JPH058960B2 - - Google Patents

Info

Publication number
JPH058960B2
JPH058960B2 JP16317585A JP16317585A JPH058960B2 JP H058960 B2 JPH058960 B2 JP H058960B2 JP 16317585 A JP16317585 A JP 16317585A JP 16317585 A JP16317585 A JP 16317585A JP H058960 B2 JPH058960 B2 JP H058960B2
Authority
JP
Japan
Prior art keywords
solvent
optically anisotropic
heat treatment
stirring
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16317585A
Other languages
Japanese (ja)
Other versions
JPS6225193A (en
Inventor
Katsuhiro Nagayama
Noryoshi Fukuda
Hitomi Hatano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP16317585A priority Critical patent/JPS6225193A/en
Publication of JPS6225193A publication Critical patent/JPS6225193A/en
Publication of JPH058960B2 publication Critical patent/JPH058960B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は光学的異方性小球体を高収率で粒径を
制御して製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for producing optically anisotropic small spheres in high yield with controlled particle size.

<従来技術とその問題点> ピツチ類を熱処理すると、熱処理の進行と共に
重縮合反応が活発化し、巨大な多環芳香族化合物
が生成し、ピツチマトリツクス中から光学的異方
性小球体が析出することは良く知られている。
<Prior art and its problems> When Pits are heat-treated, the polycondensation reaction becomes active as the heat treatment progresses, a huge polycyclic aromatic compound is produced, and optically anisotropic spherules are precipitated from the Pits matrix. It is well known to do so.

該光学的異方性小球体は黒鉛の前駆体としても
知られており、未だ高い化学反応性を有している
ため、バインダーレスの等方性高密度炭素材料、
液体クロマトグラフイーのカラム充填剤等の炭素
材原料としての利用が期待されている。
The optically anisotropic small spheres are also known as graphite precursors and still have high chemical reactivity, so they can be used as binderless isotropic high-density carbon materials.
It is expected to be used as a raw material for carbon materials such as column packing materials for liquid chromatography.

従来、該光学的異方性小球体の製造はタールピ
ツチあるいは石油系重質油等のピツチ類を350〜
500℃の温度で単に熱処理を行うことにより行わ
れていた。しかし、該方法によれば高収率で選択
的に光学的異方性小球体を製造することが困難で
その収率はせいぜい30vol%程度であり、しかも
フリーカーボンを含有しないピツチ類を原料とし
た場合には10vol%と極めて低いものであつた。
Conventionally, the production of optically anisotropic small spheres has been carried out using pitches such as tar pitch or heavy petroleum oil.
This was done simply by heat treatment at a temperature of 500°C. However, according to this method, it is difficult to selectively produce optically anisotropic spherules with a high yield, and the yield is only about 30 vol% at most. In that case, it was extremely low at 10 vol%.

該欠点を解消すべく検討した結果、本発明者等
は熱処理あるいは熱処理と水素化処理を組み合せ
ることにより得られるフリーカーボンを含まない
ピツチ類を原料として、芳香族系の溶剤を用いて
溶剤分別した後、分別した溶剤可溶分と溶剤不溶
分とを種々の比率で再配合した後、あるいは特定
成分を分別したピツチを、前記熱処理より幾分低
い温度で再熱処理することにより高収率で光学的
異方性小球体の製造が可能であることを見い出し
特許出願した(特願昭59−278808号)。
As a result of studies to eliminate this drawback, the inventors of the present invention have developed a solvent fractionation method using an aromatic solvent, using pitts containing no free carbon obtained by heat treatment or a combination of heat treatment and hydrogenation treatment as raw materials. After that, the separated solvent-soluble and solvent-insoluble components are recombined in various ratios, or the pitch from which the specific components have been separated is reheated at a temperature slightly lower than the heat treatment described above to achieve a high yield. He discovered that it was possible to produce optically anisotropic small spheres and filed a patent application (Japanese Patent Application No. 278,808/1982).

しかし該方法によれば高収率での光学的異方性
小球体の製造は可能であつたが、その粒径の制御
が困難であつた。
However, although it was possible to produce optically anisotropic small spheres in high yield according to this method, it was difficult to control the particle size.

