JP2000260617A - Manufacture of anisotropic oxide permanent magnet and metal mold - Google Patents

Manufacture of anisotropic oxide permanent magnet and metal mold

Info

Publication number
JP2000260617A
JP2000260617A JP11067000A JP6700099A JP2000260617A JP 2000260617 A JP2000260617 A JP 2000260617A JP 11067000 A JP11067000 A JP 11067000A JP 6700099 A JP6700099 A JP 6700099A JP 2000260617 A JP2000260617 A JP 2000260617A
Authority
JP
Japan
Prior art keywords
magnetic
molding
width
pair
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11067000A
Other languages
Japanese (ja)
Other versions
JP4772171B2 (en
Inventor
Yoshihiro Mori
宜寛 森
Toshikuni Osawa
利邦 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP06700099A priority Critical patent/JP4772171B2/en
Publication of JP2000260617A publication Critical patent/JP2000260617A/en
Priority to BRPI0505725 priority patent/BRPI0505725A/en
Application granted granted Critical
Publication of JP4772171B2 publication Critical patent/JP4772171B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a method of manufacturing an anisotropic oxide permanent magnet, capable of molding a number of products having uniform magnetic characteristics by improving magnetic pole constitution for magnetic field orientation, and a metallic mold for the same. SOLUTION: A metal mold is used which comprises a mortar 1 in which a pair of magnetic poles 2 for magnetic field orientation are placed and in which a plurality of roughly cylindrical molding spaces 3 are formed in an arrangement of one column or two columns in the direction normal to the magnetic path direction. Each of the magnetic poles 2 has a width that comprises the width corresponding to the roughly cylindrical molding spaces 3 and a pair of additional magnetic-pole width Wa, which is 0.3-1.5 times the magnetic-pole width W for one piece of the molding space, in both end parts. Material powder of oxide permanent magnet or slurry containing the powder is charged in the roughly cylindrical molding spaces, and is molded under an orientating magnetic field produced by the pair of magnetic poles.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、2極モータ等の用
途に使用される円筒状の異方性酸化物永久磁石の製造方
法及び成型用金型に係り、とくに2極異方性酸化物永久
磁石の生産効率を大幅に向上させ得る異方性酸化物永久
磁石の製造方法及び成型用金型に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a cylindrical anisotropic oxide permanent magnet used for a two-pole motor or the like, and a molding die. The present invention relates to a method for manufacturing an anisotropic oxide permanent magnet and a molding die capable of greatly improving the production efficiency of a permanent magnet.

【0002】[0002]

【従来の技術】従来、円筒状2極異方性磁石の金型構造
として、特開平6−260328号に開示されているも
のがあり、円筒状2極異方性磁石の金型構造において、
一対の磁極間(磁路)の楕円状成型空間の外周部の磁化
方向に磁性体を対に配し、磁化方向に垂直な方向には非
磁性体を対に配した金型により製品を得るようにしてい
る。この場合、磁極面から発生する総磁束量の向上、及
びモータのコギング特性を良好とする円筒状2極異方性
磁石を生産性良く製造出来るとしている。
2. Description of the Related Art Conventionally, as a mold structure of a cylindrical bipolar anisotropic magnet, there is one disclosed in JP-A-6-260328.
A product is obtained by a mold in which magnetic materials are arranged in pairs in the magnetization direction of the outer peripheral portion of the elliptical molding space between a pair of magnetic poles (magnetic paths), and nonmagnetic materials are arranged in pairs perpendicular to the magnetization direction. Like that. In this case, it is stated that a cylindrical two-pole anisotropic magnet which improves the total magnetic flux generated from the magnetic pole surface and improves the cogging characteristics of the motor can be manufactured with high productivity.

【0003】また、特開昭60−176206号は、円
筒状2極異方性磁石の金型構造において、一対の磁極間
(磁路)の成型空間の中心芯、又は成型空間の磁化方向
の外側の一部を対に磁性体とした金型を開示している。
これにより、従来製品より多い総磁束量を得ることが出
来、コアレスモータに組み込むことにより消費電力を少
なくでき、小型化を図ることで安価な磁石を提供すると
している。
Japanese Patent Application Laid-Open No. Sho 60-176206 discloses that in a mold structure of a cylindrical bipolar anisotropic magnet, the center of a molding space between a pair of magnetic poles (magnetic path) or the magnetization direction of the molding space is determined. It discloses a mold in which a part of the outside is made of a magnetic material.
According to the publication, a total magnetic flux amount larger than that of the conventional product can be obtained, the power consumption can be reduced by incorporating the magnetic flux into a coreless motor, and an inexpensive magnet can be provided by downsizing.

