JPH0588666B2 - - Google Patents

Info

Publication number
JPH0588666B2
JPH0588666B2 JP287489A JP287489A JPH0588666B2 JP H0588666 B2 JPH0588666 B2 JP H0588666B2 JP 287489 A JP287489 A JP 287489A JP 287489 A JP287489 A JP 287489A JP H0588666 B2 JPH0588666 B2 JP H0588666B2
Authority
JP
Japan
Prior art keywords
polyvinyl chloride
layer
chloride resin
laminated
molded article
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP287489A
Other languages
Japanese (ja)
Other versions
JPH02185537A (en
Inventor
Kazuhide Ino
Yukihiro Yamamya
Fuchasu Gomi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiraoka and Co Ltd
Original Assignee
Hiraoka and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiraoka and Co Ltd filed Critical Hiraoka and Co Ltd
Priority to JP287489A priority Critical patent/JPH02185537A/en
Publication of JPH02185537A publication Critical patent/JPH02185537A/en
Publication of JPH0588666B2 publication Critical patent/JPH0588666B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は無機材料−ポリ塩化ビニル樹脂積層成
形物品に関するものである。 更に詳しく述べるならば、本発明はポリ塩化ビ
ニル樹脂材料からなる成形物品からなる基体と、
その上に強固に積層結着された無機材料層、例え
ば金属層又は無機金属化合物層とを含む無機材料
−ポリ塩化ビニル樹脂積層成形物品に関するもの
である。 〔従来の技術〕 ポリ塩化ビニル樹脂成形物品基体の表面に金属
蒸着層を形成する試みは種々なされてきた。一般
に、ポリ塩化ビニル樹脂成形物品は多量の可塑剤
を含有するため、経時的に可塑剤が成形物品の表
面にブリードアウトし、そのため金属蒸着層が基
体から剥離し易く、従つてこのような積層物品は
実用性に乏しいものであつた。このような問題点
の解決策として、特開昭59−199245号に、比較的
ブリードアウトの少ないポリエステル系可塑剤を
使用し、かつその添加量を20〜40重量部にとどめ
る方法が開示されている。しかしこの方法では、
基体表面と金属蒸着層との接着力が未だ不十分で
あり、また、成形物品自体の柔軟性が不十分であ
つた。また、特開昭59−96137号には、ケイ素化
合物のプラズマ重合膜を、ポリ塩化ビニル樹脂成
形品表面に堆積させ、この重合膜層の上にメタラ
イジング処理を施す方法が開示されている。この
方法において、プラズマ重合法はその生成重合膜
の再現性が低いという難点があり、特に大面積の
重合膜を再現性よく形成することは極めて困難で
あり、しかも、このようにして得られる積層物品
の接着力は、不満足なものであつた。 〔発明が解決しようとする課題〕 ポリ塩化ビニル樹脂材料からなる成形物品の表
面部分に、低温プラズマ処理を施すと、ポリ塩化
ビニル架橋層が形成され、この架橋層は、ポリ塩
化ビニル樹脂材料中の可塑剤のブリードアウトを
防止するのに有効であるが、この架橋層表面の金
属膜などの無機材料被服層に対する接着性、およ
びその耐久性は不満足なものである。 本発明は、上記の問題点を解消し、ポリ塩化ビ
ニル樹脂材料成形物品基体と、その上に強固に、
かつ、耐久性よく積層結着された無機材料層とを
有する無機材料−ポリ塩化ビニル樹脂積層成形物
品を提供しようとするものである。 〔課題を解決するための手段・作用〕 本発明の無機材料−ポリ塩化ビニル樹脂積層成
形物品は、ポリ塩化ビニル樹脂材料からなる成形
物品基体と、前記基体の表面部分に、不活性無機
ガス雰囲気内における低温プラズマ処理を施すこ
とにより形成されたポリ塩化ビニル架橋層と、前
記架橋層の表面部分に、酸化性ガスを含有する無
機ガス雰囲気内における低温プラズマ処理を施す
ことにより形成されたポリ塩化ビニル改質層と、
前記改質層上に積層結着され、Cu,Cr,Mnおよ
びNiより選ばれた金属からなり、かつ10〜500オ
ングストローム(Å)の厚さを有するアンカー層
と、このアンカー層上に積層結着され、かつ無機
材料からなるトップ層とを含んでなるものであ
る。 本発明の積層成形物品の成形物品基体は、ポリ
塩化ビニル樹脂材料よりなるものである。本発明
に用いられるポリ塩化ビニル樹脂は、軟質ポリ塩
化ビニル樹脂、硬質ポリ塩化ビニル樹脂、塩化ビ
ニルとオレフイン類、例えば、エチレン、プロピ
レン、またはイソブチレンとの共重合体樹脂、塩
化ビニルとスチレンとの共重合体樹脂、塩化ビニ
ルとジエン類、例えばブタジエン、又はイソプレ
ンとの共重合体樹脂、塩化ビニルと、アクリル
酸、ハロゲン化オレフイン、又は、酢酸ビニルと
の共重合体樹脂、および、上記の樹脂と、改質用
樹脂、例えば、ABS,SBR、又は、NBRなどの
ゴム類との混合樹脂などから選ぶことができる。 ポリ塩化ビニル樹脂に添加される可塑剤の種類
や添加量などについて格別の制限はなく、一般に
