JPH0590053A - Die for manufacturing multi-polar aeolotropic magnet - Google Patents

Die for manufacturing multi-polar aeolotropic magnet

Info

Publication number
JPH0590053A
JPH0590053A JP6578392A JP6578392A JPH0590053A JP H0590053 A JPH0590053 A JP H0590053A JP 6578392 A JP6578392 A JP 6578392A JP 6578392 A JP6578392 A JP 6578392A JP H0590053 A JPH0590053 A JP H0590053A
Authority
JP
Japan
Prior art keywords
yoke
cavity
magnet
pole
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6578392A
Other languages
Japanese (ja)
Inventor
Koichi Nushishiro
晃一 主代
Itsuro Tanaka
逸郎 田中
Masaharu Abe
雅治 阿部
Satoru Nakatsuka
哲 中塚
Koichiro Sawa
孝一郎 沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP6578392A priority Critical patent/JPH0590053A/en
Publication of JPH0590053A publication Critical patent/JPH0590053A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To increase magnetic field in a cavity and enlarge the surface magnetic field of a magnet and manufacture many pieces in one step by permitting the adjacent permanent magnets for orientation to make contact with each other and specifying the width of the edge plane of a yoke on a cavity side. CONSTITUTION:At the time of constituting a cavity 4, even pieces of permanent magnets 1 for orientation are arranged by sandwiching a yoke 2, which is a strong magnetic body, to permit the operating plane of a cylindrical magnet to be multi-polar in the circumferential direction and to have the same polar in the cylinder axis direction. The width of the yoke 2, which is sandwiched by the permanent magnets 1, becomes narrower as it goes further from the cavity side and the yoke 2 makes contact with the permanent magnets 1 which sandwiches the yoke 2 at the outer circumference edge. The width of the yoke 2, which is sandwiched by the permanent magnets 1 at the cavity side edge plane, is permitted to be 20% or more of the circumference for the magnetic pole calculated by dividing the cavity circumference by the magnetic pole number. Thus, many pieces of the multi-polar aeolotropic magnets which have extremely large surface magnetic field are manufactured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、モーター用ローターや
マグネットロール等に用いられる多極異方性円筒状磁石
の製造に供して好適な金型に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mold suitable for manufacturing a multipolar anisotropic cylindrical magnet used for a rotor for a motor, a magnet roll or the like.

【0002】[0002]

【従来の技術】従来、モーター用ローターやマグネット
ロールに用いられる円筒状磁石については、その発生磁
界を大きくするために多極異方性化が行なわれており、
その製造用金型についても種々の提案がなされている。
例えば特開昭61−125011号公報には、円筒状キャビティ
の外周に沿って、その半径方向に磁気異方性を付与した
永久磁石をN極とS極との交互配置として設置した金型
が開示されているが、この方式ではキャビティ内の磁界
を充分に上げることができず、得られる磁石の表面から
発生する磁界は必ずしも大きくはなかった。
2. Description of the Related Art Conventionally, cylindrical magnets used for motor rotors and magnet rolls have been made multipolar anisotropy in order to increase the generated magnetic field.
Various proposals have been made for the manufacturing mold.
For example, Japanese Patent Laid-Open No. 61-125011 discloses a mold in which permanent magnets having magnetic anisotropy in the radial direction are arranged along the outer periphery of a cylindrical cavity in an alternating arrangement of N poles and S poles. Although disclosed, this method cannot sufficiently raise the magnetic field in the cavity, and the magnetic field generated from the surface of the obtained magnet was not necessarily large.

【0003】また特公平2-59993号公報には、キャビテ
ィ周囲の磁極部分に相当する位置にそれぞれヨークを設
置し、このヨークの外側に円周方向に沿って交互に極性
を異にして永久磁石を配置すると共に、この永久磁石と
の間で反発磁界を形成するようにヨーク間に永久磁石を
配置した金型を用いる異方性マグネットロールの製造方
法が開示されている。しかしこの方法では、永久磁石か
らの磁束の一部がヨークから洩れてしまうために、キャ
ビティ内の磁界を充分大きくすることができないだけで
なく、永久磁石を多数配置するためキャビティ当たりの
必要空間が大きくなって多数個取りが難しいという問題
があった。
Further, in Japanese Patent Publication No. 2-59993, a yoke is installed at a position corresponding to a magnetic pole portion around a cavity, and a permanent magnet having different polarities along the circumferential direction is provided outside the yoke. And a method of manufacturing an anisotropic magnet roll using a die in which a permanent magnet is arranged between the yokes so as to form a repulsive magnetic field with the permanent magnet. However, in this method, a part of the magnetic flux from the permanent magnet leaks from the yoke, so that the magnetic field in the cavity cannot be sufficiently increased, and more space is required per cavity because a large number of permanent magnets are arranged. There was a problem that it became difficult to take many pieces as they became large.

【0004】さらに特開昭62−186507号公報には、直方
体状の強磁性ヨークのキャビティに向かう面以外の5面
に同極が接するように永久磁石を配置した金型が開示さ
れている。この方法によれば、キャビティ内の磁界を比
較的大きくできるけれども、やはり永久磁石を多数配置
するためキャビティ当たりの必要空間が大きくなり、依
然として多数個取りが難しいという問題を残していた。
Further, Japanese Laid-Open Patent Publication No. 62-186507 discloses a mold in which a permanent magnet is arranged so that the same pole is in contact with five surfaces other than the surface of the rectangular parallelepiped ferromagnetic yoke which faces the cavity. According to this method, the magnetic field in the cavity can be made relatively large, but since a large number of permanent magnets are also arranged, the space required for each cavity becomes large, and it remains difficult to obtain a large number.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記の問題
を有利に解決するもので、キャビティ内の磁界を大きく
できるだけでなく、多数個取りも容易な多極異方性磁石
製造用の金型を提案することを目的とする。
DISCLOSURE OF THE INVENTION The present invention advantageously solves the above-mentioned problems, and not only can increase the magnetic field in the cavity, but also can be used to produce a large number of multi-pole anisotropic magnets. The purpose is to propose a mold.