本発明者等は該前記特許の問題点を解決すべく
更に検討を重ねた結果、上記の再配合ピツチある
いは特定成分を分別したピツチ、熱処理した後攪
拌しながら冷却する期間を選定してやれば、得ら
れる光学的異方性小球体の粒径が制御可能である
ことを見い出し本発明にいたつたものである。
As a result of further studies to solve the problems in the patent, the inventors of the present invention found that it is possible to obtain benefits by selecting the above-mentioned recombined pitch or pitch in which specific components are separated, and by selecting a cooling period while stirring after heat treatment. The present invention was based on the discovery that the particle size of the optically anisotropic small spheres can be controlled.

<発明の目的> 本発明は上述した実状に鑑みてなされたもの
で、粒径を制御した光学的異方性小球体を高収率
で製造する方法を提供することを目的とする。
<Object of the Invention> The present invention has been made in view of the above-mentioned actual situation, and an object of the present invention is to provide a method for producing optically anisotropic small spheres with a controlled particle size at a high yield.

<発明の構成> 本発明は、熱処理あるいは熱処理と水素化処理
の組み合せにより得られるフリーカーボンを含ま
ないピツチ類を原料とし、芳香族系溶剤を用いて
溶剤可溶成分と溶剤不溶成分とに分別し、 分別した溶剤可溶成分と溶剤不溶成分を再度そ
の比率を変化させて配合し、前記熱処理温度ない
しこれより200℃低い温度範囲で攪拌しながら再
熱処理を行い、光学的異方性小球体を生成させた
後、 前記再熱処理物を攪拌しながら冷却する温度を
選択することにより、生成する小球体の粒径を制
御することを特徴とする光学的異方性小球体の製
造方法を提供するものである。
<Structure of the Invention> The present invention uses pits containing no free carbon obtained by heat treatment or a combination of heat treatment and hydrogenation treatment as a raw material, and uses aromatic solvents to separate them into solvent-soluble components and solvent-insoluble components. Then, the separated solvent-soluble components and solvent-insoluble components are blended again with different ratios, and reheated with stirring at the heat treatment temperature or a temperature range 200°C lower than this to form optically anisotropic spherules. Provided is a method for producing optically anisotropic small spheres, characterized in that the particle size of the small spheres to be formed is controlled by selecting the temperature at which the reheated product is cooled while stirring after forming. It is something to do.

本発明はまた、熱処理あるいは熱処理と水素化
処理の組み合せにより得られるフリーカーボンを
含まないピツチ類を原料とし 芳香族系溶剤を用
いて溶剤可溶成分と溶剤不溶成分とに分別して、 前記原料ピツチから特定の溶剤分別成分を除去
したものを前記熱処理温度ないしこれにより200
℃低い温度範囲で再熱処理を行い、光学的異方性
小球体を生成させた後、 更に、前記再熱処理温度範囲で攪拌しながら加
熱処理し、 該熱処理物を攪拌しながら冷却する温度を選択
することにより生成する小球体の粒径を制御する
ことを特徴とする光学的異方性小球体の製造方法
を提供するものである。
The present invention also uses pitches that do not contain free carbon obtained by heat treatment or a combination of heat treatment and hydrogenation treatment as raw materials, and separates them into solvent-soluble components and solvent-insoluble components using an aromatic solvent. The product from which specific solvent fractionation components have been removed is heated to the above heat treatment temperature or 200℃.
After performing reheat treatment in a low temperature range of ℃ to generate optically anisotropic spherules, further heat treatment with stirring in the reheat treatment temperature range, and select a temperature at which the heat-treated product is cooled while stirring. The present invention provides a method for producing optically anisotropic small spheres, which is characterized by controlling the particle size of the small spheres produced.

以下に本発明を更に詳細に説明する。 The present invention will be explained in more detail below.

本発明者らは光学的異方性小球体の生成が熱処
理により生成する巨大な多環芳香族成分(即ち溶
質)とピツチマトリツクス(即ち溶媒)との相互
溶解作用の結果によるものであるとの観点に立
ち、 溶剤分別成分の再配合熱処理あるいは特定分別
成分熱処理により、高収率で光学的異方性小球体
を製造する方法を見い出し、特許出願を行つた
(特願昭59−278808号)。
The present inventors believe that the formation of optically anisotropic spherules is due to the mutual dissolution between the giant polycyclic aromatic component (i.e., solute) and the Pitzi matrix (i.e., solvent) generated by heat treatment. From this point of view, we discovered a method for producing optically anisotropic spherules in high yield by recombination heat treatment of solvent fractionated components or heat treatment of specific fractionated components, and filed a patent application (Japanese Patent Application No. 59-278808). ).