使用可能な可塑剤のいづれを含んでいてもよい。 また本発明に用いられるポリ塩化ビニル樹脂材
料は、アクリロイル基および/又は、メタアクリ
ロイル基を分子末端に有する有機化合物を含んで
いてもよい。このようなアクリロイル又はメタア
クリロイル基含有有機化合物は、ポリ塩化ビニル
の低温プラズマ処理による架橋結合の形成の効率
を向上させ、可塑剤のブリードアウトを防止し、
その結果、無機材料層に対する接着性を向上させ
るのに有効である。 アクリロイル基、又はメタアクリロイル基含有
有機化合物としては、下記一般式()〜()
で表わされるものが好ましい。 A(−M)−o1R () A1(−M1)−o2A2 () A3(−M2−N)−o3A4 ()
[Industrial Application Field] The present invention relates to an inorganic material-polyvinyl chloride resin laminate molded article. More specifically, the present invention comprises a substrate made of a molded article made of a polyvinyl chloride resin material;
The present invention relates to an inorganic material-polyvinyl chloride resin laminate molded article comprising an inorganic material layer, such as a metal layer or an inorganic metal compound layer, firmly laminated and bonded thereon. [Prior Art] Various attempts have been made to form a metal vapor deposited layer on the surface of a polyvinyl chloride resin molded article substrate. In general, polyvinyl chloride resin molded articles contain a large amount of plasticizer, so the plasticizer bleeds out onto the surface of the molded article over time, making it easy for the metal-deposited layer to peel off from the base. The items were of little practical use. As a solution to these problems, JP-A-59-199245 discloses a method of using a polyester plasticizer with relatively low bleed-out and limiting the amount added to 20 to 40 parts by weight. There is. But with this method,
The adhesive force between the substrate surface and the metal vapor deposited layer was still insufficient, and the flexibility of the molded article itself was insufficient. Further, JP-A-59-96137 discloses a method in which a plasma polymerized film of a silicon compound is deposited on the surface of a polyvinyl chloride resin molded article, and a metallizing treatment is performed on the polymerized film layer. In this method, the plasma polymerization method has the disadvantage that the reproducibility of the produced polymer film is low. In particular, it is extremely difficult to form a polymer film with a large area with good reproducibility. The adhesion of the article was unsatisfactory. [Problems to be Solved by the Invention] When a surface portion of a molded article made of a polyvinyl chloride resin material is subjected to low-temperature plasma treatment, a polyvinyl chloride crosslinked layer is formed, and this crosslinked layer is formed in the polyvinyl chloride resin material. However, the adhesion of the surface of this crosslinked layer to an inorganic material covering layer such as a metal film and its durability are unsatisfactory. The present invention solves the above-mentioned problems and provides a polyvinyl chloride resin material molded article base and a strong,