【0006】[0006]

【課題を解決するための手段】さて発明者らは、上記の
目的を達成すべく、種々検討を行なった結果、ヨークと
なる強磁性体の形状及び永久磁石の配置に工夫を加える
ことによって、所期した目的が有利に達成されることの
知見を得た。本発明は、上記の知見に立脚するものであ
る。
The inventors of the present invention have conducted various studies to achieve the above object, and as a result, by devising the shape of the ferromagnetic body to be the yoke and the arrangement of the permanent magnets, We have found that the intended purpose can be achieved advantageously. The present invention is based on the above findings.

【0007】すなわち本発明の要旨構成は次のとおりで
ある。 1.内周面又は外周面を作用面とする多極異方性円筒状
磁石の製造用キャビティの内周又は外周面に沿って、偶
数個の配向用永久磁石を、強磁性体のヨークを介し対向
する磁極が同極となるように環状に組み込んだ金型にお
いて、該ヨークの幅が、キャビティ側から非キャビティ
側に向かって次第に狭まり、少なくとも非キャビティ側
端部において、隣合う配向用永久磁石同士が接する構造
になり、かつ該ヨークのキャビティ側端面の幅が、該キ
ャビティ周長を磁極数で割った磁極当たりの周長の20%
以上である多極異方性磁石製造用金型。 2.上記1において、ヨークのキャビティ側端面の幅
が、該キャビティ周長を磁極数で割った磁極当たりの周
長の50〜80%である多極異方性磁石製造用金型。 3.上記1又は2において、ヨークの円筒軸方向端面
に、該ヨークと隣接する配向用永久磁石の磁極と同極の
磁石を配設してなる多極異方性磁石製造用金型。 4.上記1又は2において、配向用永久磁石の磁粉粒子
の配向方向が、ヨークと接する磁石面に対し、キャビテ
ィ方向から90°以上傾いている多極異方性磁石製造用金
型。
That is, the gist of the present invention is as follows. 1. An even number of orienting permanent magnets face each other along the inner or outer peripheral surface of the cavity for manufacturing a multi-pole anisotropic cylindrical magnet having an inner or outer peripheral surface as a working surface, with a yoke of a ferromagnetic material between them. In a die assembled in an annular shape so that the magnetic poles to be formed are the same pole, the width of the yoke is gradually narrowed from the cavity side toward the non-cavity side, and at least at the non-cavity side end portion, adjacent orientation permanent magnets are adjacent to each other. And the width of the cavity-side end face of the yoke is 20% of the perimeter of the magnetic pole obtained by dividing the cavity perimeter by the number of magnetic poles.
The mold for producing a multipolar anisotropic magnet as described above. 2. In the above item 1, the die for manufacturing a multi-pole anisotropic magnet, wherein the width of the cavity side end surface of the yoke is 50 to 80% of the perimeter of the magnetic pole obtained by dividing the perimeter of the cavity by the number of magnetic poles. 3. In the above 1 or 2, a mold for producing a multipolar anisotropic magnet, in which a magnet having the same pole as the magnetic pole of an orientation permanent magnet adjacent to the yoke is arranged on the end surface of the yoke in the cylindrical axis direction. 4. In the above 1 or 2, a die for producing a multipolar anisotropic magnet, wherein the orientation direction of the magnetic powder particles of the orientation permanent magnet is inclined by 90 ° or more from the cavity direction with respect to the magnet surface in contact with the yoke.

【0008】[0008]

【作用】以下、本発明を図面に従い具体的に説明する。
図1に、本発明に従う金型の代表例として、外周面を作
用面とする円筒状磁石の製造に用いて好適な射出成形用
金型を縦断面で示し、また図2(a)には図1のA−
A′断面を、さらに同図(b)にはそのB−B′断面を
示す。図中、番号1は配向用の永久磁石、2は強磁性体
からなるヨーク、3は非磁性体からなるダイ、4はキャ
ビティ、5はランナー、6はスプルー、7はノズルタッ
チ、そして8が突き出しピンである。図示したとおり、
この金型では、キャビティ4の外周に沿って永久磁石1
が配置され、それを非磁性体3が囲んでいる。キャビテ
ィ4は、ランナー5、スプルー6、ノズルタッチ7を経
て射出成形機ノズルに接続していて、成形体は突き出し
ピンによって突き出される。なおこの例では、得られる
成形体が1個の場合について示したが、多数個取りの場
合にはスプルー6、ランナー5をそれぞれ分岐させてキ
ャビティ4を並設すればよい。
The present invention will be described in detail below with reference to the drawings.
As a typical example of the mold according to the present invention, FIG. 1 shows a vertical cross-section of a mold for injection molding which is suitable for manufacturing a cylindrical magnet having an outer peripheral surface as a working surface, and FIG. A- in FIG.
A section taken along line A ′ is shown in FIG. In the figure, numeral 1 is a permanent magnet for orientation, 2 is a yoke made of a ferromagnetic material, 3 is a die made of a non-magnetic material, 4 is a cavity, 5 is a runner, 6 is a sprue, 7 is a nozzle touch, and 8 is a It is a protruding pin. As shown,
In this mold, the permanent magnet 1 is provided along the outer periphery of the cavity 4.
Are arranged, and the non-magnetic body 3 surrounds them. The cavity 4 is connected to an injection molding machine nozzle through a runner 5, a sprue 6, and a nozzle touch 7, and a molded body is ejected by an ejection pin. In this example, the case where one molded body is obtained is shown, but in the case of multiple production, the sprue 6 and the runner 5 may be branched and the cavities 4 may be arranged side by side.