【0004】さらに、実開昭55−58322号には、
射出成型用の金型において、リング状キャビティーを複
数配置した構成が開示されている。但し、この金型の特
徴はリング状キャビティーの直径方向に複数個に分割さ
れ互いに平行配置された磁性体と非磁性体との組み合わ
せにより、磁力線が効率よくリング状キャビティーの直
径方向に流れるようにしたことにあり、複数個同時成型
される成型品の特性ばらつきを防止するための磁場配向
用の磁極構成についてはとくに考察がなされていない。
Further, Japanese Utility Model Laid-Open No. 55-58322 discloses that
A configuration in which a plurality of ring-shaped cavities are arranged in a mold for injection molding is disclosed. However, the feature of this mold is that the magnetic force lines efficiently flow in the diameter direction of the ring-shaped cavity by a combination of a magnetic material and a non-magnetic material which are divided into a plurality in the diameter direction of the ring-shaped cavity and arranged in parallel with each other. For this reason, no particular consideration has been given to the configuration of the magnetic poles for magnetic field orientation to prevent variations in the characteristics of a plurality of molded articles simultaneously molded.

【0005】[0005]

【発明が解決しようとする課題】ところで、特開平6−
260328号や特開昭60−176206号の金型構
造は、多数個同時成型の技術は開示しておらず、また実
開昭55−58322号の金型構造は、磁場配向のため
の磁極構成に配慮がなく、多数個成型による磁気特性が
均一な製品の生産性向上を考慮に入れてはいない。
By the way, Japanese Patent Application Laid-Open No.
No. 260328 and Japanese Patent Application Laid-Open No. 60-176206 disclose a technique for simultaneous molding of a large number of pieces, and the metal mold structure disclosed in Japanese Utility Model Application Laid-Open No. 55-58322 has a magnetic pole configuration for magnetic field orientation. No consideration is given to improving the productivity of products with uniform magnetic properties by molding many pieces.

【0006】本発明は、上記の点に鑑み、磁場配向のた
めの磁極構成を改善したことで、磁気特性の均一な製品
の多数個成型を可能とした異方性酸化物永久磁石の製造
方法及び成型用金型を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above, the present invention provides a method for manufacturing an anisotropic oxide permanent magnet, which is capable of molding a large number of products having uniform magnetic properties by improving a magnetic pole configuration for magnetic field orientation. And a mold for molding.

【0007】本発明のその他の目的や新規な特徴は後述
の実施の形態において明らかにする。
[0007] Other objects and novel features of the present invention will be clarified in embodiments described later.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明の異方性酸化物永久磁石の製造方法は、一対
の磁場配向用磁極を設けた臼型に、磁路方向に対して直
交方向に複数個の略円筒状成型空間を1列又は2列に設
け、前記磁極は複数個の略円筒状成型空間に対応する幅
に加えて前記成型空間1個分の磁極幅の0.3〜1.5倍
の追加磁極部分を幅方向両端部に有する成型用金型を用
い、前記略円筒状成型空間内に酸化物永久磁石材料粉末
又は当該粉末を含むスラリーをそれぞれ充填して前記一
対の磁極による配向磁場中にて成型することを特徴とし
ている。
In order to achieve the above object, a method for producing an anisotropic oxide permanent magnet according to the present invention comprises: a mortar provided with a pair of magnetic poles for magnetic field orientation; A plurality of substantially cylindrical molding spaces are provided in one or two rows in the orthogonal direction, and the magnetic poles have a width corresponding to the plurality of substantially cylindrical molding spaces and a magnetic pole width of 0 for the one molding space. Using a molding die having additional magnetic pole portions of 0.3 to 1.5 times at both ends in the width direction, the substantially cylindrical molding space is filled with oxide permanent magnet material powder or a slurry containing the powder, respectively. The molding is performed in an orientation magnetic field by the pair of magnetic poles.

【0009】本発明の異方性酸化物永久磁石の成型用金
型は、一対の磁場配向用磁極を設けた臼型に、磁路方向
に対して直交方向に複数個の略円筒状成型空間を1列又
は2列に設け、前記磁極は複数個の略円筒状成型空間に
対応する幅に加えて前記成型空間の幅の0.3〜1.5倍
の追加磁極部分を幅方向両端部に有する構成としてい
る。
A mold for molding an anisotropic oxide permanent magnet according to the present invention is a mold having a pair of magnetic poles for orienting a magnetic field, and a plurality of substantially cylindrical molding spaces perpendicular to a magnetic path direction. Are provided in one or two rows, and the magnetic poles have widths corresponding to a plurality of substantially cylindrical molding spaces and additional magnetic pole portions that are 0.3 to 1.5 times the width of the molding space at both ends in the width direction. Is provided.

