクレ−ブで調整した高
温酸性水溶液(220℃)を移送して、同じ組成の加温
した硫酸銅水溶液2.5LをN2 ガス封入した別のオ−トク
レ−ブ中に噴射して両液を混合したところ、液面付近の
液温は130℃となったが、そのまま液面付近の温度が
70℃になるまで保持した。その後、銅粉が析出して懸
濁した上記混合液を抜き出して濾過・洗浄したところ、
平均粒径が約10μmの結晶性銅微粉が回収された。
Example 3 As in Example 1, a high temperature acidic aqueous solution (220 ° C.) adjusted with an autoclave was transferred, and 2.5 L of a heated copper sulfate aqueous solution having the same composition was filled with N 2 gas. When the two liquids were mixed by spraying into another autoclave, the liquid temperature near the liquid surface was 130 ° C, but the liquid temperature was maintained as it was until the temperature near the liquid surface reached 70 ° C. After that, when the mixed solution in which copper powder was precipitated and suspended was extracted, filtered, and washed,
Crystalline copper fine powder having an average particle size of about 10 μm was recovered.

【0022】回収された銅微粉は、実施例1及び実施例
2にて得られたものと同じく表面が平滑な結晶面で囲ま
れ、耐酸化性に優れたもので、3ケ月間空気中に放置し
ても変色しなかった。
The fine copper powder collected was surrounded by a smooth crystal surface and was excellent in oxidation resistance as in the case of those obtained in Examples 1 and 2, and it was kept in the air for 3 months. It did not discolor when left to stand.

【0023】比較例 実施例1におけると同様にオ−トクレ−ブで調整した高
温酸性水溶液(220℃)を、−15℃に保持した冷却
槽中に移送して急冷した。そして、溶液の温度が20℃
以下になったところで銅粉が析出し懸濁したこの酸性溶
液を濾過・洗浄したところ、平均粒径が約 0.8μmの銅
微粉が回収されたが、濾過・洗浄後に直ぐ酸化変色が認
められた。また、上記の銅粉懸濁液をゆるく攪拌しなが
ら12hr保持してみたが、やはり濾過・洗浄後に直ぐ酸
化変色が認められた。
Comparative Example A high temperature acidic aqueous solution (220 ° C.) prepared by an autoclave as in Example 1 was transferred to a cooling tank kept at −15 ° C. and rapidly cooled. And the temperature of the solution is 20 ℃
When the acidic solution in which the copper powder had precipitated and was suspended was filtered and washed, fine copper powder with an average particle size of about 0.8 μm was recovered, but oxidative discoloration was immediately observed after filtration and washing. .. Also, the copper powder suspension was held for 12 hours while being gently stirred, but again, oxidative discoloration was observed immediately after filtration and washing.

【0024】この銅微粉の表面を電子顕微鏡観察したと
ころ、図2の電子顕微鏡写真図で示されるように、表面
は粗く不定形であって、平滑な結晶面を有するものでは
なかった。
When the surface of this copper fine powder was observed with an electron microscope, as shown in the electron microscope photograph of FIG. 2, the surface was rough and irregular, and did not have a smooth crystal face.

【0025】[0025]

【効果の総括】以上に説明した如く、この発明によれ
ば、粒度分布の幅が狭い上に耐酸化性にも優れた銅微粉
を粒度の制御自在に安定製造することが可能となるな
ど、産業上極めて有用な効果がもたらされる。
[Summary of Effects] As described above, according to the present invention, it becomes possible to stably produce fine copper powder having a narrow particle size distribution and excellent oxidation resistance, with controllable particle size. It has an extremely useful effect on the industry.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例にて得られた銅微粉表面の電子顕微鏡写
真図である。
FIG. 1 is an electron micrograph of the surface of fine copper powder obtained in an example.

【図2】比較例で得られた銅微粉表面の電子顕微鏡写真
図である。
FIG. 2 is an electron micrograph of the surface of a copper fine powder obtained in a comparative example.

【手続補正書】[Procedure amendment]

【提出日】平成4年9月29日[Submission date] September 29, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief explanation of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例で得られた銅微粉の粒子構造を示す電子
顕微鏡写真図である。
FIG. 1 is an electron micrograph showing a particle structure of copper fine powder obtained in an example.