Moreover, it is an object of the present invention to provide an inorganic material-polyvinyl chloride resin laminate molded article having an inorganic material layer laminated and bonded with good durability. [Means and effects for solving the problems] The inorganic material-polyvinyl chloride resin laminate molded article of the present invention has a molded article base made of a polyvinyl chloride resin material and an inert inorganic gas atmosphere on the surface of the base. A polyvinyl chloride cross-linked layer formed by subjecting the cross-linked layer to a low-temperature plasma treatment in an inorganic gas atmosphere containing an oxidizing gas. a vinyl modified layer;
An anchor layer is laminated and bonded on the modified layer and is made of a metal selected from Cu, Cr, Mn, and Ni and has a thickness of 10 to 500 angstroms (Å); and a top layer made of an inorganic material. The molded article base of the laminated molded article of the present invention is made of a polyvinyl chloride resin material. The polyvinyl chloride resin used in the present invention is a soft polyvinyl chloride resin, a hard polyvinyl chloride resin, a copolymer resin of vinyl chloride and olefins, such as ethylene, propylene, or isobutylene, and a copolymer resin of vinyl chloride and styrene. Copolymer resins, copolymer resins of vinyl chloride and dienes such as butadiene or isoprene, copolymer resins of vinyl chloride and acrylic acid, halogenated olefins, or vinyl acetate, and the above resins. and a modifying resin, such as a mixed resin with rubber such as ABS, SBR, or NBR. There are no particular restrictions on the type or amount of plasticizer added to the polyvinyl chloride resin, and any generally usable plasticizer may be included. Furthermore, the polyvinyl chloride resin material used in the present invention may contain an organic compound having an acryloyl group and/or a methacryloyl group at the molecular end. Such an acryloyl or methacryloyl group-containing organic compound improves the efficiency of crosslink formation by low-temperature plasma treatment of polyvinyl chloride, prevents plasticizer bleed-out,
As a result, it is effective in improving the adhesion to the inorganic material layer. The organic compound containing an acryloyl group or a methacryloyl group has the following general formulas () to ()
Those represented by are preferred. A (-M) - o1 R () A 1 (-M 1 ) - o2 A 2 () A 3 (-M 2 -N) - o3 A 4 ()