【0010】前記異方性酸化物永久磁石の成型用金型に
おいて、前記一対の磁場配向用磁極の中間位置に中間磁
極が配置され、該中間磁極を挟んで前記複数個の略円筒
状成型空間が2列に配置された構成としてもよい。
In the mold for molding an anisotropic oxide permanent magnet, an intermediate magnetic pole is arranged at an intermediate position between the pair of magnetic poles for magnetic field orientation, and the plurality of substantially cylindrical molding spaces are sandwiched by the intermediate magnetic pole. May be arranged in two rows.

【0011】[0011]

【発明の実施の形態】以下、本発明に係る異方性酸化物
永久磁石の製造方法及び成型用金型の実施の形態を図面
に従って説明する。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view showing a method for manufacturing an anisotropic oxide permanent magnet according to the present invention;

【0012】図1及び図2で本発明の第1の実施の形態
を説明する。これらの図において、1は臼型であり、2
は一対の磁場配向用磁極、3は略円筒状成型空間であ
る。ここで、一対の磁場配向用磁極2の先端面は平行で
あり、成型用空間3を構成するための非磁性臼型1の成
型用穴1aは磁路方向に対して直交方向に、つまり各磁
極2の先端面に平行に複数個1列に配置されている。図
2に示すように、非磁性臼型1の成型用穴1aの中心部
には、非磁性中棒10が進入しており、さらに中棒10
の外周側に非磁性の下部パンチ11が嵌入するととも
に、非磁性の上部パンチ12が嵌入可能となっており、
これらにより前記略円筒状成型空間3が形成されるよう
になっている。前記一対の磁場配向用磁極2は非磁性の
臼型1に埋設されており、さらに図示しないコイルによ
り、一方の磁極先端面がN極、他方の磁極先端面がS極
となるように、励磁され、この結果、N極からS極へ向
かう、つまり略円筒状成型空間3を横断する磁束を発生
するようになっている。前記一対の磁場配向用磁極2
は、複数個の略円筒状成型空間3に対応する磁極幅に加
えて、前記成型空間1個分に対応する磁極幅W{例えば
成型空間自体の幅+数mm(1〜3mm位)}の0.3〜1.
5倍の追加磁極部分2a(図1中Waで示す)を、幅方
向両端部に有している。
A first embodiment of the present invention will be described with reference to FIGS. In these figures, 1 is a mortar, 2
Is a pair of magnetic poles for magnetic field orientation, and 3 is a substantially cylindrical molding space. Here, the tip surfaces of the pair of magnetic poles 2 for magnetic field orientation are parallel, and the molding holes 1a of the non-magnetic die 1 for forming the molding space 3 are perpendicular to the direction of the magnetic path, that is, A plurality of magnetic poles 2 are arranged in a row in parallel with the end surface. As shown in FIG. 2, a non-magnetic center rod 10 has entered the center of the molding hole 1 a of the non-magnetic die 1, and
A non-magnetic lower punch 11 is fitted on the outer peripheral side of the body, and a non-magnetic upper punch 12 is fittable.
Thus, the substantially cylindrical molding space 3 is formed. The pair of magnetic poles 2 for magnetic field orientation are buried in a non-magnetic mortar 1, and are energized by a coil (not shown) such that one end of the magnetic pole is an N pole and the other end is an S pole. As a result, a magnetic flux is generated from the N pole to the S pole, that is, crossing the substantially cylindrical molding space 3. The pair of magnetic poles 2 for magnetic field orientation
Is the magnetic pole width W corresponding to one molding space in addition to the magnetic pole widths corresponding to the plurality of substantially cylindrical molding spaces 3 {for example, the width of the molding space itself + a few mm (about 1 to 3 mm)}. 0.3-1.
A five-fold additional magnetic pole portion 2a (indicated by Wa in FIG. 1) is provided at both ends in the width direction.

【0013】なお、非磁性材である臼型1、中棒10、
下部パンチ11、上部パンチ12の材質は特に限定され
ず、例えば、ステンレス鋼、銅ベリリウム鋼、ハイマン
ガン鋼、青銅、真鍮、非磁性超鋼等を用いることができ
る。
Incidentally, the mortar 1, the middle rod 10, which is a non-magnetic material,
The material of the lower punch 11 and the upper punch 12 is not particularly limited, and for example, stainless steel, copper beryllium steel, high manganese steel, bronze, brass, nonmagnetic super steel, or the like can be used.

