JPH0589877A - Manufacture of negative electrode of hydrogen storage alloy - Google Patents

Manufacture of negative electrode of hydrogen storage alloy

Info

Publication number
JPH0589877A
JPH0589877A JP3249921A JP24992191A JPH0589877A JP H0589877 A JPH0589877 A JP H0589877A JP 3249921 A JP3249921 A JP 3249921A JP 24992191 A JP24992191 A JP 24992191A JP H0589877 A JPH0589877 A JP H0589877A
Authority
JP
Japan
Prior art keywords
negative electrode
hydrogen storage
storage alloy
paste
alloy powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3249921A
Other languages
Japanese (ja)
Inventor
Takao Ogura
孝夫 小倉
Yoichi Nomura
洋一 野村
Takeshi Tsuda
武 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP3249921A priority Critical patent/JPH0589877A/en
Publication of JPH0589877A publication Critical patent/JPH0589877A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To prevent a three-dimensional mesh structure from being ruptured by powder of hydrogen storage alloy having edges with acute angle. CONSTITUTION:A powder 1 of hydrogen storage alloy and an organic binder are kneaded together to form a paste, and a three-dimensional mesh structure 2 consisting of foaming nickel is filled with this paste to accomplish a material to neg. electrode. This material is compressed across the thickness. Furnace carbon black 3 is added to the paste. In case 4.0g/cm<3> is exceeded by the filling density when the three-dimensional mesh structure 2 is filled with the hydrogen storage alloy 1, an organic binder is used as an organic binder which is a water solution containing polyvinyl alcohol 0.2-2.0% by weight of the paste, and thereto a furnace carbon black 0.1-1.0% by weight of the paste is added.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えばアルカリ蓄電池
の負極等に用いられる水素吸蔵合金負極の製造方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a hydrogen storage alloy negative electrode used in, for example, a negative electrode of an alkaline storage battery.

【0002】[0002]

【従来の技術】水素吸蔵合金粉末を用いた負極は、高エ
ネルギー密度化が可能なため、近年、その研究開発が進
められている。従来の水素吸蔵合金負極を製造する場合
には、まず負極素材を形成し、この負極素材を厚み方向
に圧縮して水素吸蔵合金負極を製造している。負極素材
を形成を形成する方法としては、ニッケル多孔板に有機
バインダで水素吸蔵合金を混練したペーストを塗布して
負極素材を形成する方法と、発泡ニッケル多孔体やフェ
ルトのような三次元網目状構造体内にポリビニルアルコ
ール(PVA)水溶液等の有機バインダと水素吸蔵合金
粉末とを混練したペーストを充填して負極素材を形成す
る方法とがある。負極素材を厚み方向に圧縮するのは、
水素吸蔵合金粉末の充填密度を高くすることにより負極
のエネルギー密度を高くするためである。しかしなが
ら、ニッケル多孔板を用いた負極素材を圧縮する場合に
は、圧縮が強すぎると、ニッケル多孔板からペーストが
剥離しやすくなる問題が生じる。また、このようにして
製造した負極では、充放電に伴う水素の吸蔵・放出によ
ってもニッケル多孔板からペーストが剥離しやすくなる
問題がある。そこでペーストの剥離を防ぐ技術として、
特開昭 63-110552号公報に示されるように、ペーストに
カーボン繊維を添加してペーストの強度を向上させる技
術が検討された。しかしながらニッケル多孔板にペース
トを塗布した負極では、ニッケル多孔板とペーストとの
密着度を高めることには限界があった。そのため、水素
吸蔵合金負極を製造する際に、ニッケル多孔板を用いる
ことは適切であるとはいい難い。
2. Description of the Related Art A negative electrode using a hydrogen-absorbing alloy powder can be increased in energy density, and thus research and development thereof has been advanced in recent years. When manufacturing a conventional hydrogen storage alloy negative electrode, a negative electrode material is first formed and this negative electrode material is compressed in the thickness direction to manufacture a hydrogen storage alloy negative electrode. As a method of forming the negative electrode material, a method of forming a negative electrode material by applying a paste prepared by kneading a hydrogen storage alloy with an organic binder on a nickel porous plate, and a three-dimensional mesh shape such as a foamed nickel porous body or felt. There is a method of forming a negative electrode material by filling a paste in which a hydrogen absorbing alloy powder is kneaded with an organic binder such as a polyvinyl alcohol (PVA) aqueous solution in the structure. Compressing the negative electrode material in the thickness direction is
This is because the energy density of the negative electrode is increased by increasing the packing density of the hydrogen storage alloy powder. However, when compressing the negative electrode material using the nickel porous plate, if the compression is too strong, there is a problem that the paste is easily separated from the nickel porous plate. Further, in the negative electrode manufactured in this manner, there is a problem that the paste is easily peeled off from the nickel porous plate due to the absorption and desorption of hydrogen accompanying charge and discharge. Therefore, as a technique to prevent peeling of the paste,
As disclosed in Japanese Patent Laid-Open No. 63-110552, a technique of adding carbon fiber to the paste to improve the strength of the paste has been studied. However, in the negative electrode in which the paste is applied to the nickel porous plate, there is a limit in increasing the degree of adhesion between the nickel porous plate and the paste. Therefore, it is hard to say that it is appropriate to use the nickel perforated plate when manufacturing the hydrogen storage alloy negative electrode.