【0009】図2(a)に示したように、本発明ではキ
ャビティ4を構成する際、得られる円筒状磁石の作用面
が円周方向では多極に、円筒軸方向では同一極になるよ
うに、偶数個の配向用永久磁石1を、強磁性体のヨーク
2を挟んで同極が対向するように配置し、挟まれたヨー
ク2が磁極となってキャビティ4内に磁界を発生する仕
組みになっている。ここに永久磁石1に挟まれたヨーク
2は、キャビティ側から遠ざかるにつれてその幅が狭ま
り、その外周端でヨーク2を挟んだ永久磁石1同士が接
する仕組みとされる。このような構成としたことによ
り、ヨーク2から洩れる磁束が大幅に減少し、キャビテ
ィ4内に発生する磁界を増大させることができ、ひいて
は得られる成形体磁石の表面から発生する磁界を大きく
できるのである。
As shown in FIG. 2A, in the present invention, when the cavity 4 is formed, the working surface of the obtained cylindrical magnet has multiple poles in the circumferential direction and has the same pole in the axial direction of the cylinder. In addition, an even number of permanent magnets 1 for orientation are arranged so that the same poles face each other with a yoke 2 made of a ferromagnetic material interposed therebetween, and the sandwiched yoke 2 serves as a magnetic pole to generate a magnetic field in the cavity 4. It has become. The width of the yoke 2 sandwiched between the permanent magnets 1 becomes narrower as it goes away from the cavity side, and the permanent magnets 1 sandwiching the yoke 2 are in contact with each other at their outer peripheral ends. With such a configuration, the magnetic flux leaking from the yoke 2 is significantly reduced, the magnetic field generated in the cavity 4 can be increased, and the magnetic field generated from the surface of the obtained molded magnet can be increased. is there.

【0010】次に図3に、内周面を作用面とする円筒状
磁石を製造する場合に用いて好適な金型を縦断面で、ま
た図4(a)には図3のC−C′断面を、さらに同図
(b)にはそのD−D′断面を示す。この例では、キャ
ビティ4の内周に沿って配向用の永久磁石1が、強磁性
体のヨーク2を挟んで配置され、しかもこの永久磁石1
はキャビティ側から遠ざかるにつれてその幅が次第に狭
まる形状になっている。かかる構成とすることにより、
図2に示したところと同様にして、キャビティ4内に発
生する磁界を大きくすることができるのである。
Next, FIG. 3 shows a mold suitable for use in manufacturing a cylindrical magnet having an inner peripheral surface as a working surface in a longitudinal section, and FIG. 4 (a) shows CC of FIG. A section 'is shown, and the section DD' is shown in FIG. In this example, a permanent magnet 1 for orientation is arranged along the inner circumference of a cavity 4 with a yoke 2 made of a ferromagnetic material sandwiched between the permanent magnet 1 and the permanent magnet 1.
Has a shape in which its width gradually narrows as it moves away from the cavity side. With this configuration,
As in the case shown in FIG. 2, the magnetic field generated in the cavity 4 can be increased.

【0011】ところで上掲した金型はいずれも、ヨーク
2を挟む永久磁石1が、キャビティ半径方向の非キャビ
ティ面側端部で接する場合の例であるが、本発明はこの
場合だけに限るものではなく、図5(a)に外周面を作
用面とする円筒状磁石の製造金型について示すように、
永久磁石1の接触位置が、外周端に達する以前であって
も良く、この場合も、上述したところと同様に、ヨーク
2から洩れる磁束が大幅に減少し、キャビティ4内に発
生する磁界を大きくすることができる。なお図5(b)
は、同図(a)のE−E′断面である。しかしながら、
永久磁石1の接触位置があまりにキャビティ寄りになる
と、かえって磁石から強磁性体へ磁束を出す面積が減少
するので、永久磁石1の接触長hは、金型厚みHの80
%以下程度とするのが望ましい。
All of the above-mentioned molds are examples in which the permanent magnets 1 sandwiching the yoke 2 are in contact with each other at the non-cavity surface side end in the cavity radial direction, but the present invention is not limited to this case. Instead, as shown in FIG. 5A for a mold for manufacturing a cylindrical magnet having an outer peripheral surface as a working surface,
The contact position of the permanent magnet 1 may be before reaching the outer peripheral end, and in this case as well, the magnetic flux leaking from the yoke 2 is greatly reduced and the magnetic field generated in the cavity 4 is increased as in the case described above. can do. Note that FIG. 5 (b)
Is a cross section taken along line EE ′ of FIG. However,
If the contact position of the permanent magnet 1 is too close to the cavity, the area where the magnetic flux is emitted from the magnet to the ferromagnetic body is rather reduced. Therefore, the contact length h of the permanent magnet 1 is 80 times the mold thickness H.
% Or less is desirable.