しかし今回、更に検討を加えた結果、この相互
溶解作用が再熱処理物の粘度即ち温度に強く影響
されることが見い出された。つまり、光学的異方
性小球体の生成は再配合ピツチあるいは特定分別
成分を熱処理して得たピツチ状物の熱処理後、冷
却過程において巨大芳香族分子が再配列すること
により起こるものと考えられる。
However, as a result of further investigation, it was discovered that this mutual dissolution effect is strongly influenced by the viscosity, that is, the temperature, of the reheated material. In other words, the formation of optically anisotropic spherules is thought to occur due to the rearrangement of giant aromatic molecules during the cooling process after heat treatment of recombined pitches or pitches obtained by heat-treating specific fractionated components. .

従つて再配合ピツチあるいは特定分別成分熱処
理物を再熱処理・冷却する際に攪拌を行い、光学
的異方性小球体を形成可能な巨大芳香族分子を均
一に分散し、その冷却過程において巨大芳香族分
子が再配列する温度で攪拌を停止し、静置放冷す
ることにより生成する光学的異方性小球体の粒径
を制御しようとするものである。
Therefore, stirring is performed when reheating and cooling the reformulated pitch or heat-treated product of specific fractionated components to uniformly disperse the giant aromatic molecules that can form optically anisotropic spherules, and during the cooling process, the giant aromatic molecules are dispersed. The purpose is to control the particle size of the optically anisotropic small spheres produced by stopping stirring at a temperature at which the group molecules rearrange and allowing the mixture to cool.

冷却時の攪拌停止の温度を高くすれば再熱処理
物の粘度は低く巨大芳香族分子の再配列が容易な
ため粒径の大きな光学的異方性小球体が生成す
る。一方、攪拌の停止温度を低くすれば再熱処理
物の粘度が高く、再配列化が難かしく粒径の小さ
な光学的異方性小球体が多数発生する傾向にあ
る。
If the temperature at which stirring is stopped during cooling is increased, the viscosity of the reheated product will be low and the rearrangement of the giant aromatic molecules will be easy, resulting in the formation of optically anisotropic spherules with a large particle size. On the other hand, if the stirring stop temperature is lowered, the viscosity of the reheated product will be high and rearrangement will be difficult and a large number of optically anisotropic small spheres with small particle sizes will tend to occur.

本発明においては、こうした攪拌の停止温度と
粒径との関係は再配合ピツチあるいは特定分別成
分の性状(粘度)によつて異るため、その都度必
要に応じて決定することにより光学的異方性小球
体の粒径を制御する。
In the present invention, since the relationship between the stirring stop temperature and the particle size differs depending on the remixing pitch or the properties (viscosity) of specific fractionated components, optical anisotropy can be achieved by determining the relationship as necessary each time. control the particle size of the spherules.

特に、特定の溶剤分別成分を用いると、例え
ば、溶解力の異なるこの種の溶剤を用い、溶解力
の弱い溶剤に可溶な成分と、溶解力の強い溶剤に
不溶な成分とを除去した成分(つまり弱溶解力溶
剤不溶成分と強溶解力可溶成分からなる成分)
は、狭い分子量分布をもつた類似な性状をもつた
め、溶剤分別した成分を再配合した場合と比較し
て光学的異方性組織構成成分とピツチマトリツク
スの性状がより均質なものであり、光学的異方性
組織構成成分が均一に分散することにより、より
微小な粒径の光学的異方性小球体の製造が可能で
ある。
In particular, if a specific solvent fractionation component is used, for example, a component that is soluble in a solvent with a weak dissolving power and a component insoluble in a solvent with a strong dissolving power is removed by using this type of solvent with different dissolving power. (In other words, a component consisting of a weak solvent-insoluble component and a strong solvent-soluble component)
has similar properties with a narrow molecular weight distribution, so the properties of the optically anisotropic structural components and the pittsch matrix are more homogeneous compared to the case where the solvent-fractionated components are re-blended. By uniformly dispersing the optically anisotropic tissue components, it is possible to produce optically anisotropic microspheres with smaller particle sizes.