【0003】これに対して三次元網目状構造体にペース
トを充填した水素吸蔵合金負極では、圧縮及び放電に伴
って起こるペーストの剥離はほとんど起こらない。しか
しながら、図6に示すように水素吸蔵合金粉末1は、機
械粉砕や水素化粉砕により形成されると、球状に近い水
酸化ニッケル粉末とは異なって、粉末1の外周に鋭角部
(エッジ)1aが形成される。そのため、負極素材を強
く圧縮したり、負極を巻回した場合などに、このエッジ
1aにより水素吸蔵合金粉末1の保持体である三次元網
目状構造体2が破断され、負極にクラック2aが発生す
るという問題があった。この様な問題を解決するために
種々の技術が検討されている。例えば、特開昭60-77357
号公報には、三次元網目状構造体の表面に金属薄膜を蒸
着させることにより、三次元網目状構造体の強度を向上
させる技術が開示されている。
On the other hand, in the hydrogen storage alloy negative electrode in which the paste is filled in the three-dimensional mesh structure, the peeling of the paste caused by compression and discharge hardly occurs. However, as shown in FIG. 6, when the hydrogen storage alloy powder 1 is formed by mechanical crushing or hydrogenating crushing, unlike the nickel hydroxide powder having a nearly spherical shape, an acute angle portion (edge) 1a is formed on the outer periphery of the powder 1. Is formed. Therefore, when the negative electrode material is strongly compressed or the negative electrode is wound, the edge 1a ruptures the three-dimensional network structure 2 which is a holder of the hydrogen storage alloy powder 1 and cracks 2a occur in the negative electrode. There was a problem to do. Various techniques have been studied in order to solve such problems. For example, JP-A-60-77357
The publication discloses a technique for improving the strength of a three-dimensional network structure by depositing a metal thin film on the surface of the three-dimensional network structure.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、三次元
網目状構造体の表面に金属薄膜を蒸着して強度を向上さ
せても、三次元網目状構造体の強度を十分に高くするこ
とには限界がある。例えば、エネルギー密度をより高く
するために水素吸蔵合金粉末の充填密度を4.0g/cm3
以上になるように負極素材を圧縮したり、負極を巻回し
た場合には、金属薄膜で強度を向上させた三次元網目状
構造体でも破断が発生してしまった。このように、従来
の技術では実用に耐えうる水素吸蔵合金負極を得ること
はできなかった。
However, even if the metal thin film is vapor-deposited on the surface of the three-dimensional network structure to improve the strength, it is not possible to sufficiently increase the strength of the three-dimensional network structure. There is. For example, the packing density of the hydrogen storage alloy powder should be 4.0 g / cm 3 to increase the energy density.
When the negative electrode material was compressed or the negative electrode was wound as described above, breakage occurred even in the three-dimensional network structure whose strength was improved by the metal thin film. As described above, it was not possible to obtain a hydrogen storage alloy negative electrode that can be practically used with the conventional technique.

【0005】本発明の目的は、クラックが発生しにくい
水素吸蔵合金負極の製造方法を提供することにある。
An object of the present invention is to provide a method for producing a hydrogen storage alloy negative electrode in which cracks are less likely to occur.