【0014】このような金型構造により構成された各成
型空間3内に酸化物永久磁石材料粉末をそれぞれ充填し
て一対の磁場配向用磁極2による配向磁場中にて成型す
ることで、特性の揃った均一の異方性酸化物永久磁石を
多数個同時に得ることができる。
Each of the molding spaces 3 formed by such a mold structure is filled with an oxide permanent magnet material powder, and molded in an orientation magnetic field by a pair of magnetic poles 2 for magnetic field orientation, whereby characteristics are improved. A large number of uniform anisotropic oxide permanent magnets can be obtained simultaneously.

【0015】前記成型空間3の個数nは、成型空間内に
発生する磁場の強度が、磁石材料を配向するに十分で、
最終的製品として特に問題なければ特に限定されない。
磁場配向用磁極2を励磁している磁場発生コイルが同じ
場合、個々の成型空間が小さい方が配列可能な個数nは
多く、逆に成型空間が大きい場合は個数nが少なくな
る。例として、外径20mm程度の成型空間では1列5個
〜7個になる。なお、磁路に使用されている材質、換言
すれば磁場配向用磁極2によっても個数nに違いが出
る。
The number n of the molding spaces 3 is such that the strength of the magnetic field generated in the molding space is sufficient to orient the magnet material.
There is no particular limitation as long as there is no particular problem as the final product.
When the magnetic field generating coils that excite the magnetic poles for magnetic field orientation 2 are the same, the smaller the individual molding space, the larger the number n that can be arranged, and conversely, the larger the molding space, the smaller the number n. As an example, in a molding space having an outer diameter of about 20 mm, there are 5 to 7 pieces per row. The number n also differs depending on the material used for the magnetic path, in other words, the magnetic pole 2 for magnetic field orientation.

【0016】前記追加磁極部分2aは小さすぎると効果
がないが、大きすぎても無駄になる。つまり、成型空間
3の1個分に対応する磁極幅Wの0.3倍未満だと成型
空間内の磁場が外側からの低下した磁場の影響を強く受
け端部に位置する成型品の表面磁束波形が乱れて端部で
ない成型品との表面磁束波形が異なった波形を示す。逆
に大きすぎると端部の成型空間で磁場の乱れの影響は受
けないが、成型空間全体の磁場の強度が低下するのであ
まりよいとは言えず、1.5倍あれば十分である。
The additional magnetic pole portion 2a has no effect if it is too small, but it is useless if it is too large. That is, if the magnetic pole width W is less than 0.3 times the magnetic pole width W corresponding to one molding space 3, the magnetic field in the molding space is strongly affected by the reduced magnetic field from the outside, and the surface magnetic flux of the molded product located at the end portion is strong. The waveform is distorted, and the surface magnetic flux waveform of a molded product other than the end is different. Conversely, if it is too large, the influence of the magnetic field is not affected in the molding space at the end, but the strength of the magnetic field in the entire molding space is reduced, so it is not so good, and 1.5 times is sufficient.

【0017】この第1の実施の形態によれば、次の通り
の効果を得ることができる。
According to the first embodiment, the following effects can be obtained.

【0018】(1) 上記の如き成型空間3を磁路方向に
直交させて多数個1列配置した金型構造とすることで、
異方性酸化物永久磁石を一度に多数個成型可能で、生産
性が大幅に向上する。例えば、n個1列配置すればn個
の成型品を得ることができる。
(1) By forming a mold structure in which a large number of molding spaces 3 are arranged in a row in a direction perpendicular to the magnetic path direction as described above,
A large number of anisotropic oxide permanent magnets can be molded at a time, greatly improving productivity. For example, if n pieces are arranged in one row, n pieces can be obtained.

【0019】(2) 一対の磁場配向用磁極2が、複数個
の成型空間3に対応する幅に加えて成型空間1個分の磁
極幅Wの0.3〜1.5倍の追加磁極部分2aを幅方向両
端部に有することで、金型両端部に位置する成型空間で
成型されたものも含めて多数個成型の全ての成型品の表
面磁束が均一となる。
(2) A pair of magnetic poles for magnetic field orientation 2 has an additional magnetic pole portion 0.3 to 1.5 times the magnetic pole width W of one molding space in addition to the width corresponding to the plurality of molding spaces 3. By having 2a at both ends in the width direction, the surface magnetic flux of all the molded products of multiple molding including those molded in the molding spaces located at both ends of the mold becomes uniform.