まず、本発明の第1の発明について述べる。 First, the first invention of the present invention will be described.

熱処理あるいは熱処理・水素化の組み合せで処
理された石炭系、石油系などのピツチ類を原料と
して用い、該原料ピツチの溶剤分別を行う。溶剤
分別に使用される溶剤としては、例えばベンゼ
ン、トルエン、テトラハイドロフラン、ピリジン
あるいはキノリン等が使用される。また、タール
系溶媒等も使用可能である。
Coal-based, petroleum-based, etc. pits treated with heat treatment or a combination of heat treatment and hydrogenation are used as raw materials, and the raw material pitches are subjected to solvent separation. Examples of solvents used for solvent fractionation include benzene, toluene, tetrahydrofuran, pyridine, and quinoline. Furthermore, tar-based solvents and the like can also be used.

次いで溶剤分別により得られる溶剤可溶分と溶
剤不溶分の再配合処理を行う。配合比率は使用さ
れる原料ピツチ及び溶剤の種類によつて異り、そ
れぞれの条件下で選択的に高収率で光学的異方性
小球体が発生し得る配合比率の決定を行う。
Next, the solvent-soluble and solvent-insoluble components obtained by solvent fractionation are recombined. The blending ratio varies depending on the raw material pitch and the type of solvent used, and the blending ratio at which optically anisotropic spherules can be selectively generated in high yield under each condition is determined.

このようにして調整されたピツチ類を上述した
熱処理温度ないしその温度より200℃低い温度範
囲、より好ましくは該熱処理温度よりも50℃〜
100℃低い温度で攪拌を行いながら再熱処理を行
い、光学的異方性小球体を生成させる。
The pitches prepared in this manner are heat-treated at the above-mentioned temperature range or 200°C lower than that temperature, more preferably from 50°C to
Reheating is performed while stirring at a temperature 100°C lower to produce optically anisotropic spherules.

再熱処理を行う際に減圧処理あるいは不活性ガ
スのバブリング処理を施すとより効果的に光学的
異方性小球体が生成する。
Optically anisotropic spherules can be produced more effectively if a reduced pressure treatment or an inert gas bubbling treatment is performed during the reheat treatment.

続いて攪拌を行いながら冷却する。冷却過程に
おいて適当な粘度となる温度で攪拌を止め、静置
放冷する。
Subsequently, the mixture is cooled while stirring. During the cooling process, stirring is stopped at a temperature at which the appropriate viscosity is achieved, and the mixture is left to cool.

攪拌を止める温度として、高すぎると光学的異
方性相の沈降が起こり、光学的異方性相と等方性
相が分離する。また、低すぎるとモザイク状の組
織が生成する。
If the temperature at which stirring is stopped is too high, precipitation of the optically anisotropic phase will occur, and the optically anisotropic phase and isotropic phase will separate. Moreover, if it is too low, a mosaic-like structure will be generated.

次に、本発明の第2の発明について述べる。 Next, the second aspect of the present invention will be described.

上記と同様の原料ピツチを同様の芳香族系溶剤
を用いて溶剤分別し、特定の溶剤分別成分を除去
する。比較的溶解力の弱い溶剤に可溶な成分と、
溶解力の強い溶剤に不溶な成分を除去した成分、
つまり弱溶解力溶剤不溶成分と強溶解力可溶成分
とからなる成分を得る。
The same raw material pitch as above is subjected to solvent fractionation using the same aromatic solvent, and specific solvent fractionation components are removed. Components that are soluble in solvents with relatively weak dissolving power,
Ingredients from which components insoluble in solvents with strong dissolving power have been removed,
In other words, a component consisting of a weakly solvent-insoluble component and a strongly solvent-soluble component is obtained.