【0006】[0006]

【課題を解決するための手段】請求項1の発明は、水素
吸蔵合金粉末と有機バインダーとを混練したペーストが
三次元網目状構造体に充填された負極素材が厚み方向に
圧縮されてなる水素吸蔵合金負極の製造方法を対象とす
る。そして本発明では、使用するペーストにファーネス
系カーボンを添加する。
According to a first aspect of the present invention, a negative electrode material having a three-dimensional network structure filled with a paste prepared by kneading a hydrogen storage alloy powder and an organic binder is compressed in the thickness direction. A method of manufacturing a storage alloy negative electrode is targeted. In the present invention, furnace carbon is added to the paste used.

【0007】請求項2の発明では、ペースト重量に対す
る重量比が0.2%以上2.0%以下のポリビニルアル
コールの水溶液を有機バインダーとして用い、ファーネ
ス系カーボンのペースト重量に対する重量比を0.1%
以上1.0%以下とする。
According to the second aspect of the present invention, an aqueous solution of polyvinyl alcohol having a weight ratio to the paste weight of 0.2% to 2.0% is used as the organic binder, and the weight ratio of the furnace carbon to the paste weight is 0.1. %
It is above 1.0%.

【0008】[0008]

【作用】請求項1の発明のように、ペーストにファーネ
ス系カーボンを添加すると、水素吸蔵合金粉末と三次元
網目状構造体との間にファーネス系カーボンが入り込
む。ファーネス系カーボンは、ストラクチャーが発達し
ている、即ちカーボン粒子が球形に近くしかもカーボン
粒子の3次元的な連なり方が大きいため、潤滑作用が大
きい。そのため負極素材を強く圧縮しても、ファーネス
系カーボンの潤滑作用が働くため、水素吸蔵合金粉末の
エッジ部によって三次元網目状構造体が破断するのが抑
制される。
When the furnace carbon is added to the paste as in the first aspect of the invention, the furnace carbon enters between the hydrogen storage alloy powder and the three-dimensional network structure. Furnace-based carbon has a well-developed structure, that is, the carbon particles are close to spherical and the three-dimensional connection of the carbon particles is large, so that the carbon has a large lubricating effect. Therefore, even if the negative electrode material is strongly compressed, the furnace-based carbon has a lubricating effect, so that the edge portion of the hydrogen-absorbing alloy powder is prevented from breaking the three-dimensional network structure.

【0009】請求項2の発明のように、所定量のポリビ
ニルアルコールの水溶液を有機バインダーとして用いる
ときに、ファーネス系カーボンを用いるとポリビニルア
ルコールの分子同士がファーネス系カーボンにより結合
され、より強固なバインダとして作用する。またポリビ
ニルアルコール及びファーネス系カーボンの添加量を請
求項2の発明のようにすると、三次元網目状構造体の破
断を大幅に抑制できる。ポリビニルアルコールのペース
ト重量に対する重量比を0.2%未満とすると、有機バ
インダーとしての役割を果たさなくなる。また2.0%
を超えると、水素吸蔵合金粉末のペースト重量に対する
重量比が小さくなるため、負極のエネルギー密度が低下
する。ファーネス系カーボンのペーストに対する重量比
を0.1%未満とすると潤滑作用を十分に果たすことが
できない。また2.0%を超えても、三次元網目状構造
体の破断を抑制する効果にほとんど差が生じない上、水
素吸蔵合金粉末のペースト重量に対する重量比が小さく
なるため、負極のエネルギー密度が低下するので、これ
以上ファーネス系カーボンの量を多くする必要はない。
When a predetermined amount of the aqueous solution of polyvinyl alcohol is used as the organic binder as in the second aspect of the present invention, when the furnace carbon is used, the molecules of the polyvinyl alcohol are bonded to each other by the furnace carbon, and the binder is stronger. Acts as. Further, when the amounts of the polyvinyl alcohol and the furnace carbon added are as in the invention of claim 2, breakage of the three-dimensional network structure can be significantly suppressed. If the weight ratio of polyvinyl alcohol to the paste weight is less than 0.2%, it will not function as an organic binder. 2.0% again
When it exceeds, the weight ratio of the hydrogen storage alloy powder to the paste weight becomes small, and the energy density of the negative electrode decreases. If the weight ratio of the furnace carbon to the paste is less than 0.1%, the lubricating action cannot be sufficiently achieved. Further, even if it exceeds 2.0%, there is almost no difference in the effect of suppressing the breakage of the three-dimensional network structure, and since the weight ratio of the hydrogen storage alloy powder to the paste weight becomes small, the energy density of the negative electrode is reduced. Since it decreases, it is not necessary to increase the amount of furnace carbon any more.