【0020】図3は本発明の第2の実施の形態を示す。
この場合、一対の磁場配向用磁極2の平行な先端面間
に、略円筒状成型用空間3を構成するための非磁性臼型
1の成型用穴1aが磁路方向に対して直交方向に、つま
り各磁極2の先端面に平行にそれぞれ複数個2列に配置
されている。1列目の成型用穴1aと2列目の成型用穴
1aとの間には中間磁極20が配置されている。この中
間磁極20は前記一対の磁場配向用磁極2の中間に平行
に配置され、該中間磁極20を挟んで個数nの略円筒状
成型空間3が配置された構成である。ここで、中間磁極
20の磁路方向の厚みは成型空間3の0.5以上にして
おり、さらに1列の個数nの成型空間3に対応する幅に
加えて成型空間1個分の磁極幅Wの0.3〜1.5倍の追
加磁極部分2a(図3中Waで示す)を幅方向両端部に
有する前記磁場配向用磁極2と実質同幅に中間磁極20
は形成されている。
FIG. 3 shows a second embodiment of the present invention.
In this case, a molding hole 1a of the non-magnetic mortar mold 1 for forming the substantially cylindrical molding space 3 is provided between the parallel tip surfaces of the pair of magnetic poles 2 for magnetic field orientation in a direction perpendicular to the magnetic path direction. That is, a plurality of magnetic poles 2 are arranged in two rows in parallel with the tip end surface. An intermediate magnetic pole 20 is arranged between the first row of molding holes 1a and the second row of molding holes 1a. The intermediate magnetic pole 20 is arranged in parallel with the middle of the pair of magnetic poles 2 for magnetic field orientation, and the number n of substantially cylindrical molding spaces 3 is arranged with the intermediate magnetic pole 20 interposed therebetween. Here, the thickness of the intermediate magnetic pole 20 in the direction of the magnetic path is set to 0.5 or more of the molding space 3. Further, in addition to the width corresponding to the number n of the molding spaces 3 in one row, the magnetic pole width of one molding space 3 is added. The width of the intermediate magnetic pole 20 is substantially the same as that of the magnetic pole 2 for magnetic field orientation having additional magnetic pole portions 2a (indicated by Wa in FIG. 3) of 0.3 to 1.5 times W.
Is formed.

【0021】2列に成型空間を配した場合は中間磁極2
0の磁路方向の厚みが小さいと磁場の乱れを起こしやす
く、少なくとも成型空間3の0.5倍あることが望まし
い。0.5倍より大きい場合は特に問題は発生しないの
で金型の寸法内に入れば良い。
When the molding spaces are arranged in two rows, the intermediate magnetic pole 2
If the thickness in the magnetic path direction of 0 is small, the magnetic field is likely to be disturbed. If it is larger than 0.5 times, no particular problem occurs.

【0022】なお、個々の成型空間3の上下パンチ、中
棒配置は図2の場合と同様でよい。
The arrangement of the upper and lower punches and the inner rods in the individual molding spaces 3 may be the same as in FIG.

【0023】この第2の実施の形態によれば、個数nの
成型空間3を2列配置とすることで、表面磁束が均一な
n×2個の成型品を同時に成型可能である。
According to the second embodiment, by arranging the molding space 3 of the number n in two rows, it is possible to simultaneously mold n × 2 molded products having a uniform surface magnetic flux.

【0024】図4(A),(B),(C)はそれぞれ実施
の形態と対比するための、従来例及び比較例である。同
図(A)の従来例は、略円筒状成型空間3が1個で、1
個の成型空間に対応する磁極幅の一対の磁場配向用磁極
2が設けられた構成である。この場合、多数個成型はで
きない構成である。同図(B)は、第1比較例で、一対
の磁場配向用磁極2の間に、略円筒状成型空間3が複数
個1列に位置されているが、磁場配向用磁極2の構造に
配慮が無く、磁極幅は成型空間に対する磁極幅だけとな
っており、追加磁極部分は存在しない構造である。同図
(C)は第2比較例であり、一対の磁場配向用磁極2の
幅方向両端部に成型空間1個分に対応した磁極幅の0.
2倍の追加磁極部分2b(幅の不十分な追加磁束部分)
を有している。
FIGS. 4A, 4B and 4C show a conventional example and a comparative example, respectively, for comparison with the embodiment. In the conventional example shown in FIG. 1A, there is one substantially cylindrical molding space 3 and 1
In this configuration, a pair of magnetic poles for magnetic field orientation 2 having a magnetic pole width corresponding to each molding space is provided. In this case, it is a configuration in which multiple molding cannot be performed. FIG. 4B shows a first comparative example in which a plurality of substantially cylindrical molding spaces 3 are arranged in a row between a pair of magnetic poles 2 for magnetic field orientation. There is no consideration, and the magnetic pole width is only the magnetic pole width with respect to the molding space, and there is no additional magnetic pole portion. FIG. 7C shows a second comparative example, in which the width of the magnetic pole corresponding to one molding space is set at the both ends in the width direction of the pair of magnetic poles 2 for magnetic field orientation.
2x additional magnetic pole portion 2b (additional magnetic flux portion with insufficient width)
have.