この成分を前述の原料ピツチを得る際の熱処理
温度と同じないしその温度より200℃低い温度の
範囲、好ましくは50℃〜100℃低い温度で再熱処
理を行い、光学的異方性小球体を生成させる。
This component is reheated at a temperature that is the same as or 200°C lower than the heat treatment temperature used to obtain the raw material pitch described above, preferably 50°C to 100°C lower, to produce optically anisotropic spherules. let

更に、その生成小球体を含む再熱処理物を再熱
処理温度範囲と同様の温度で攪拌しながら加熱処
理する。
Furthermore, the reheated product containing the generated small spheres is heat treated at a temperature similar to the reheating temperature range while stirring.

この加熱処理物を攪拌しながら冷却し、冷却過
程において適当な粘度となる温度で攪拌を止め、
静置放冷する。上記再熱処理及びその後の熱処理
の過程で減圧処理あるいは不活性ガスのバブリン
グ処理を施すことにより、効果的に小球体を生成
させることができる。この第2の方法は第1の方
法と比較して、成分性状が均質に近いため、熱処
理で均一に分散し、より微小な光学的異方性小球
体を生成させることができる。
This heated product is cooled while stirring, and the stirring is stopped at a temperature at which the appropriate viscosity is achieved during the cooling process.
Leave to cool. Small spheres can be effectively generated by performing a reduced pressure treatment or an inert gas bubbling treatment during the reheat treatment and the subsequent heat treatment. Compared to the first method, this second method has nearly homogeneous component properties, so that it can be uniformly dispersed by heat treatment and produce smaller optically anisotropic spherules.

次に本発明を実施例および比較例につき具体的
に説明する。
Next, the present invention will be specifically explained with reference to Examples and Comparative Examples.

(実施例 1) タールピツチをテトラリンを使用して430℃の
温度で水素化し、更に490℃で熱処理したピツチ
を原料ピツチ(BI=89wt%,QI=25wt%)とし
た。この原料ピツチは偏光顕微鏡観察結果では視
野の全面が光学的異方性組織を呈していた。
(Example 1) Tar pitch was hydrogenated using tetralin at a temperature of 430°C and further heat-treated at 490°C, and the pitch was used as a raw material pitch (BI = 89 wt%, QI = 25 wt%). When observed under a polarizing microscope, this raw material pitch exhibited an optically anisotropic structure over the entire field of view.

この原料ピツチをテトラハイドロフラン
(THF)を用いて溶剤分別を行い、テトラハイド
ロフラン可溶分(THFS)、テトラハイドロフラ
ン不溶分(THFI)に分別した。偏光顕微鏡観察
結果はTHFSは光学的等方性組織であつたのに対
し、THFIは全面が光学的異方性組織を呈してい
た。
This raw material pitch was subjected to solvent fractionation using tetrahydrofuran (THF) and separated into tetrahydrofuran soluble fraction (THFS) and tetrahydrofuran insoluble fraction (THFI). Observation results using a polarized light microscope showed that THFS had an optically isotropic structure, whereas THFI exhibited an optically anisotropic structure over the entire surface.

このTHFS、THFIをTHFS/THFI=70/30
の重量比で配合後、窒素雰囲気下、攪拌しながら
440℃まで加熱し再溶解を行つた。
This THFS, THFI is THFS/THFI=70/30
After mixing in the weight ratio of
The mixture was heated to 440°C to redissolve it.

そのまま、攪拌しながら冷却し、冷却過程390
℃,350℃,320℃で攪拌を停止し、室温まで静
置・放冷した。
Cool it as it is while stirring, cooling process 390
Stirring was stopped at 350°C, 320°C, and allowed to stand and cool to room temperature.

偏光顕微鏡で観察したところ、各ピツチとも光
学的異方性小球体が40vol%程度生成し、390℃停
止(第1図参照)では、大部分が粒径70〜110
(μm)、350℃停止では30〜90(μm),320℃停止
(第2図参照)では10〜60(μm)であつた。
When observed with a polarizing microscope, approximately 40 vol% of optically anisotropic spherules were formed in each pitch, and when stopped at 390°C (see Figure 1), most of the particles had a particle size of 70 to 110.
(μm), 30 to 90 (μm) when stopped at 350°C, and 10 to 60 (μm) when stopped at 320°C (see Figure 2).