【図2】比較例で得られた銅微粉の粒子構造を示す電子
顕微鏡写真図である。
FIG. 2 is an electron micrograph showing a particle structure of copper fine powder obtained in a comparative example.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 不均化反応による銅微粉の製造方法であ
って、準備した第一銅イオンを含む温度:50℃以上,
pH:2.5以下の第一の酸性水溶液と、pH:2.5 以下で
前記第一の酸性水溶液よりも低温の第二の酸性水溶液と
を混合して反応を起こさせることを特徴とする、銅微粉
の製造方法。
1. A method for producing fine copper powder by a disproportionation reaction, wherein the temperature containing prepared cuprous ions: 50 ° C. or higher,
pH: 2.5 or less first acidic aqueous solution, pH: 2.5 or less and a second acidic aqueous solution having a lower temperature than the first acidic aqueous solution are mixed to cause a reaction, copper fine powder Production method.
【請求項2】 第一の酸性水溶液及び第二の酸性水溶液
が硫酸酸性硫酸銅水溶液であることを特徴とする、請求
項1に記載の銅微粉の製造方法。
2. The method for producing fine copper powder according to claim 1, wherein the first acidic aqueous solution and the second acidic aqueous solution are sulfuric acid acidic copper sulfate aqueous solutions.
【請求項3】 第一の酸性水溶液が温度:150℃以
上,pH1.0 以下に維持されることを特徴とする、請求
項1又は2に記載の銅微粉の製造方法。
3. The method for producing fine copper powder according to claim 1, wherein the first acidic aqueous solution is maintained at a temperature of 150 ° C. or higher and a pH of 1.0 or lower.
【請求項4】 第一の酸性水溶液と第二の酸性水溶液と
を混合した時の溶液温度を100℃以下に調整すること
を特徴とする、請求項1乃至3の何れかに記載の銅微粉
の製造方法。
4. The copper fine powder according to claim 1, wherein the solution temperature when the first acidic aqueous solution and the second acidic aqueous solution are mixed is adjusted to 100 ° C. or lower. Manufacturing method.
【請求項5】 第一の酸性水溶液と第二の酸性水溶液と
を混合する際の雰囲気を非酸化性雰囲気とすることを特
徴とする、請求項1乃至4の何れかに記載の銅微粉の製
造方法。
5. The copper fine powder according to claim 1, wherein the atmosphere when mixing the first acidic aqueous solution and the second acidic aqueous solution is a non-oxidizing atmosphere. Production method.
【請求項6】 第一の酸性水溶液と第二の酸性水溶液と
を混合する際に、少なくとも第一の酸性水溶液は濾過し
て使用することを特徴とする、請求項1乃至5の何れか
に記載の銅微粉の製造方法。
6. The method according to claim 1, wherein when the first acidic aqueous solution and the second acidic aqueous solution are mixed, at least the first acidic aqueous solution is used after being filtered. A method for producing the copper fine powder described.
JP8481591A 1991-03-25 1991-03-25 Production of fine copper powder Pending JPH0593214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8481591A JPH0593214A (en) 1991-03-25 1991-03-25 Production of fine copper powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8481591A JPH0593214A (en) 1991-03-25 1991-03-25 Production of fine copper powder

Publications (1)

Publication Number Publication Date
JPH0593214A true JPH0593214A (en) 1993-04-16

Family

ID=13841237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8481591A Pending JPH0593214A (en) 1991-03-25 1991-03-25 Production of fine copper powder

Country Status (1)

Country Link
JP (1) JPH0593214A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014034697A (en) * 2012-08-08 2014-02-24 Furukawa Co Ltd Method for producing copper fine particle, conductive paste and method for producing conductive paste
JP2014034696A (en) * 2012-08-08 2014-02-24 Furukawa Co Ltd Method for producing copper fine particle, conductive paste and method for producing conductive paste

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014034697A (en) * 2012-08-08 2014-02-24 Furukawa Co Ltd Method for producing copper fine particle, conductive paste and method for producing conductive paste
JP2014034696A (en) * 2012-08-08 2014-02-24 Furukawa Co Ltd Method for producing copper fine particle, conductive paste and method for producing conductive paste

Similar Documents

Publication Publication Date Title
JP3508766B2 (en) Method for producing metal fine powder
EP0985474B1 (en) Method for producing metal powder by reduction of metallic salt.
KR101236253B1 (en) Method of producing copper powder and copper powder
CN114619039B (en) Spherical silver powder, preparation method thereof and conductive paste
JPH04116109A (en) Production of fine copper powder
US5850047A (en) Production of copper powder
JP4496026B2 (en) Method for producing metallic copper fine particles
Sinha et al. Synthesis of nanosized copper powder by an aqueous route
CN113798504B (en) Preparation method of rare earth oxide dispersion-reinforced tungsten powder for 3D printing
JPS6299406A (en) Production of copper powder
CN116441528B (en) Superfine spherical nickel powder and preparation method thereof
JPH0372683B2 (en)
JPH0593214A (en) Production of fine copper powder
US5514202A (en) Method for producing fine silver-palladium alloy powder
JP4352121B2 (en) Copper powder manufacturing method
WO2012124840A1 (en) Method for manufacturing titanium powder for manufacturing oxide-dispersion strengthening-type titanium material
EP0530440A1 (en) Copper oxide whiskers and process for producing the same
JPH0257623A (en) Production of fine copper powder
JPH0292810A (en) Production of spherical particles of oxide
JPH03180481A (en) Production of copper oxide powder by electrolysis
CN113523269B (en) Copper powder and preparation method and application thereof
KR100800586B1 (en) A process of manufacturing for Cu nanoparticles using pre-dispersed Na pastes
CN111410241B (en) Preparation method of ruthenium dioxide for resistor paste
JP2002363618A (en) Copper ultrafine grain and production method therefor
JPH032302A (en) Manufacture of high purity copper fine powder