【0025】[0025]

【実施例】図1(第1の実施の形態で説明した金型)、
図3(第2の実施の形態で説明した金型)、図4
(A),(B),(C)の従来例、第1比較例及び第2比
較例の金型により成型を試みた。成型空間数は図4
(A)のみn=1で、他はn=3とした。成型空間の外
径は22.7mm、内径は7.32mm、磁場発生コイルを含
む成型機は同一とした。
FIG. 1 (the mold described in the first embodiment),
3 (the mold described in the second embodiment), FIG.
Molding was attempted using the molds of the conventional examples (A), (B), and (C), the first comparative example, and the second comparative example. Fig. 4
In (A), n = 1, and in other cases, n = 3. The outer diameter of the molding space was 22.7 mm, the inner diameter was 7.32 mm, and the molding machine including the magnetic field generating coil was the same.

【0026】各々の金型について同一成型条件で成型を
試み(試料100個)、各試料の表面磁束波形をホール
素子を使用して測定した。この測定結果は下記の表1の
通りとなった。
Each mold was tried under the same molding conditions (100 samples), and the surface magnetic flux waveform of each sample was measured using a Hall element. The measurement results are as shown in Table 1 below.

【0027】 表1 (100ショット) 第1比較例 第2比較例 実施の形態 追加磁極なし 追加磁極0.2倍 追加磁極0.3〜1.5倍 表面磁束波形 対称 非対称 対称 非対称 対称 非対称 異常発生数(%) 33 67 76 24 100 0 なお、対称とは、焼結、着磁後の異方性酸化物永久磁石
外周面の表面磁束を180度の角度範囲で測定したと
き、図5の実線のように表面磁束のピークの両側が対称
となる場合であり、非対称とは図5の点線のように表面
磁束のピークの両側が非対称となる場合である。
Table 1 (100 shots) First comparative example Second comparative example Embodiment No additional magnetic pole Additional magnetic pole 0.2 times Additional magnetic pole 0.3 to 1.5 times Surface flux waveform Symmetry Asymmetric Symmetry Asymmetric Symmetry Asymmetric Number of abnormal occurrences (%) 33 67 76 24 100 0 Symmetry means that when the surface magnetic flux of the outer peripheral surface of the anisotropic oxide permanent magnet after sintering and magnetization is measured in an angle range of 180 degrees, as shown by the solid line in FIG. The both sides of the peak are symmetric, and the asymmetry is the case where both sides of the peak of the surface magnetic flux are asymmetric as indicated by the dotted line in FIG.

【0028】上記各実施の形態で説明した金型構造とす
れば、多数個同時成型により成型工程時間をほぼ同じと
して多数個の生産ができ、磁場配向用磁極の追加磁極部
分により多数個成型品の各々の表面磁束が一様になるこ
とが判る。
According to the mold structure described in each of the above embodiments, a large number of products can be produced by simultaneously molding a large number of products and the molding process time is almost the same, and a large number of molded products can be produced by the additional magnetic pole portion of the magnetic pole for magnetic field orientation. It can be seen that the surface magnetic flux of each of them becomes uniform.

【0029】なお、本発明は、酸化物永久磁石材料粉末
を成型空間に充填して加圧成型する乾式成型の場合を例
示したが、当該粉末を含むスラリーをそれぞれ充填して
加圧成型する湿式成型の場合にも適用できる。
In the present invention, the case of dry molding in which the oxide permanent magnet material powder is filled in a molding space and pressure molding is exemplified, but wet molding in which a slurry containing the powder is filled and pressure molding is performed, respectively. It can be applied to molding.

【0030】以上本発明の実施の形態について説明して
きたが、本発明はこれに限定されることなく請求項の記
載の範囲内において各種の変形、変更が可能なことは当
業者には自明であろう。
Although the embodiments of the present invention have been described above, it is obvious to those skilled in the art that the present invention is not limited to the embodiments and various modifications and changes can be made within the scope of the claims. There will be.

【0031】[0031]