【0012】本発明において、永久磁石に挟まれたヨー
クのキャビティ側端面におけるの幅Lは、キャビティ周
長を磁極数で割った磁極当たりの周長の20%以上とする
ことが好ましい。というのはキャビティ側端面における
ヨーク幅が磁極当たりの周長の20%に満たない場合に
は、ヨークを構成する強磁性体の磁化が飽和に達し、磁
束が円筒軸方向に洩れ易くなり、結果的に磁束を有効に
キャビティ内に導くことができなくなるおそれが大きい
からである。とはいえこのヨーク幅Lが90%を超えると
キャビティ側の磁石幅が薄くなりパーミアンスが小さく
なるため、やはりキャビティ内に発生する磁界が小さく
なる。従ってこのヨーク幅Lは90%以下とすることが好
ましい。なおこのヨーク幅Lの最適範囲は、磁極当たり
の周長の50〜80%であり、この場合には、強磁性体から
の磁束の洩れなしに、効果的にキャビティ内の磁界を大
きくすることができる。
In the present invention, the width L of the yoke sandwiched by the permanent magnets at the cavity side end surface is preferably 20% or more of the perimeter of the magnetic pole obtained by dividing the cavity perimeter by the number of magnetic poles. If the width of the yoke on the cavity side end face is less than 20% of the circumference of each magnetic pole, the magnetization of the ferromagnetic material that constitutes the yoke reaches saturation, and the magnetic flux easily leaks in the axial direction of the cylinder. This is because there is a large possibility that the magnetic flux cannot be effectively guided into the cavity. However, when the yoke width L exceeds 90%, the magnet width on the cavity side becomes thin and the permeance becomes small, so that the magnetic field generated in the cavity also becomes small. Therefore, the yoke width L is preferably 90% or less. The optimum range of the yoke width L is 50 to 80% of the circumference of each magnetic pole, and in this case, the magnetic field in the cavity can be effectively increased without leakage of magnetic flux from the ferromagnetic material. You can

【0013】また本発明では、図6(a),(b)に示
すように、ヨーク2の円筒軸方向端面に、該ヨーク2と
隣接する配向用永久磁石1の磁極と同極の永久磁石9を
配設することによって、キャビティ4内の総磁束量を増
大させることができる。というのは円筒軸方向端面にか
かる永久磁石9を配設することにより、円筒軸方向端面
からの磁束の漏れが完全に遮断され、全磁束を効果的に
キャビティ4内に導くことができるからである。なお図
7(a),(b)は、内周面を作用面とする円筒状磁石
の製造用金型に、上記したような永久磁石9を設置した
金型の横断面図及びそのG−G′断面図である。
Further, in the present invention, as shown in FIGS. 6A and 6B, a permanent magnet having the same pole as the magnetic pole of the orientation permanent magnet 1 adjacent to the yoke 2 is provided on the end face of the yoke 2 in the cylindrical axial direction. By disposing 9, the total amount of magnetic flux in the cavity 4 can be increased. The reason for this is that by disposing the permanent magnet 9 on the end face in the axial direction of the cylinder, the leakage of the magnetic flux from the end face in the axial direction of the cylinder is completely blocked, and the entire magnetic flux can be effectively guided into the cavity 4. is there. 7 (a) and 7 (b) are cross-sectional views of a mold in which the permanent magnet 9 as described above is installed in a mold for manufacturing a cylindrical magnet having an inner peripheral surface as an action surface, and its G-. It is a G'sectional view.

【0014】さらに本発明では、図8(a)に示すよう
に、配向用永久磁石1の磁粉粒子の配向方向を、ヨーク
2と接する磁石面を基準線として、キャビティ方向から
90°以上傾けることが有効である。というのはかかる磁
粉配向とすることによって、永久磁石1から発生する磁
束量を増大させることができ、従ってキャビティ4内の
磁界を大きくすることができ、ひいては得られた磁石の
表面から発生する磁界をさらに大きくすることができる
からである。なお図8(b)は、同図(a)のH−H′
断面図である。また図9(a),(b)は、内周面を作
用面とする円筒状磁石の製造用金型において、永久磁石
1を上述したように配向させた場合の金型の横断面図及
びそのI−I′断面図である。
Further, in the present invention, as shown in FIG. 8 (a), the orientation direction of the magnetic powder particles of the orientation permanent magnet 1 is from the cavity direction with the magnet surface in contact with the yoke 2 as a reference line.
It is effective to tilt it by 90 ° or more. This is because such magnetic powder orientation can increase the amount of magnetic flux generated from the permanent magnet 1, thus increasing the magnetic field in the cavity 4, and thus the magnetic field generated from the surface of the obtained magnet. Because it can be further increased. Note that FIG. 8B shows a line H-H ′ in FIG.
FIG. 9 (a) and 9 (b) are cross-sectional views of a mold for manufacturing a cylindrical magnet having an inner peripheral surface as a working surface, in which the permanent magnet 1 is oriented as described above and It is the II 'sectional view.

【0015】本発明で使用する永久磁石としては、従来
公知のものいずれもが使用できるが、特に金型の使用温
度域である 100〜250 ℃の範囲において磁気特性が高い
ものが好ましく、たとえば Sm2Co17やSm1Co5などのサマ
リウム−コバルト系磁石等がとりわけ有利に適合する。
またヨーク用の強磁性体についても、従来公知のものい
ずれもが使用でき、たとえば軟鋼、炭素鋼及びダイス鋼
等が使用できる。さらに非磁性体としては、たとえばオ
ーステナイト系ステンレス鋼、銅ベリリウム合金及び高
マンガン鋼等が好適である。
As the permanent magnet used in the present invention, any of the conventionally known ones can be used, but those having a high magnetic property are particularly preferable in the temperature range of 100 to 250 ° C. which is the working temperature range of the mold, and for example, Sm. Samarium-cobalt based magnets such as 2 Co 17 and Sm 1 Co 5 are particularly advantageous.
As the ferromagnetic material for the yoke, any conventionally known ferromagnetic material can be used, for example, mild steel, carbon steel, die steel and the like can be used. Further, as the non-magnetic material, for example, austenitic stainless steel, copper beryllium alloy, high manganese steel and the like are suitable.