【0010】[0010]

【実施例】以下、本発明の水素吸蔵合金負極を製造する
方法の実施例を図面を参照して詳細に説明する。
EXAMPLES Examples of a method for producing a hydrogen storage alloy negative electrode of the present invention will be described in detail below with reference to the drawings.

【0011】まず孔鉢で粉砕した水素吸蔵合金粉末とポ
リビニルアルコール(PVA)水溶液からなる有機バイ
ンダとファーネス系のカーボンとを混練したペーストを
発泡ニッケル多孔体からなる三次元網目状構造体に充填
して負極素材を形成した。次に、この負極素材を乾燥し
た後、厚み方向に圧縮して水素吸蔵合金粉末の充填密度
を高めて水素吸蔵合金負極を製造した。なお使用した水
素吸蔵合金の平均粒径は、440〜200メッシュであ
り、発泡ニッケルの平均多孔度は95%であり、発泡ニ
ッケルの枝部の太さの平均寸法は100μm であり、圧
縮前の発泡ニッケルの厚み寸法は1.0mmであった。ま
たファーネス系のカーボンとしては、キャボット社がB
P−2000の製品番号で販売するものを用いた。この
カ―ボンは、平均粒径が約200オングストロームのも
のであった。
First, a paste prepared by kneading a hydrogen storage alloy powder crushed in a mortar, an organic binder composed of an aqueous solution of polyvinyl alcohol (PVA), and furnace carbon is filled in a three-dimensional network structure composed of a foamed nickel porous body. To form a negative electrode material. Next, after drying this negative electrode material, it was compressed in the thickness direction to increase the packing density of the hydrogen storage alloy powder to manufacture a hydrogen storage alloy negative electrode. The hydrogen storage alloy used had an average particle size of 440 to 200 mesh, nickel foam had an average porosity of 95%, and the branch portion of the nickel foam had an average thickness of 100 μm. The thickness of the nickel foam was 1.0 mm. As for the carbon of the furnace type, Cabot Co.
The product sold under the product number P-2000 was used. The carbon had an average particle size of about 200 Å.

【0012】図1は本発明の実施例の方法で製造した水
素吸蔵合金負極の断面を模式的に示す図である。図1に
おいて、1は水素吸蔵合金粉末であり、この水素吸蔵合
金粉末1は鋭角のエッジ1aを有している。2は発泡ニ
ッケル多孔体からなる三次元網目状構造体であり、3は
ファーネス系のカーボンである。ペ―ストを充填した負
極素材を強く圧縮しても、ファーネス系のカーボン3の
潤滑性により水素吸蔵合金粉末1のエッジ1aの三次元
網目状構造体2に対する押圧力が抑制され、三次元網目
状構造体2は破断され難くくなる。
FIG. 1 is a diagram schematically showing a cross section of a hydrogen storage alloy negative electrode manufactured by the method of the embodiment of the present invention. In FIG. 1, 1 is a hydrogen storage alloy powder, and this hydrogen storage alloy powder 1 has an acute edge 1a. Reference numeral 2 is a three-dimensional mesh structure composed of a foamed nickel porous body, and reference numeral 3 is furnace carbon. Even if the negative electrode material filled with the paste is strongly compressed, the pressing force of the edge 1a of the hydrogen-absorbing alloy powder 1 against the three-dimensional network structure 2 is suppressed by the lubricity of the carbon 3 of the furnace system, and the three-dimensional network The structural body 2 is less likely to be broken.