【発明の効果】以上説明したように、本発明によれば、
一対の磁場配向用磁極を設けた臼型に、磁路方向に対し
て直交方向に複数個の略円筒状成型空間を1列又は2列
に設け、前記磁極は複数個の略円筒状成型空間に対応す
る幅に加えて前記成型空間1個分の磁極幅の0.3〜1.
5倍の追加磁極部分を幅方向両端部に有する成型用金型
を用い、前記略円筒状成型空間内に酸化物永久磁石材料
粉末又は当該粉末を含むスラリーをそれぞれ充填して前
記一対の磁極による配向磁場中にて成型することによ
り、表面磁束が均一で特性の揃った異方性酸化物永久磁
石を一度に多数個成型可能となり、生産性の大幅向上を
図り得る。この結果、磁極面から発生する総磁束量の向
上、及びモータのコギング特性等を良好とする円筒状2
極異方性磁石を生産性良く製造出来る。
As described above, according to the present invention,
In a mortar provided with a pair of magnetic poles for magnetic field orientation, a plurality of substantially cylindrical molding spaces are provided in one or two rows in a direction orthogonal to a magnetic path direction, and the magnetic poles are formed of a plurality of substantially cylindrical molding spaces. In addition to the width corresponding to the above, the magnetic pole width of 0.3 to 1.
Using a molding die having 5 times additional magnetic pole portions at both ends in the width direction, the substantially cylindrical molding space is filled with the oxide permanent magnet material powder or the slurry containing the powder, and the pair of magnetic poles is used. By molding in an orientation magnetic field, a large number of anisotropic oxide permanent magnets having uniform surface magnetic flux and uniform characteristics can be molded at a time, and productivity can be greatly improved. As a result, it is possible to improve the total magnetic flux generated from the magnetic pole surface and improve the cogging characteristics of the motor.
Polar anisotropic magnets can be manufactured with high productivity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る異方性酸化物永久磁石の製造方法
及び成型用金型の第1の実施の形態を示す概略平面図で
ある。
FIG. 1 is a schematic plan view showing a method for manufacturing an anisotropic oxide permanent magnet and a molding die according to a first embodiment of the present invention.

【図2】第1の実施の形態における個々の成型空間の構
成を示す縦断面図である。
FIG. 2 is a longitudinal sectional view showing the configuration of each molding space in the first embodiment.

【図3】本発明の第2の実施の形態を示す概略平面図で
ある。
FIG. 3 is a schematic plan view showing a second embodiment of the present invention.

【図4】従来例及び比較例を示す概略平面図である。FIG. 4 is a schematic plan view showing a conventional example and a comparative example.

【図5】異方性酸化物永久磁石外周面の表面磁束の対称
波形及び非対称波形を示すグラフである。
FIG. 5 is a graph showing a symmetric waveform and an asymmetric waveform of the surface magnetic flux on the outer peripheral surface of the anisotropic oxide permanent magnet.

【符号の説明】[Explanation of symbols]

1 臼型 1a 成型用穴 2 磁場配向用磁極 2a 追加磁極部分 3 略円筒状成型空間 10 中棒 11 下部パンチ 12 上部パンチ DESCRIPTION OF SYMBOLS 1 Mortar type 1a Molding hole 2 Magnetic pole for magnetic field orientation 2a Additional magnetic pole part 3 Substantially cylindrical molding space 10 Middle rod 11 Lower punch 12 Upper punch

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 一対の磁場配向用磁極を設けた臼型に、
磁路方向に対して直交方向に複数個の略円筒状成型空間
を1列又は2列に設け、前記磁極は複数個の略円筒状成
型空間に対応する幅に加えて前記成型空間1個分の磁極
幅の0.3〜1.5倍の追加磁極部分を幅方向両端部に有
する成型用金型を用い、前記略円筒状成型空間内に酸化
物永久磁石材料粉末又は当該粉末を含むスラリーをそれ
ぞれ充填して前記一対の磁極による配向磁場中にて成型
することを特徴とする異方性酸化物永久磁石の製造方
法。
1. A mortar provided with a pair of magnetic poles for magnetic field orientation,
A plurality of substantially cylindrical molding spaces are provided in one or two rows in a direction orthogonal to the direction of the magnetic path, and the magnetic poles have a width corresponding to the plurality of substantially cylindrical molding spaces and a width corresponding to one molding space. A permanent magnet material powder or a slurry containing the powder in the substantially cylindrical molding space by using a molding die having additional magnetic pole portions 0.3 to 1.5 times the magnetic pole width at both ends in the width direction. And molding in an orientation magnetic field by the pair of magnetic poles.
【請求項2】 一対の磁場配向用磁極を設けた臼型に、
磁路方向に対して直交方向に複数個の略円筒状成型空間
を1列又は2列に設け、前記磁極は複数個の略円筒状成
型空間に対応する幅に加えて前記成型空間の幅の0.3
〜1.5倍の追加磁極部分を幅方向両端部に有すること
を特徴とする異方性酸化物永久磁石の成型用金型。
2. A mortar provided with a pair of magnetic poles for magnetic field orientation,
A plurality of substantially cylindrical molding spaces are provided in one or two rows in a direction orthogonal to the magnetic path direction, and the magnetic poles have a width corresponding to the plurality of substantially cylindrical molding spaces and a width of the molding space. 0.3
A mold for molding an anisotropic oxide permanent magnet, comprising an additional magnetic pole portion of about 1.5 times at both ends in the width direction.
【請求項3】 前記一対の磁場配向用磁極の中間位置に
中間磁極が配置され、該中間磁極を挟んで前記複数個の
略円筒状成型空間が2列に配置されてなる請求項2記載
の異方性酸化物永久磁石の成型用金型。
3. The magnetic head according to claim 2, wherein an intermediate magnetic pole is arranged at an intermediate position between the pair of magnetic poles for magnetic field orientation, and the plurality of substantially cylindrical molding spaces are arranged in two rows with the intermediate magnetic pole interposed therebetween. Mold for molding anisotropic oxide permanent magnets.
JP06700099A 1999-03-12 1999-03-12 Method for producing anisotropic oxide permanent magnet and molding die Expired - Lifetime JP4772171B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP06700099A JP4772171B2 (en) 1999-03-12 1999-03-12 Method for producing anisotropic oxide permanent magnet and molding die
BRPI0505725 BRPI0505725A (en) 1999-03-12 2005-12-19 anisotropic bipolar cylindrical sintered magnet, motor and method to produce said magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06700099A JP4772171B2 (en) 1999-03-12 1999-03-12 Method for producing anisotropic oxide permanent magnet and molding die