【化】[ka]

〔実施例〕〔Example〕

以下、実施例により本発明を更に説明する。 参考例 1 PVC(ポリ塩化ビニル樹脂、商標:デンカSS−
103)100重量部、DOP(ジオクチルフタレート)
600重量部、EPS(エポキシ化大豆油)3重量部、
Ba−Zn系安定剤2部を配合調製した組成物を、
加熱ロールにより厚さ0.1mmのフイルムとした
(フイルム)。又、前記と同一の組成物において
DOPの配合量を50重量部とし、テトラエチレン
グリコールジアクリレートの配合量を10重量部と
して組成物を、上記と同様にして、厚さ0.1mmの
フイルムとした(フイルム)。これらのフイル
ム,の各々を、経糸及び緯糸としてポリエス
テルマルチフイラメン1000デニール糸を各々11
本/25.4mmの密度で使用した織物の両面に加熱貼
着し、ポリ塩化ビニル樹脂シートを作成した。得
られたシートおよびを第1表記載のプラズマ
処理を施し、次いで、抵抗加熱蒸着法により厚さ
400Åで金属Al蒸着層を積層させた。低温プラズ
マによる架橋層形成処理条件は、雰囲気ガスとし
てCO/Ar(7/3)混合ガスを用い、器内圧力
を0.4Torrとし、100Wの印加電力で、5分間で
あつた。又、改質層形成処理条件は、雰囲気ガス
としてO2ガスを用い、器内圧力を0.55Torrとし、
500Wの印加電力で30秒間であつた。 得られた金属Al積層成形物品のAl−PVC間の
接着力測定結果を第1表に示す。 接着力測定法 無処理のままのシート片面に、グラビアコート
により接着剤(東亜合成(株)製、FS−175)を20
g/m2の塗布量で塗布した。このシートの接着剤
面と、金属積層シートの金属面とを、ウエルダー
機(山本ビニター製、YF−7000)でウエルド接
着させ、幅3cmにカツトした。この試験片をイン
ストロンT(東洋精機製)に供し、その剥離協力
を測定した。 耐久性試験 金属積層シートを、雰囲気温度50℃、湿度90%
の恒温恒湿槽(寿工機製KAISER)中に500時間
放置し、その後、前記接着力測定法に従い、剥離
強力を測定した。 第1表の結果より、架橋層形成、改質層形成の
2段処理を施すことにより、ポリ塩化ビニル樹脂
材料シートの接着力が格段に向上し、優れた耐久
性を示すことがわかる。又、ポリ塩化ビニル樹脂
材料中に(メタ)アクリロイル基を有する化合物
を添加することにより、その接着力向上結果が一
層優れたものとなることがわかる。
The present invention will be further explained below with reference to Examples. Reference example 1 PVC (polyvinyl chloride resin, trademark: Denka SS-
103) 100 parts by weight, DOP (dioctyl phthalate)
600 parts by weight, 3 parts by weight of EPS (epoxidized soybean oil),
A composition containing 2 parts of Ba-Zn stabilizer,
A film with a thickness of 0.1 mm was made using a heated roll (film). Also, in the same composition as above
The composition was made into a film having a thickness of 0.1 mm (film) in the same manner as above, using 50 parts by weight of DOP and 10 parts by weight of tetraethylene glycol diacrylate. Each of these films was made of 11 polyester multifilament 1000 denier yarns as the warp and weft.
A polyvinyl chloride resin sheet was created by heating and pasting on both sides of the fabric used at a density of 25.4 mm. The obtained sheet was subjected to plasma treatment as shown in Table 1, and then the thickness was determined by resistance heating vapor deposition method.
A metal Al vapor deposition layer was deposited at a thickness of 400 Å. The conditions for forming a crosslinked layer using low-temperature plasma were as follows: CO/Ar (7/3) mixed gas was used as the atmospheric gas, the pressure inside the chamber was 0.4 Torr, and the applied power was 100 W for 5 minutes. In addition, the modified layer forming treatment conditions were as follows: O 2 gas was used as the atmospheric gas, the pressure inside the vessel was 0.55 Torr,
The applied power was 500W for 30 seconds. Table 1 shows the results of measuring the adhesive strength between Al and PVC of the obtained metal Al laminate molded article. Adhesive force measurement method Gravure coat adhesive (FS-175 manufactured by Toagosei Co., Ltd.) on one side of the untreated sheet for 20 minutes.
It was applied at a coating weight of g/m 2 . The adhesive side of this sheet and the metal side of the metal laminate sheet were welded together using a welder (YF-7000, manufactured by Yamamoto Vinita), and the sheet was cut into a width of 3 cm. This test piece was subjected to Instron T (manufactured by Toyo Seiki Co., Ltd.), and its peeling strength was measured. Durability test Metal laminated sheets were tested at an ambient temperature of 50°C and humidity of 90%.
The sample was left in a constant temperature and humidity chamber (KAISER manufactured by Kotobuki Kouki) for 500 hours, and then the peel strength was measured according to the adhesive force measurement method described above. From the results in Table 1, it can be seen that by carrying out the two-stage treatment of forming a crosslinked layer and forming a modified layer, the adhesive strength of the polyvinyl chloride resin material sheet is significantly improved and exhibits excellent durability. Furthermore, it can be seen that by adding a compound having a (meth)acryloyl group to the polyvinyl chloride resin material, the adhesive strength can be improved even more.