第3図に、攪拌停止温度と生成する光学的異方
性小球体の平均粒径との関係を示す。攪拌を停止
する温度を下げることにより、粒径を小さく制御
できることが明らかである (比較例 1) 実施例1において、440℃で攪拌を停止し、静
置・放冷すると光学的異方性組織構成成分が沈降
した(第4図参照)。
FIG. 3 shows the relationship between the stirring stop temperature and the average particle size of the optically anisotropic small spheres produced. It is clear that the particle size can be controlled to be small by lowering the temperature at which stirring is stopped (Comparative Example 1) In Example 1, when stirring was stopped at 440°C and left to stand and cool, an optically anisotropic structure was formed. The constituent components precipitated (see Figure 4).

(比較例 2) 実施例1において、ピツチが固化する寸前まで
攪拌を続けると、モザイク状の組織が生成した
(第5図参照)。
(Comparative Example 2) In Example 1, when the stirring was continued until the pitch was just about to solidify, a mosaic-like structure was generated (see FIG. 5).

(実施例 2) 実施例1における原料ピツチをピリジンを用い
てピリジン可溶分(PS)、ピリジン不溶分(PI)
に溶剤分別した。PSは光学的等方性、PIは光学
的異方性組織であつた。
(Example 2) The raw material pitch in Example 1 was converted into pyridine soluble (PS) and pyridine insoluble (PI) using pyridine.
The solvent was separated. PS was an optically isotropic structure, and PI was an optically anisotropic structure.

該PS,PIを、PS/PI=70/30の重量比で配合
後、窒素雰囲気下、攪拌しながら440℃まで加熱
し再溶解を行つた。
After blending the PS and PI at a weight ratio of PS/PI = 70/30, the mixture was heated to 440° C. with stirring under a nitrogen atmosphere to redissolve it.

そのままで、390℃まで冷却した後、攪拌を停
止し室温まで静置・放冷した。
After cooling to 390°C, stirring was stopped and the mixture was allowed to stand and cool to room temperature.

偏光顕微鏡で観察したところ、粒径が50〜120
(μm)の光学的異方性小球体が70vol%生成した
(第6図参照)。
When observed with a polarizing microscope, the particle size was 50 to 120.
(μm) optically anisotropic spherules were generated at 70 vol% (see Figure 6).

(実施例 3) 実施例1におけるTHFIを用いてピリジンで溶
剤分別し、可溶分をテトラハイドロフラン不溶−
ピリジン可溶分(THFI−PS)として抽出した。
(Example 3) Using THFI in Example 1, the solvent was fractionated with pyridine, and the soluble fraction was separated from the insoluble fraction in tetrahydrofuran.
It was extracted as a pyridine soluble fraction (THFI-PS).

このTHFI−PSを窒素バブリング下、440℃で
再熱処理を行つた。窒素流量は0.1l/min−g−
pitchとした。室温まで冷却後、偏光顕微鏡で観
察したところ、粒径10〜50μmの光学的異方性小
球体が生成した。この小球体を含む再熱処理物を
さらに窒素雰囲気下440℃まで攪拌を行いながら
加熱処理し、300℃まで冷却した後攪拌を停止し、
室温まで静置・放冷した。
This THFI-PS was reheated at 440°C under nitrogen bubbling. Nitrogen flow rate is 0.1l/min-g-
It was set as pitch. After cooling to room temperature, observation using a polarizing microscope revealed that optically anisotropic spherules with a particle size of 10 to 50 μm were formed. The reheated product containing the small spheres was further heated under a nitrogen atmosphere to 440°C while stirring, and after cooling to 300°C, the stirring was stopped.
It was allowed to stand and cool to room temperature.

偏光顕微鏡で観察したところ、2〜10μmとよ
り微小な粒径の光学的異方性小球体が生成してい
た(第7図参照)。
When observed with a polarizing microscope, optically anisotropic spherules with a smaller particle size of 2 to 10 μm were formed (see FIG. 7).

(実施例 4) 実施例3の再熱処理によつて粒径10〜50μmの
光学的異方性小球体を含む再熱処理物を、さらに
窒素雰囲気下440℃まで攪拌しながら加熱処理し、
350℃まで冷却した後攪拌を停止し放冷したとこ
ろ、粒径8〜20μmの光学的異方性小球体が生成
していた。
(Example 4) The reheat-treated product containing optically anisotropic small spheres with a particle size of 10 to 50 μm obtained by the reheat treatment of Example 3 was further heat-treated to 440° C. with stirring in a nitrogen atmosphere,
After cooling to 350° C., stirring was stopped and the mixture was allowed to cool, and optically anisotropic small spheres with a particle size of 8 to 20 μm were formed.