【0013】次に従来の方法及び本発明の方法で形成し
た前述の負極素材を水素吸蔵合金粉末の充填密度が変る
ように徐々に圧縮して水素吸蔵合金負極を製造し、圧縮
により三次元網目状構造体に生じるクラックの負極全体
に対する面積比率を求めた。図2は水素吸蔵合金粉末の
充填密度とクラックの負極全体に対する面積比率との関
係を示す図である。図2において、曲線aはペースト重
量に対する重量比が1%のポリビニルアルコールと0.
5%のファーネス系カーボンと水素吸蔵合金粉末とを含
むペ―ストを発泡ニッケル多孔体に充填した本発明の方
法で製造した負極の特性を示している。曲線bは発泡ニ
ッケル多孔体にニッケルを蒸着した基体に、ペースト重
量に対する重量比が1%のポリビニルアルコールと水素
吸蔵合金粉末とを充填した従来の方法で製造した負極の
特性を示している。曲線cは発泡ニッケル多孔体に、ペ
ースト重量に対する重量比が1%のポリビニルアルコー
ルと水素吸蔵合金粉末とを充填した負極の特性を示して
いる。尚、各種方法で製造した負極はいずれも同じ形状
寸法(20×20×1.0mm)の発泡ニッケル多孔体を
用いている。本図より本発明の方法で負極を製造すると
水素吸蔵合金粉末の充填密度を高めるために負極素材を
圧縮しても従来の方法で製造するのに比べて三次元網目
状構造体にクラックが生じ難いのが判る。特に、充填密
度が4.0g/cm3 を超える圧力で圧縮すると従来の方法
では大幅にクラックが生じるのに対して本発明の方法で
製造するとクラックが生じ難いのが判る。
Next, the above-mentioned negative electrode material formed by the conventional method and the method of the present invention is gradually compressed so that the packing density of the hydrogen storage alloy powder is changed to produce a hydrogen storage alloy negative electrode, and the three-dimensional mesh is formed by compression. The area ratio of cracks generated in the structural body to the entire negative electrode was determined. FIG. 2 is a diagram showing the relationship between the packing density of hydrogen storage alloy powder and the area ratio of cracks to the entire negative electrode. In FIG. 2, the curve a is polyvinyl alcohol having a weight ratio of 1% with respect to the weight of the paste and 0.
The characteristics of the negative electrode manufactured by the method of the present invention in which a paste containing 5% of furnace carbon and hydrogen storage alloy powder is filled in a foamed nickel porous body are shown. A curve b shows the characteristics of the negative electrode manufactured by the conventional method in which a substrate obtained by vapor-depositing nickel on a foamed nickel porous body is filled with polyvinyl alcohol having a weight ratio of 1% with respect to the paste weight and a hydrogen storage alloy powder. The curve c shows the characteristics of the negative electrode in which the foamed nickel porous body is filled with polyvinyl alcohol having a weight ratio of 1% with respect to the paste weight and the hydrogen storage alloy powder. It should be noted that the negative electrodes produced by various methods all use a foamed nickel porous body having the same shape and size (20 × 20 × 1.0 mm). From this figure, when the negative electrode is manufactured by the method of the present invention, even if the negative electrode material is compressed to increase the packing density of the hydrogen-absorbing alloy powder, cracks are generated in the three-dimensional network structure as compared with the conventional method. I find it difficult. In particular, it can be seen that when compressed at a packing density of more than 4.0 g / cm 3 , the conventional method causes a large amount of cracks, whereas the method of the present invention makes it difficult to cause a crack.

【0014】次にペーストに対するファーネス系カーボ
ンの重量比を変えた各種負極素材を形成し、各種負極素
材を水素吸蔵合金粉末の充填密度が変るように圧縮し
て、負極に発生したクラック発生面積比を測定した。
尚、負極素材を形成するのに用いた三次元網目状構造体
は、図2の試験に用いたものと同じ発泡ニッケル多孔体
を使用し、バインダーとしてペースト重量に対する重量
比が1%のポリビニルアルコールを用い、先に第1図に
関連して説明したカ―ボンを用いた。図3はファーネス
系カーボンの重量比とクラック発生面積比との関係を示
す図である。図3において曲線d,e,fは水素吸蔵合
金粉末の充填密度がそれぞれ3.8g/cm3 ,4.0g/cm
3 ,4.2g/cm3 になるように圧縮した場合の特性を示
す曲線である。本図より、ファーネス系カーボンの重量
比を0.1%以上にすると、水素吸蔵合金粉末の充填密
度を4.0g/cm以上になるように圧縮しても負極のクラ
ック発生を抑制できるのが判る。またファーネス系カー
ボンの重量比が1.0%を超えてもクラックの発生率に
大きな変化がないのが判る。
Next, various negative electrode materials having different weight ratios of the furnace carbon to the paste were formed, and the various negative electrode materials were compressed so that the packing density of the hydrogen storage alloy powder was changed, and the area ratio of the cracks generated in the negative electrode. Was measured.
As the three-dimensional mesh structure used to form the negative electrode material, the same foamed nickel porous body as that used in the test of FIG. 2 was used, and the binder was polyvinyl alcohol with a weight ratio of 1% to the weight of the paste. And the carbon described above with reference to FIG. 1 was used. FIG. 3 is a diagram showing the relationship between the weight ratio of the furnace carbon and the crack generation area ratio. In FIG. 3, curves d, e, and f represent the packing densities of the hydrogen storage alloy powders of 3.8 g / cm 3 and 4.0 g / cm, respectively.
It is a curve showing the characteristics when compressed to 3 , 4.2 g / cm 3 . From this figure, when the weight ratio of the furnace-based carbon is set to 0.1% or more, the generation of cracks in the negative electrode can be suppressed even if the hydrogen storage alloy powder is compressed to a packing density of 4.0 g / cm or more. I understand. Further, it can be seen that even if the weight ratio of the furnace-based carbon exceeds 1.0%, the crack occurrence rate does not change significantly.