【表】 実施例 1 参考例1のフイルムを貼着したシートに、
参考例1と同条件で、架橋層形成処理のみを施し
たもの(比較例)及び架橋層形成後改質層形成処
理を施したもの(本発明例)を作成し、それぞれ
に抵抗加熱蒸着法により第2表記載の複数層の無
機材料層を順次に蒸着積層させ、金属積層PVC
シートを得た。これらのものに就いて、初期接着
力及び耐久性試験後の接着力を測定した。結果を
第2表に示す。
[Table] Example 1 On the sheet to which the film of Reference Example 1 was attached,
Under the same conditions as Reference Example 1, a product that was subjected to only the crosslinked layer formation treatment (comparative example) and a product that was subjected to the modified layer formation treatment after the formation of the crosslinked layer (invention example) were created, and each was subjected to the resistance heating evaporation method. A plurality of inorganic material layers listed in Table 2 are sequentially deposited and laminated to form metal laminated PVC.
Got a sheet. For these products, the initial adhesive strength and the adhesive strength after the durability test were measured. The results are shown in Table 2.

【表】 第2表の結果より、MgF2のように、PVCに対
し接着性の低い無機材料であつても、本発明の方
法(2段プラズマ処理)により、その接着性が大
幅に向上することがわかる。又、金属単体による
アンカー層を設けることにより、MgF2トツプ層
のPVCへの接着力及び耐久性が格段に向上する。
中でも、Mn,Cu,Cr,Niからなる金属蒸着層
が、特に優れたアンカー効果を有している。アン
カー層の厚さが10〜500オングストロームの範囲
であれば、得られた積層物は安定した接着力およ
び耐久性を示していることがわかる。 実施例 2 参考例1で作製したフイルムを、フイルムの
まま使用した。これに参考例1と同条件で、第3
表記載のようにプラズマ処理を施し、その上に抵
抗加熱蒸着法で第3表に示される金属単体をアン
カー蒸着した後、更にスパツタリング法により
1000Åの厚さのITO膜を積層し、透明導電積層膜
を作製した。これら積層膜の初期接着力・耐久性
試験後の接着力、導電性及び光線透過率の測定結
果を第3表に示す。導電性は、四端子法により測
定した体積固有抵抗値で表わされ、又、光線透過
率は、便宜上波長550nmの光線の透過率で表示し
た。 金属単体としては、それ自体良好な透光性を有
する必要があり、少なくとも厚さ150オングスト
ロームに於ける光線透過率が、50%以上である金
属を用いることが好ましい。このような金属の代
表的なものとして、Cu,Mnが挙げられる。
[Table] From the results in Table 2, even inorganic materials such as MgF 2 that have low adhesion to PVC can be significantly improved by the method of the present invention (two-stage plasma treatment). I understand that. Furthermore, by providing an anchor layer made of a single metal, the adhesive strength and durability of the MgF 2 top layer to PVC are significantly improved.
Among them, a metal vapor-deposited layer consisting of Mn, Cu, Cr, and Ni has a particularly excellent anchoring effect. It can be seen that when the thickness of the anchor layer is in the range of 10 to 500 angstroms, the resulting laminate exhibits stable adhesion and durability. Example 2 The film produced in Reference Example 1 was used as is. To this, under the same conditions as Reference Example 1, the third
After plasma treatment as shown in the table, and anchor deposition of the metal element shown in Table 3 by resistance heating evaporation method, further by sputtering method.
A transparent conductive laminated film was fabricated by laminating ITO films with a thickness of 1000 Å. Table 3 shows the measurement results of the adhesive strength, conductivity, and light transmittance of these laminated films after the initial adhesive strength/durability test. The conductivity was expressed by the volume resistivity value measured by the four-terminal method, and the light transmittance was expressed by the transmittance of light having a wavelength of 550 nm for convenience. The metal itself must have good light transmittance, and it is preferable to use a metal that has a light transmittance of 50% or more at a thickness of at least 150 angstroms. Representative examples of such metals include Cu and Mn.