【0016】[0016]

【実施例】平均粒径 1.5μm 、圧粉密度 3.35 g/cm3
あるストロンチウムフェライト粉:100 重量部に対し、
チタネート系カップリング剤:0.5 重量部を加えてヘン
シェルミキサー中で表面処理したのち、この表面処理
粉:90.5重量部とナイロン12樹脂:9.2 重量部と酸化防
止剤:0.3 重量部を再びヘンシェルミキサー中で混合
し、ついでこの混合物を2軸抽出機により 240℃で混
練、造粒した。得られた造粒物を原料として、本発明に
従う金型及び従来の金型を使用し、射出成形により、図
10に示す形状・寸法になる外周10極の多極異方性円筒状
磁石を製造した。なお射出成形は、型締力35トンの射出
成形機を用い、成形温度 300℃、金型温度80℃、射出圧
力 1.8トン/cm2の条件で行なった。
[Example] Strontium ferrite powder having an average particle size of 1.5 μm and a green density of 3.35 g / cm 3 : 100 parts by weight,
After adding 0.5 parts by weight of titanate coupling agent and surface-treating it in a Henschel mixer, 90.5 parts by weight of this surface-treated powder, 9.2 parts by weight of nylon 12 resin and 0.3 part by weight of antioxidant: 0.3 parts by weight are again added in the Henschel mixer. Then, the mixture was kneaded and granulated at 240 ° C. by a twin-screw extractor. Using the obtained granulated material as a raw material, a mold according to the present invention and a conventional mold are used, and injection molding is performed.
A multi-pole anisotropic cylindrical magnet having 10 poles in the outer periphery having the shape and size shown in 10 was manufactured. The injection molding was performed using an injection molding machine with a mold clamping force of 35 tons under the conditions of a molding temperature of 300 ° C., a mold temperature of 80 ° C. and an injection pressure of 1.8 tons / cm 2 .

【0017】(実施例1)図2に示したような、金型を
用いて多極異方性円筒状磁石を得た。この場合、永久磁
石としてはSm−Co磁石、強磁性体ヨークとしては SKD−
61、非磁性体としては高Mn鋼を用いた。また永久磁石に
挟まれたヨークのキャビティ側端面の幅Lは、磁極当た
りの周長の20%とした。得られた磁石の表面磁界は1560
Gであり、また金型内に取れるキャビティ最大数すなわ
ち最大取り個数は8個であった。
Example 1 A multipole anisotropic cylindrical magnet was obtained by using a mold as shown in FIG. In this case, the permanent magnet is an Sm-Co magnet and the ferromagnetic yoke is an SKD-
61, high Mn steel was used as the non-magnetic material. The width L of the end face of the yoke sandwiched by the permanent magnets on the cavity side was set to 20% of the circumferential length per magnetic pole. The surface magnetic field of the obtained magnet is 1560.
G, and the maximum number of cavities that can be taken in the mold, that is, the maximum number of cavities, was eight.

【0018】(実施例2)強磁性体のキャビティ側端面
の幅Lを、磁極当たりの周長の50%とする以外は実施例
1と同じ構造になる金型を用いて多極異方円筒磁石を得
た。得られた磁石の表面磁界は1600 Gであり、また最大
取り個数は、実施例1と同じ8個であった。
(Embodiment 2) A multi-pole anisotropic cylinder is prepared by using a mold having the same structure as that of Embodiment 1 except that the width L of the end face of the ferromagnetic material on the cavity side is 50% of the circumference of each magnetic pole. I got a magnet. The surface magnetic field of the obtained magnet was 1600 G, and the maximum number of magnets was 8, which was the same as in Example 1.

【0019】(実施例3)次に、図5に示したような、
金型を用いて多極異方性円筒状磁石を得た。ここにヨー
クのキャビティ側端面の幅Lは磁極当たりの周長の50%
であり、また永久磁石の接触長hは金型厚みHの20%と
した。なお永久磁石、ヨーク及び非磁性体の材質は実施
例1と同じである。得られた磁石の表面磁界は1580 Gで
あり、また最大取り個数は8個であった。
(Embodiment 3) Next, as shown in FIG.
A multi-pole anisotropic cylindrical magnet was obtained using the mold. Here, the width L of the cavity-side end surface of the yoke is 50% of the circumferential length per magnetic pole.
The contact length h of the permanent magnet was 20% of the die thickness H. The materials of the permanent magnet, the yoke and the non-magnetic material are the same as in the first embodiment. The surface magnetic field of the obtained magnet was 1580 G, and the maximum number of magnets was 8.

【0020】(実施例4)次に、図6に示したような、
金型を用いて多極異方性円筒状磁石を得た。ここにヨー
クのキャビティ側端面の幅Lは磁極当たりの周長の50%
であり、また永久磁石、ヨーク及び非磁性体の材質は実
施例1と同じである。得られた磁石の表面磁界は1620 G
であり、また最大取り個数は8個であった。
(Embodiment 4) Next, as shown in FIG.
A multi-pole anisotropic cylindrical magnet was obtained using the mold. Here, the width L of the cavity-side end surface of the yoke is 50% of the circumferential length per magnetic pole.
The materials of the permanent magnet, the yoke and the non-magnetic material are the same as those in the first embodiment. The surface magnetic field of the obtained magnet is 1620 G
And the maximum number was 8.

【0021】(実施例5)図8に示したような、金型を
用いて多極異方性円筒状磁石を得た。ここにヨークのキ
ャビティ側端面の幅Lは磁極当たりの周長の50%であ
り、また永久磁石の磁粉粒子の配向方向は、ヨークと接
する磁石面を基準線として、キャビティ方向から 110°
傾いていた。なお永久磁石、ヨーク及び非磁性体の材質
は実施例1と同じである。得られた磁石の表面磁界は16
40 Gであり、また最大取り個数は8個であった。
Example 5 A multipole anisotropic cylindrical magnet was obtained by using a mold as shown in FIG. The width L of the end face of the yoke on the cavity side is 50% of the circumference of each magnetic pole, and the orientation direction of the magnetic powder particles of the permanent magnet is 110 ° from the cavity direction with the magnet surface in contact with the yoke as the reference line.
I was leaning. The materials of the permanent magnet, the yoke and the non-magnetic material are the same as in the first embodiment. The surface magnetic field of the obtained magnet is 16
It was 40 G and the maximum number was 8.