【0015】次に、ファーネス系カーボンの重量比が異
なる各種ペーストを図2の試験に用いたものと同じ発泡
ニッケル多孔体にそれぞれ充填して各種の負極素材を形
成し、各負極素材を厚み方向に圧縮して最大限に水素吸
蔵合金粉末を充填できる充填密度を測定した。尚、各種
ペーストにはバインダーとして1重量%のポリビニルア
ルコールが添加されている。図4はファーネス系カーボ
ンの重量比と水素吸蔵合金粉末の充填密度との関係を示
した図である。本図より、ファーネス系カーボンの重量
比が1%を越えると水素吸蔵合金粉末の充填密度が急激
に低下するのが判る。
Next, various pastes having different weight ratios of furnace carbon were filled in the same foamed nickel porous body as used in the test of FIG. 2 to form various negative electrode materials, and each negative electrode material was formed in the thickness direction. Then, the packing density at which the hydrogen-absorbing alloy powder could be packed to the maximum was measured. Incidentally, 1% by weight of polyvinyl alcohol is added as a binder to each paste. FIG. 4 is a diagram showing the relationship between the weight ratio of the furnace-based carbon and the packing density of the hydrogen storage alloy powder. From this figure, it can be seen that when the weight ratio of the furnace-based carbon exceeds 1%, the packing density of the hydrogen storage alloy powder sharply decreases.

【0016】次に、ポリビニルアルコールの重量比が異
なる各種ペーストを図2の試験に用いたものと同じ発泡
ニッケル多孔体にそれぞれ充填して各種の負極素材を形
成して、各種負極素材を厚み方向に1000 kg/cm2
圧縮して、ポリビニルアルコールの重量比と負極に発生
したクラック発生面積比との関係を測定した。尚、各種
ペーストには0.5重量%のファーネス系カーボンが添
加されている。図5は測定結果を示した図である。本図
より、ポリビニルアルコールの重量比が2%を超えても
クラック発生面積比に大きな変化がないのが判る。尚、
ポリビニルアルコールの重量比が0.2%未満ではバイ
ンダとしても役割を実質上果たさない。次に、1重量%
のポリビニルアルコールと、0.5重量%のファーネス
系カーボンを添加したペーストを用いて水素吸蔵合金粉
末の充填密度を各種に変えた本発明の方法で製造した各
負極とファーネス系カーボンを添加しない従来の方法で
水素吸蔵合金粉末の充填密度を各種に変えて製造した各
負極とをそれぞれセパレータを介して、焼結式正極と一
緒に巻回してそれぞれ電池を作成し、各電池の正負極板
間のショート発生率を測定した。表1は測定結果を示す
表である。尚、表1においてgは本発明の方法で製造し
た負極を用いた電池のショート発生率(%)を示し、h
は従来の方法で製造した負極を用いた電池のショート発
生率(%)を示している。
Next, various pastes having different weight ratios of polyvinyl alcohol were filled in the same foamed nickel porous body as that used in the test of FIG. 2 to form various negative electrode materials, and various negative electrode materials were formed in the thickness direction. It was compressed at 1000 kg / cm 2 and the relationship between the weight ratio of polyvinyl alcohol and the area ratio of cracks generated in the negative electrode was measured. In addition, 0.5 wt% of furnace carbon is added to each paste. FIG. 5 is a diagram showing the measurement results. From this figure, it can be seen that even if the weight ratio of polyvinyl alcohol exceeds 2%, the crack generation area ratio does not change significantly. still,
When the weight ratio of polyvinyl alcohol is less than 0.2%, it does not substantially serve as a binder. Then 1% by weight
Each negative electrode produced by the method of the present invention in which the packing density of the hydrogen-absorbing alloy powder is variously changed by using the paste containing polyvinyl alcohol and 0.5% by weight of the furnace-based carbon and the conventional method in which the furnace-based carbon is not added Each negative electrode produced by changing the packing density of the hydrogen-absorbing alloy powder by the method described above and each of the negative electrodes produced through the separator are wound together with the sintered positive electrode to produce a battery. The short-circuit occurrence rate was measured. Table 1 is a table showing the measurement results. In Table 1, g represents the short circuit occurrence rate (%) of the battery using the negative electrode manufactured by the method of the present invention, and h
Indicates the occurrence rate of short circuit (%) of the battery using the negative electrode manufactured by the conventional method.