<発明の効果> 本発明によりフリーカーボンを含まないピツチ
類から所定の粒径に(粒径を制御した)種々の粒
径の光学的異方性小球体を高収率で製造すること
ができる。本発明により製造した光学的異方性小
球体は高い反応性を有しているので、バインダー
レスの等方性高密度高強度炭素材料、液体クロマ
トグラフイーの充填剤など炭素材料一般の原料と
しての利用が期待できる。
<Effects of the Invention> According to the present invention, it is possible to produce optically anisotropic small spheres of various particle sizes to a predetermined particle size (with controlled particle size) from pitches containing no free carbon with high yield. . Since the optically anisotropic small spheres produced according to the present invention have high reactivity, they can be used as raw materials for general carbon materials such as binderless isotropic high-density and high-strength carbon materials and fillers for liquid chromatography. can be expected to be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第4図、第5図、第6図、お
よび第7図は粒子構造を示す図面代用写真であ
る。第1図は実施例1で得られた光学的異方性小
球体の偏光顕微鏡写真(200倍)である。第2図
は実施例1で得られた光学的異方性小球体の偏光
顕微鏡写真(200倍)である。第3図は冷却時の
攪拌停止温度と生成する光学的異方性小球体の平
均粒径との関係を示すグラフである。第4図は比
較例1で得られた光学的異方性小球体の偏光顕微
鏡写真(200倍)である。第5図は比較例2で得
られた光学的異方性小球体の偏光顕微鏡写真
(200倍)である。第6図は実施例2で得られた光
学的異方性小球体の偏光顕微鏡写真(200倍)で
ある。第7図は実施例3で得られた光学的異方性
小球体の偏光顕微鏡写真(200倍)である。
FIG. 1, FIG. 2, FIG. 4, FIG. 5, FIG. 6, and FIG. 7 are photographs substituted for drawings showing the particle structure. FIG. 1 is a polarized light micrograph (200x magnification) of the optically anisotropic spherules obtained in Example 1. FIG. 2 is a polarized light micrograph (200x magnification) of the optically anisotropic spherules obtained in Example 1. FIG. 3 is a graph showing the relationship between the stirring stop temperature during cooling and the average particle size of the optically anisotropic small spheres produced. FIG. 4 is a polarized light micrograph (200x magnification) of the optically anisotropic spherules obtained in Comparative Example 1. FIG. 5 is a polarized light micrograph (200x magnification) of the optically anisotropic spherules obtained in Comparative Example 2. FIG. 6 is a polarized light micrograph (200x magnification) of the optically anisotropic spherules obtained in Example 2. FIG. 7 is a polarized light micrograph (200x magnification) of the optically anisotropic spherules obtained in Example 3.

Claims (1)