【0022】(比較例1)強磁性体のキャビティ側端面
の幅Lを、磁極当たりの周長の15%とする以外は実施例
1と同じ構造になる金型を用いて多極異方円筒磁石を得
た。最大取り個数は8個であったが、得られた磁石の表
面磁界は1430 Gにすぎなかった。
(Comparative Example 1) A multipolar anisotropic cylinder was prepared by using a mold having the same structure as in Example 1 except that the width L of the end surface of the ferromagnetic material on the cavity side was set to 15% of the circumference per magnetic pole. I got a magnet. Although the maximum number of magnets was 8, the surface magnetic field of the obtained magnet was only 1430 G.

【0023】(比較例2)図11に示す従来金型を用いて
多極異方円筒磁石を得た。永久磁石に挟まれたヨークの
キャビティ側端面の幅Lは磁極当たりの周長の50%であ
る。最大取り個数は8個であったが、得られた磁石の表
面磁界は1380 Gにすぎなかった。
Comparative Example 2 A multipole anisotropic cylindrical magnet was obtained using the conventional die shown in FIG. The width L of the cavity-side end surface of the yoke sandwiched by the permanent magnets is 50% of the circumferential length per magnetic pole. Although the maximum number of magnets was 8, the surface magnetic field of the obtained magnet was only 1380 G.

【0024】(比較例3)図12に示す従来金型を用いて
多極異方円筒磁石を得た。永久磁石に挟まれたヨークの
キャビティ側端面の幅Lは磁極当たりの周長の50%であ
る。得られた磁石の表面磁界は1530 Gであったが、最大
取り個数は4個にすぎなかった。
(Comparative Example 3) A multi-pole anisotropic cylindrical magnet was obtained using the conventional die shown in FIG. The width L of the cavity-side end surface of the yoke sandwiched by the permanent magnets is 50% of the circumference of each magnetic pole. The surface magnetic field of the obtained magnet was 1530 G, but the maximum number of magnets was only 4.

【0025】(比較例4)図13に示す従来金型を用いて
多極異方円筒磁石を得た。永久磁石に挟まれたヨークの
キャビティ側端面の幅Lは磁極当たりの周長の50%であ
る。得られた磁石の表面磁界は1570 Gであったが、最大
取り個数は4個にすぎなかった。
(Comparative Example 4) A multi-pole anisotropic cylindrical magnet was obtained using the conventional die shown in FIG. The width L of the cavity-side end surface of the yoke sandwiched by the permanent magnets is 50% of the circumferential length per magnetic pole. The surface magnetic field of the obtained magnet was 1570 G, but the maximum number of magnets was only 4.

【0026】以上の結果をまとめて表1に示す。The above results are summarized in Table 1.

【表1】 同表から明らかなように、本発明に従う金型を用いた場
合には、得られた磁石はいずれも表面磁界が高く、また
最大取り個数も8個と多数個取りにも優れていた。これ
に対し、比較例1,2はそれぞれ、得られた磁石の表面
磁界が低く、また比較例3,4はそれぞれ、磁石の表面
磁界はそこそこの値が得られたけれども、多数個取りが
できなかった。なお上述した実施例では、フェライト磁
石を製造する場合について主に示したが、希工類磁石や
その他の磁石の製造に本発明を適用した場合にも、良好
な結果が得られることが確かめられている。
[Table 1] As is clear from the table, when the mold according to the present invention was used, all the obtained magnets had a high surface magnetic field and the maximum number of magnets was 8, which was excellent in multi-cavity production. On the other hand, Comparative Examples 1 and 2 each have a low surface magnetic field of the obtained magnet, and Comparative Examples 3 and 4 each have a moderate value of the surface magnetic field of the magnet. There wasn't. In the examples described above, the case of producing a ferrite magnet was mainly shown, but it was confirmed that good results can be obtained even when the present invention is applied to the production of rare earth magnets and other magnets. ing.

【0027】[0027]

【発明の効果】かくして本発明金型によれば、表面磁界
が特に大きい多極異方性磁石を、多数個取りすることが
できる。
Thus, according to the mold of the present invention, a large number of multipolar anisotropic magnets having a particularly large surface magnetic field can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】外周面を作用面とする円筒状磁石の製造に用い
て好適な、本発明に従う射出成形用金型の縦断面図であ
る。
FIG. 1 is a vertical cross-sectional view of an injection-molding die according to the present invention, which is suitable for manufacturing a cylindrical magnet having an outer peripheral surface as a working surface.

【図2】(a)は、図1のA−A′断面図である。
(b)は、そのB−B′断面図である。
2A is a sectional view taken along the line AA ′ in FIG.
(B) is the BB 'sectional view.

【図3】内周面を作用面とする円筒状磁石の製造に用い
て好適な、本発明に従う射出成形用金型の縦断面図であ
る。
FIG. 3 is a vertical cross-sectional view of an injection molding die according to the present invention, which is suitable for manufacturing a cylindrical magnet having an inner peripheral surface as a working surface.

【図4】(a)は、図3のC−C′断面図である。
(b)は、そのD−D′断面図である。
FIG. 4A is a sectional view taken along line CC ′ of FIG.
(B) is the DD 'sectional drawing.