【0017】[0017]

【表1】 [Table 1]

【0018】本表より、水素吸蔵合金粉末充填密度が特
に4.0g/cm3 から4.2g/cm3 になる圧力で負極素材
を圧縮する場合には、本発明の方法で製造した負極を用
いた電池では、従来の方法で製造した負極を用いた電池
に比べて、ショート発生率が1/3から1/5と大きく
減少するのが判る。
From this table, when the negative electrode material is compressed at a pressure at which the hydrogen storage alloy powder packing density is particularly 4.0 g / cm 3 to 4.2 g / cm 3 , the negative electrode produced by the method of the present invention is used. It can be seen that in the battery used, the short-circuit occurrence rate is greatly reduced to 1/3 to 1/5 as compared with the battery using the negative electrode manufactured by the conventional method.

【0019】[0019]

【発明の効果】請求項1の発明によれば、ペーストに、
ファーネス系カーボンを添加するため、三次元網目状構
造体が破断することはない。このため、クラックが発生
し難くくしかもエネルギー密度の高い負極を得ることが
できる利点がある。
According to the invention of claim 1, in the paste,
Since the furnace-based carbon is added, the three-dimensional network structure does not break. For this reason, there is an advantage that it is possible to obtain a negative electrode in which cracks are unlikely to occur and which has a high energy density.

【0020】請求項2の発明によれば、より強固なバイ
ンダを得ることができるとともに、三次元網目状構造体
の破断を確実に抑制できる利点がある。
According to the second aspect of the invention, there is an advantage that a stronger binder can be obtained and the breakage of the three-dimensional network structure can be surely suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法で製造した水素吸蔵合金負極の断
面構造を模式的に示す図である。
FIG. 1 is a diagram schematically showing a cross-sectional structure of a hydrogen storage alloy negative electrode manufactured by the method of the present invention.

【図2】水素吸蔵合金粉末の充填密度と負極全体に対す
るクラックの面積比率との関係を示す図である。
FIG. 2 is a diagram showing the relationship between the packing density of hydrogen storage alloy powder and the area ratio of cracks with respect to the entire negative electrode.

【図3】ファーネス系カーボンの重量比とクラックの発
生率との関係を示す図である。
FIG. 3 is a diagram showing a relationship between a weight ratio of furnace carbon and a crack generation rate.

【図4】ファーネス系カーボンの重量比と水素吸蔵合金
粉末の充填密度との関係を示す図である。
FIG. 4 is a diagram showing a relationship between a weight ratio of furnace carbon and a packing density of hydrogen storage alloy powder.

【図5】ポリビニルアルコールの重量比と負極に発生し
たクラックの発生率との関係を示す図である。
FIG. 5 is a diagram showing the relationship between the weight ratio of polyvinyl alcohol and the incidence of cracks generated in the negative electrode.

【図6】従来の方法で製造した水素吸蔵合金負極の断面
を示す拡大概略図である。
FIG. 6 is an enlarged schematic view showing a cross section of a hydrogen storage alloy negative electrode manufactured by a conventional method.