Publications (2)

Publication Number Publication Date
JP2000260617A true JP2000260617A (en) 2000-09-22
JP4772171B2 JP4772171B2 (en) 2011-09-14

Family

ID=13332251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06700099A Expired - Lifetime JP4772171B2 (en) 1999-03-12 1999-03-12 Method for producing anisotropic oxide permanent magnet and molding die

Country Status (2)

Country Link
JP (1) JP4772171B2 (en)
BR (1) BRPI0505725A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086443A (en) * 2001-09-11 2003-03-20 Sumitomo Special Metals Co Ltd Magnetic-field forming system and powder-forming method
KR100642218B1 (en) * 2005-02-23 2006-11-03 (주)대한특수금속 A magnetic field press apparatus
JP2006339493A (en) * 2005-06-03 2006-12-14 Univ Of Tokyo Magnetic force field generator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086443A (en) * 2001-09-11 2003-03-20 Sumitomo Special Metals Co Ltd Magnetic-field forming system and powder-forming method
KR100642218B1 (en) * 2005-02-23 2006-11-03 (주)대한특수금속 A magnetic field press apparatus
JP2006339493A (en) * 2005-06-03 2006-12-14 Univ Of Tokyo Magnetic force field generator
JP4550669B2 (en) * 2005-06-03 2010-09-22 国立大学法人 東京大学 Magnetic force field generator

Also Published As

Publication number Publication date
JP4772171B2 (en) 2011-09-14
BRPI0505725A (en) 2006-04-25

Similar Documents

Publication Publication Date Title
JP2011515224A (en) Integrated compression molded stator
JP2018092988A (en) Multiple magnetization unit permanent magnet, manufacturing method thereof, mold, and magnetic circuit
JP2000260617A (en) Manufacture of anisotropic oxide permanent magnet and metal mold
CN206595791U (en) The rotor of motor
CN116436185A (en) Tri-pole magnet array
JP5530707B2 (en) Cylindrical bonded magnet, manufacturing method thereof and manufacturing apparatus
JP4985342B2 (en) Method and apparatus for magnetizing permanent magnet
US20180145548A1 (en) Magnetic field generating member and motor including same
JPS61115316A (en) Magnet manufacturing die
CN209170078U (en) Flat type permanent-magnet servo motor built in a kind of low inertia
JPS61208815A (en) Magnetic field generator
JPH0624174B2 (en) Manufacturing method of cylindrical magnet
JP4400698B2 (en) Surface multipolar anisotropic ring magnet forming equipment
JP2526141Y2 (en) Permanent magnet rotor
JP2686616B2 (en) Injection molding machine for anisotropic plastic magnets
CN109412301A (en) Flat type permanent-magnet servo motor built in a kind of low inertia
JPS60124812A (en) Manufacture of permanent magnet
JP3458922B2 (en) Voice coil type linear motor
CN109067041B (en) Rotor
JP2001015340A (en) Method and device for manufacturing radial ring magnet
JP2800458B2 (en) Magnetic forming equipment for anisotropic plastic magnets
JP2001028309A (en) Magnet and magnetic field molding apparatus
JP2004072818A (en) Method and apparatus for manufacturing permanent magnet of motor
KR100446193B1 (en) Method and Apparatus for manufacturing permanent magnet using electric conductor film
JP2003064403A (en) Permanent magnet, manufacturing method therefor and press molding apparatus in magnetic field

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080929

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081218

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090106

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090319

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110622

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term