【特許請求の範囲】 1 熱処理あるいは熱処理と水素化処理の組み合
せにより得られるフリーカーボンを含まないピツ
チ類を原料とし、芳香族系溶剤を用いて溶剤可溶
成分と溶剤不溶成分とに分別し、 分別した溶剤可溶成分と溶剤不溶成分を再度そ
の比率を変化させて配合し、前記熱処理温度ない
しこれより200℃低い温度範囲で攪拌しながら再
熱処理を行い、光学的異方性小球体を生成させた
後、 前記再熱処理物を攪拌しながら冷却する温度を
選択することにより、生成する小球体の粒径を制
御することを特徴とする光学的異方性小球体の製
造方法。 2 熱処理あるいは熱処理と水素化処理の組み合
せにより得られるフリーカーボンを含まないピツ
チ類を原料とし、芳香族系溶剤を用いて溶剤可溶
成分と溶剤不溶成分とに分別して、 前記原料ピツチから特定の溶剤分別成分を除去
したものを前記熱処理温度ないしこれより200℃
低い温度範囲で再熱処理を行い、光学的異方性小
球体を生成させた後、 更に、前記再熱処理温度範囲で攪拌しながら加
熱処理し、 該熱処理物を攪拌しながら冷却する温度を選択
することにより生成する小球体の粒径を制御する
ことを特徴とする光学的異方性小球体の製造方
法。
[Scope of Claims] 1 Pitches containing no free carbon obtained by heat treatment or a combination of heat treatment and hydrogenation treatment are used as raw materials, and separated into solvent-soluble components and solvent-insoluble components using an aromatic solvent, The separated solvent-soluble components and solvent-insoluble components are mixed again in different ratios, and reheated with stirring at the heat treatment temperature or a temperature range 200°C lower than this to produce optically anisotropic spherules. A method for producing optically anisotropic small spheres, characterized in that the particle size of the formed small spheres is controlled by selecting a temperature at which the reheated product is cooled while stirring. 2 Pitches that do not contain free carbon obtained by heat treatment or a combination of heat treatment and hydrogenation treatment are used as raw materials, and are separated into solvent-soluble components and solvent-insoluble components using an aromatic solvent. The product from which the solvent fractionation components have been removed is heated to the above heat treatment temperature or 200°C below this temperature.
After performing reheat treatment in a low temperature range to generate optically anisotropic spherules, further heat treatment with stirring in the reheat treatment temperature range, and selecting a temperature at which the heat-treated product is cooled while stirring. A method for producing optically anisotropic spherules, characterized by controlling the particle size of the spherules produced.
JP16317585A 1985-07-24 1985-07-24 Production of optically isomeric spherule Granted JPS6225193A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16317585A JPS6225193A (en) 1985-07-24 1985-07-24 Production of optically isomeric spherule

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16317585A JPS6225193A (en) 1985-07-24 1985-07-24 Production of optically isomeric spherule

Publications (2)

Publication Number Publication Date
JPS6225193A JPS6225193A (en) 1987-02-03
JPH058960B2 true JPH058960B2 (en) 1993-02-03

Family

ID=15768668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16317585A Granted JPS6225193A (en) 1985-07-24 1985-07-24 Production of optically isomeric spherule

Country Status (1)

Country Link
JP (1) JPS6225193A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9831393B2 (en) 2010-07-30 2017-11-28 Cree Hong Kong Limited Water resistant surface mount device package

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9831393B2 (en) 2010-07-30 2017-11-28 Cree Hong Kong Limited Water resistant surface mount device package

Also Published As

Publication number Publication date
JPS6225193A (en) 1987-02-03

Similar Documents

Publication Publication Date Title
Hashimoto et al. Spontaneous pinning of domain growth during spinodal decomposition of off‐critical polymer mixtures
Wiehe Two-dimensional solubility parameter mapping of heavy oils
JPS59131692A (en) Manufacture of meso phase pitch
JPS5917043B2 (en) Method for producing mesocarbon microbeads with uniform particle size
JPH0150354B2 (en)
JPH058960B2 (en)
CN103923681B (en) Mesophase pitch and utilize gelatin liquefaction refined asphaltic bitumen to prepare the method for mesophase pitch
CN1089097C (en) Method for preparing asphalt based spherical active carbon by adding inorganic metal salt
CN1089098C (en) Method for preparing asphalt based spherical active carbon
JPS61159487A (en) Production of optically anisotropic globule
JPS60190492A (en) Preparation of precursor pitch for carbon fiber
Mochida et al. Interaction among fractions in mesophase pitches derived from AlCl 3-modified ethylene tar
CN1382624A (en) Process for preparing intermediate-phase carbon microspheres
Chen et al. Poly (ferrocenyldimethylsilane-b-dimethylsiloxane) microsphere with shell thickness controllable structure prepared through self-assembly
JPS6254787A (en) Production of mesophase spherule-containing pitch
JPS6131159B2 (en)
CN112645303B (en) High-performance mesocarbon microbeads and preparation method thereof
JP3599062B2 (en) Method for producing carbon material having fine optically anisotropic structure
JPS6059950B2 (en) How to make pitutchi
JPH10330493A (en) Polymer alloy ultra-microphase separation structure and its production
JPS61159452A (en) Production of optically anisotropic pitch
JPH0326789A (en) Production of pitch for carbon fiber spinning
JPH03109487A (en) Production of modified pitches
JPS6144992A (en) Production of crude raw pitch for carbon fiber
JP2000230178A (en) Production of mesophase microbeads