【符号の説明】[Explanation of symbols]

1…水素吸蔵合金粉末、2…三次元網目状構造体、3…
ファーネス系カーボン。
1 ... Hydrogen storage alloy powder, 2 ... Three-dimensional mesh structure, 3 ...
Furnace type carbon.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】水素吸蔵合金粉末と有機バインダーとを混
練したペーストを三次元網目状構造体に充填して負極素
材を形成し、該負極素材を厚み方向に圧縮して水素吸蔵
合金負極を製造する方法であって、 前記ペーストにファーネス系カーボンを添加したことを
特徴する水素吸蔵合金負極の製造方法。
1. A negative electrode material is formed by filling a paste prepared by kneading a hydrogen storage alloy powder and an organic binder into a three-dimensional network structure, and compressing the negative electrode material in the thickness direction to produce a hydrogen storage alloy negative electrode. A method for producing a hydrogen storage alloy negative electrode, characterized in that furnace carbon is added to the paste.
【請求項2】前記ペーストは、ペースト重量に対する重
量比が0.2%以上2.0%以下のポリビニルアルコー
ルの水溶液を前記有機バインダーを含み、前記ペースト
重量に対する重量比が0.1%以上1.0%以下の前記
ファーネス系カーボンを含むことを特徴とする請求項2
に記載の水素吸蔵合金負極の製造方法。
2. The paste contains an aqueous solution of polyvinyl alcohol having a weight ratio to the paste weight of 0.2% or more and 2.0% or less and the organic binder, and the weight ratio to the paste weight is 0.1% or more and 1% or more. The furnace type carbon is contained in an amount of 0.0% or less.
The method for producing the hydrogen storage alloy negative electrode according to 1.
JP3249921A 1991-09-27 1991-09-27 Manufacture of negative electrode of hydrogen storage alloy Pending JPH0589877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3249921A JPH0589877A (en) 1991-09-27 1991-09-27 Manufacture of negative electrode of hydrogen storage alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3249921A JPH0589877A (en) 1991-09-27 1991-09-27 Manufacture of negative electrode of hydrogen storage alloy

Publications (1)

Publication Number Publication Date
JPH0589877A true JPH0589877A (en) 1993-04-09

Family

ID=17200170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3249921A Pending JPH0589877A (en) 1991-09-27 1991-09-27 Manufacture of negative electrode of hydrogen storage alloy

Country Status (1)

Country Link
JP (1) JPH0589877A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0848441A1 (en) * 1996-12-13 1998-06-17 Akiya Kozawa An electrochemical cell employing a fine carbon material additive

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0848441A1 (en) * 1996-12-13 1998-06-17 Akiya Kozawa An electrochemical cell employing a fine carbon material additive

Similar Documents

Publication Publication Date Title
JP3260972B2 (en) Hydrogen storage alloy electrode and sealed nickel-hydrogen storage battery using the same
JP3138120B2 (en) Metal hydride storage battery
JPH11185767A (en) Manufacture of nickel-hydrogen secondary battery and electrode
JPH0589877A (en) Manufacture of negative electrode of hydrogen storage alloy
JP3514491B2 (en) Metal oxide / hydrogen secondary batteries
JP3044495B2 (en) Metal oxide / hydrogen battery
JP2629258B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3156485B2 (en) Nickel electrode for alkaline storage battery
JPH11233120A (en) Electrode for alkaline storage battery and its manufacture
JPH11288710A (en) Foam-less nickel positive electrode and its manufacture
JP4739493B2 (en) Positive electrode mixture molded body and battery
JP3501382B2 (en) Hydrogen storage alloy negative electrode and method for producing the same
JP3253162B2 (en) Nickel hydride rechargeable battery
JP2708088B2 (en) Nickel electrode for battery, method for producing the same, and alkaline storage battery
JP2003288901A (en) Manufacturing method of sintered substrate for alkaline storage battery
JP2000113880A (en) Hydrogen storage alloy negative electrode and its manufacture
JP2003297371A (en) Sintered substrate for alkaline storage battery
JP3475033B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3221917B2 (en) Metal oxide / hydrogen secondary batteries
JP3432865B2 (en) Method for producing sintered substrate for alkaline storage battery
JP2854920B2 (en) Nickel-metal hydride battery
JP3146063B2 (en) Metal oxide / hydrogen secondary batteries
JP2983135B2 (en) Alkaline secondary battery
JPH05151964A (en) Manufacture of electrode
JPH0562686A (en) Base plate for alkaline storage battery and its manufacture

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010529