【図5】(a)は、外周面を作用面とする円筒状磁石の
製造に用いて好適な、本発明に従う別な金型の横断面図
である。(b)は、そのE−E′断面図である。
FIG. 5A is a cross-sectional view of another mold according to the present invention, which is suitable for manufacturing a cylindrical magnet having an outer peripheral surface as a working surface. (B) is the EE 'sectional view.

【図6】(a)は、ヨークの円筒軸方向端面に該ヨーク
と隣接する配向用永久磁石の磁極と同極の永久磁石を配
設した、外周面を作用面とする円筒状磁石の製造に用い
て好適な、本発明に従う金型の横断面図である。(b)
は、そのF−F′断面図である。
FIG. 6 (a) is a diagram showing the production of a cylindrical magnet having an outer peripheral surface as a working surface, in which a permanent magnet having the same pole as the magnetic pole of an orientation permanent magnet adjacent to the yoke is disposed on the end surface of the yoke in the cylindrical axial direction. 1 is a cross-sectional view of a mold according to the present invention, which is suitable for use in (B)
FIG. 13 is a sectional view taken along the line FF ′.

【図7】(a)は、ヨークの円筒軸方向端面に該ヨーク
と隣接する配向用永久磁石の磁極と同極の永久磁石を配
設した、内周面を作用面とする円筒状磁石の製造に用い
て好適な、本発明に従う金型の横断面図である。(b)
は、そのG−G′断面図である。
FIG. 7A shows a cylindrical magnet having an inner peripheral surface as a working surface, in which a permanent magnet having the same pole as the magnetic pole of an orientation permanent magnet adjacent to the yoke is disposed on the end surface of the yoke in the cylindrical axial direction. FIG. 6 is a cross-sectional view of a mold according to the present invention suitable for use in manufacturing. (B)
[Fig. 6] is a sectional view taken along line GG '.

【図8】(a)は、磁粉粒子の配向方向を工夫した配向
用永久磁石を装着した外周面を作用面とする円筒状磁石
の製造に用いて好適な、本発明に従う金型の横断面図で
ある。(b)は、そのH−H′断面図である。
FIG. 8 (a) is a cross-sectional view of a mold according to the present invention, which is suitable for use in the manufacture of a cylindrical magnet having an outer peripheral surface as an active surface on which permanent magnets for orientation in which the orientation direction of magnetic powder particles is devised are mounted. It is a figure. (B) is the HH 'sectional drawing.

【図9】(a)は、磁粉粒子の配向方向を工夫した配向
用永久磁石を装着した内周面を作用面とする円筒状磁石
の製造に用いて好適な、本発明に従う金型の横断面図で
ある。(b)は、そのI−I′断面図である。
FIG. 9 (a) is a cross-section of a mold according to the present invention, which is suitable for use in the manufacture of a cylindrical magnet having an inner peripheral surface as an active surface on which permanent magnets for orientation in which the orientation of magnetic powder particles is devised is mounted. It is a side view. (B) is the II 'sectional drawing.

【図10】実施例で作製した円筒状磁石の寸法・形状を
示した図である。
FIG. 10 is a diagram showing the dimensions and shape of the cylindrical magnet manufactured in the example.

【図11】(a)は、比較例2で用いた従来の金型の平
面図である。(b)は、そのK−K′断面図である。
11A is a plan view of a conventional mold used in Comparative Example 2. FIG. (B) is the KK 'sectional drawing.

【図12】(a)は、比較例3で用いた従来の金型の平
面図である。(b)は、そのL−L′断面図である。
12A is a plan view of a conventional mold used in Comparative Example 3. FIG. (B) is the LL 'sectional view.

【図13】(a)は、比較例4で用いた従来の金型の平
面図である。(b)は、そのM−M′断面図である。
13A is a plan view of a conventional mold used in Comparative Example 4. FIG. (B) is the MM 'sectional view.

【符号の説明】[Explanation of symbols]

1 配向用永久磁石 2 ヨーク 3 非磁性体 4 キャビティ 5 ランナー 6 スプルー 7 ノズルタッチ 8 突き出しピン 9 永久磁石 1 Orientation permanent magnet 2 Yoke 3 Non-magnetic material 4 Cavity 5 Runner 6 Sprue 7 Nozzle touch 8 Ejection pin 9 Permanent magnet

───────────────────────────────────────────────────── フロントページの続き (72)発明者 阿部 雅治 千葉県千葉市川崎町1番地 川崎製鉄株式 会社技術研究本部内 (72)発明者 中塚 哲 東京都千代田区内幸町2丁目2番3号 日 比谷国際ビル 川崎製鉄株式会社東京本社 内 (72)発明者 沢 孝一郎 神奈川県横浜市港北区日吉3丁目14番1号 慶応義塾大学工学部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masaharu Abe 1 Kawasaki-cho, Chiba-shi, Chiba Inside the Technical Research Division, Kawasaki Steel Co., Ltd. (72) Inventor Satoshi Nakatsuka 2-3 2-3 Uchisaiwai-cho, Chiyoda-ku, Tokyo Tani Kokusai Building Kawasaki Steel Co., Ltd. Tokyo Head Office (72) Inventor Koichiro Sawa 3-14-1, Hiyoshi, Kohoku Ward, Yokohama City, Kanagawa Prefecture Keio University Faculty of Engineering