【表】 第3表の結果より、本発明によつてPVC表面
に形成されたITO膜の接着力および耐久性が格段
に向上することがわかる。また、Cu又はMnの厚
さが10〜150オングストロームの範囲内にあれば、
光線透過率の大幅な低下のない、良好な透明導電
積層膜が得られることがわかる。 実施例 3 参考例1のフイルムを貼着したシートを、
参考例1と同条件で第4表記載のようにプラズマ
処理した(本発明例、比較例)。その後、スパツ
タリング法により、アンカー層として厚さ100Å
のCr層を、また、トツプ層として厚さ500ÅのTi
層を形成した。このシートの着氷防止性の評価結
果を第4表に示す。比較のために、着氷防止性の
優れているシリコーン塗装鋼板、及び着氷防止塗
料(関西ペイント製デフロS)を塗布した鋼板に
ついて、同様の試験も行つた。 着氷防止性試験 テストピースを厚さ9mm面積100×100mmの鋼板
に接着剤で凹凸のないように取付け、これに、−
20℃の雰囲気温度において、真水をスプレーして
テストピース上に厚さ10mmまで着氷させた。その
後、剪断荷重をかけることにより、テストピース
と氷の付着力を測定した。この操作を数回繰り返
し、耐久性を評価した。
[Table] From the results in Table 3, it can be seen that the adhesive strength and durability of the ITO film formed on the PVC surface are significantly improved according to the present invention. Also, if the thickness of Cu or Mn is within the range of 10 to 150 angstroms,
It can be seen that a good transparent conductive laminated film without a significant decrease in light transmittance can be obtained. Example 3 The sheet to which the film of Reference Example 1 was attached was
Plasma treatment was performed as shown in Table 4 under the same conditions as Reference Example 1 (invention examples and comparative examples). Then, by sputtering method, a thickness of 100 Å was formed as an anchor layer.
Cr layer with a thickness of 500 Å as the top layer.
formed a layer. Table 4 shows the evaluation results of the anti-icing properties of this sheet. For comparison, similar tests were also conducted on a silicone-coated steel plate that has excellent anti-icing properties, and a steel plate coated with an anti-icing paint (Deflo S manufactured by Kansai Paint Co., Ltd.). Anti-icing test A test piece was attached to a steel plate with a thickness of 9 mm and an area of 100 x 100 mm using adhesive so that there were no irregularities, and -
At an ambient temperature of 20°C, fresh water was sprayed to form ice on the test piece to a thickness of 10 mm. Thereafter, the adhesion between the test piece and the ice was measured by applying a shear load. This operation was repeated several times to evaluate durability.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

本発明により得られる無機材料−ポリ塩化ビニ
ル樹脂積層成形物品は、ポリ塩化ビニル樹脂材料
からなる基体と、無機材料層との接着強度に優
れ、良好な耐久性を有している。特に接着強度の
低い金属、或いは金属化合物に対しても、その機
能を低下させることなく、ポリ塩化ビニル樹脂材
料基体の接着強度、耐久性を向上させることがで
きる。 従つて本発明は、種々の無機材料層を基体上に
強固に積層結着することによりすぐれた導電性、
断熱性、および/又は装飾性などの各種機能を有
する積層成形物品を提供するのに有用なものであ
る。
The inorganic material-polyvinyl chloride resin laminate molded article obtained by the present invention has excellent adhesive strength between the base made of the polyvinyl chloride resin material and the inorganic material layer, and has good durability. In particular, it is possible to improve the adhesive strength and durability of the polyvinyl chloride resin material substrate, even to metals or metal compounds with low adhesive strength, without deteriorating their functionality. Therefore, the present invention provides excellent electrical conductivity by firmly laminating and bonding various inorganic material layers on a substrate.
It is useful for providing laminated molded articles having various functions such as heat insulation and/or decorative properties.

Claims (1)

【特許請求の範囲】[Claims] 1 ポリ塩化ビニル樹脂材料からなる成形物品基
体と、前記基体の表面部分に、不活性無機ガス雰
囲気内における低温プラズマ処理を施すことによ
り形成されたポリ塩化ビニル架橋層と、前記架橋
層の表面部分に、酸化性ガスを含有する無機ガス
雰囲気内における低温プラズマ処理を施すことに
より形成されたポリ塩化ビニル改質層と、前記改
質層上に積層結着され、Cu,Cr,MnおよびNi
より選ばれた金属からなり、かつ10〜500オング
ストロームの厚さを有するアンカー層と、このア
ンカー層上に積層結着され、かつ無機材料からな
るトップ層とを含んでなる、無機材料−ポリ塩化
ビニル樹脂積層成形品。
1 A molded article base made of a polyvinyl chloride resin material, a polyvinyl chloride crosslinked layer formed by subjecting the surface of the base to low-temperature plasma treatment in an inert inorganic gas atmosphere, and a surface portion of the crosslinked layer. A polyvinyl chloride modified layer formed by performing low temperature plasma treatment in an inorganic gas atmosphere containing an oxidizing gas, and a polyvinyl chloride modified layer laminated and bonded on the modified layer, containing Cu, Cr, Mn and Ni.
An inorganic material - polychloride, comprising an anchor layer made of a selected metal and having a thickness of 10 to 500 angstroms, and a top layer laminated and bonded on this anchor layer and made of an inorganic material. Vinyl resin laminated molded product.
JP287489A 1989-01-11 1989-01-11 Laminated molding of inorganic material and polyvinyl chloride resin and preparation thereof Granted JPH02185537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP287489A JPH02185537A (en) 1989-01-11 1989-01-11 Laminated molding of inorganic material and polyvinyl chloride resin and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP287489A JPH02185537A (en) 1989-01-11 1989-01-11 Laminated molding of inorganic material and polyvinyl chloride resin and preparation thereof

Publications (2)

Publication Number Publication Date
JPH02185537A JPH02185537A (en) 1990-07-19
JPH0588666B2 true JPH0588666B2 (en) 1993-12-24

Family

ID=11541500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP287489A Granted JPH02185537A (en) 1989-01-11 1989-01-11 Laminated molding of inorganic material and polyvinyl chloride resin and preparation thereof

Country Status (1)

Country Link
JP (1) JPH02185537A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4885340B2 (en) * 1998-10-27 2012-02-29 大日本印刷株式会社 Barrier film and laminated material using the same

Also Published As

Publication number Publication date
JPH02185537A (en) 1990-07-19

Similar Documents

Publication Publication Date Title
TWI476104B (en) Laminate
CA1201941A (en) Transparent laminates
EP0262218B1 (en) Polypropylene films
JPS6339427B2 (en)
JPH10511616A (en) Biaxially stretched multilayer film for heat sealable packaging
JPH10509105A (en) PVOH-based coating composition
JPS6354541B2 (en)
CA1186983A (en) Flexible film laminates and retortable food pouches fabricated therefrom
JPH0239931A (en) Laminated film for metal deposition
JP4253780B2 (en) Gas barrier film
JPH0588666B2 (en)
EP0038022B1 (en) Metallized bonded sheet comprising a polyolefinic film and a paper or paperboard sheet
JP3037797B2 (en) Gas barrier laminated film
JPH0839718A (en) Vacuum-deposited composite film and its production
JPH036904B2 (en)
EP0787582B1 (en) Process for printing and/or laminating a metallized polypropylene film and film obtained thereby
JPS5850592B2 (en) metal-deposited film
JP3123936B2 (en) Packaging film with metallic luster
KR100225394B1 (en) Films for bag
JP3020657B2 (en) Electrically conductive transparent high barrier film
JPS62275134A (en) Bonding
JPH04236766A (en) Al vapor deposited film and surface preparation
JP3451389B2 (en) Manufacturing method of metallized nylon film
JPS59145238A (en) Antistatic treatment solution for vinyl chloride resin
JPH025571B2 (en)