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 内周面又は外周面を作用面とする多極異
方性円筒状磁石の製造用キャビティの内周又は外周面に
沿って、偶数個の配向用永久磁石を、強磁性体のヨーク
を介し対向する磁極が同極となるように環状に組み込ん
だ金型において、 該ヨークの幅が、キャビティ側から非キャビティ側に向
かって次第に狭まり、少なくとも非キャビティ側端部に
おいて、隣合う配向用永久磁石同士が接する構造にな
り、かつ該ヨークのキャビティ側端面の幅が、該キャビ
ティ周長を磁極数で割った磁極当たりの周長の20%以上
であることを特徴とする多極異方性磁石製造用金型。
1. An even number of permanent magnets for orientation are provided along the inner or outer peripheral surface of a cavity for manufacturing a multi-pole anisotropic cylindrical magnet having an inner or outer peripheral surface as a working surface. In a die assembled in an annular shape so that the magnetic poles facing each other through the yoke of the same are the same pole, the width of the yoke gradually narrows from the cavity side to the non-cavity side, and the yokes are adjacent to each other at least at the non-cavity side end portion. A multi-pole structure, in which the orientation permanent magnets are in contact with each other, and the width of the cavity-side end surface of the yoke is 20% or more of the perimeter of the magnetic pole obtained by dividing the perimeter of the cavity by the number of magnetic poles. Mold for manufacturing anisotropic magnets.
【請求項2】 請求項1において、ヨークのキャビティ
側端面の幅が、該キャビティ周長を磁極数で割った磁極
当たりの周長の50〜80%である多極異方性磁石製造用金
型。
2. The gold for producing a multipolar anisotropic magnet according to claim 1, wherein the width of the end face of the yoke on the cavity side is 50% to 80% of the perimeter of the magnetic pole obtained by dividing the perimeter of the cavity by the number of magnetic poles. Type.
【請求項3】 請求項1又は2において、ヨークの円筒
軸方向端面に、該ヨークと隣接する配向用永久磁石の磁
極と同極の磁石を配設してなる多極異方性磁石製造用金
型。
3. The multipole anisotropic magnet manufacturing method according to claim 1, wherein a magnet having the same pole as the magnetic pole of the permanent magnet for orientation adjacent to the yoke is arranged on the end surface of the yoke in the cylindrical axial direction. Mold.
【請求項4】 請求項1又は2において、配向用永久磁
石の磁粉粒子の配向方向が、ヨークと接する磁石面に対
し、キャビティ方向から90°以上傾いている多極異方性
磁石製造用金型。
4. The gold for producing a multi-pole anisotropic magnet according to claim 1, wherein the orientation direction of the magnetic powder particles of the orientation permanent magnet is inclined by 90 ° or more from the cavity direction with respect to the magnet surface in contact with the yoke. Type.
JP6578392A 1991-04-11 1992-03-24 Die for manufacturing multi-polar aeolotropic magnet Pending JPH0590053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6578392A JPH0590053A (en) 1991-04-11 1992-03-24 Die for manufacturing multi-polar aeolotropic magnet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-105086 1991-04-11
JP10508691 1991-04-11
JP6578392A JPH0590053A (en) 1991-04-11 1992-03-24 Die for manufacturing multi-polar aeolotropic magnet

Publications (1)

Publication Number Publication Date
JPH0590053A true JPH0590053A (en) 1993-04-09

Family

ID=26406930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6578392A Pending JPH0590053A (en) 1991-04-11 1992-03-24 Die for manufacturing multi-polar aeolotropic magnet

Country Status (1)

Country Link
JP (1) JPH0590053A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013135103A (en) * 2011-12-27 2013-07-08 Nichia Chem Ind Ltd Method of manufacturing cylindrical bonded magnet and manufacturing apparatus for the same
KR20220093489A (en) * 2020-12-28 2022-07-05 가천대학교 산학협력단 Magnetizing Yoke

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013135103A (en) * 2011-12-27 2013-07-08 Nichia Chem Ind Ltd Method of manufacturing cylindrical bonded magnet and manufacturing apparatus for the same
KR20220093489A (en) * 2020-12-28 2022-07-05 가천대학교 산학협력단 Magnetizing Yoke

Similar Documents

Publication Publication Date Title
EP0016960B1 (en) Anisotropic polymeric magnet in the tubular form and process for producing the same
EP1713098B1 (en) Radial anisotropic cylindrical sintered magnet and permanent magnet motor
US5416457A (en) Lateral orientation anisotropic magnet
EP1717828A1 (en) Methods of producing radial anisotropic cylinder sintered magnet and permanent magnet motor-use cylinder multi-pole magnet
JPH0590053A (en) Die for manufacturing multi-polar aeolotropic magnet
JP5530707B2 (en) Cylindrical bonded magnet, manufacturing method thereof and manufacturing apparatus
JP3012067B2 (en) Extremely anisotropic cylindrical magnet
JPH0594921A (en) Metal mold for manufacture of multipolar anisotropic magnet
JP3012049B2 (en) Anisotropic segment type magnet
JP2500270Y2 (en) Multi-pole anisotropic cylindrical or solid cylindrical magnet molding die
JPH0624173B2 (en) Mold for magnet manufacturing
JPH06124822A (en) R-tm-b group anisotropic ring magnet and its manufacture
JP3049134B2 (en) 2-pole cylindrical magnet
JPH04267308A (en) Focused orientation type polar anisotropic disclike magnet and magnetic orienting mold
JPH0624174B2 (en) Manufacturing method of cylindrical magnet
JPH04267506A (en) Anisotropic cylindrical magnet
JPH01140614A (en) Manufacture of magnet roll
JPH05144632A (en) Bipolar cylindrical magnet
JPS62130813A (en) Manufacture of cylindrical multipolar anisotropic magnet and device therefor
JP2769062B2 (en) Notched anisotropic cylindrical magnet
JPH0220130B2 (en)
JP2000260617A (en) Manufacture of anisotropic oxide permanent magnet and metal mold
JPS61208812A (en) Composite magnet
JPH0239852B2 (en) RINGUJOJISEISEIKEITAINOSEIZOHOHO
JPH05343219A (en) Magnet for signal use