JPH0588314B2 - - Google Patents

Info

Publication number
JPH0588314B2
JPH0588314B2 JP7125086A JP7125086A JPH0588314B2 JP H0588314 B2 JPH0588314 B2 JP H0588314B2 JP 7125086 A JP7125086 A JP 7125086A JP 7125086 A JP7125086 A JP 7125086A JP H0588314 B2 JPH0588314 B2 JP H0588314B2
Authority
JP
Japan
Prior art keywords
film
zinc
aqueous solution
treatment
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7125086A
Other languages
Japanese (ja)
Other versions
JPS6289879A (en
Inventor
Yoshihide Sano
Soei Koizumi
Yasuhiro Okano
Takeshi Ataya
Masaaki Yamashita
Yasuhisa Tajiri
Akira Enatsu
Takahiro Kubota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Publication of JPS6289879A publication Critical patent/JPS6289879A/en
Publication of JPH0588314B2 publication Critical patent/JPH0588314B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/78Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/53Treatment of zinc or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)

Description

【図面の簡単な説明】[Brief explanation of drawings]

第1図はSb3+濃度と白色度の関係グラフ、第
2図はCo2+濃度と白色度の関係グラフ、第3図
はPHと白色度の関係グラフ、第4図はNi2+
Sb3+モル比と白色度の関係グラフ、第5図は
Co2+/Sb3+モル比と白色度の関係グラフ、第6
図はFe3+/Sb3+モル比と白色度の関係グラフ、
第7図は塩水噴霧時間と白錆発生面積の関係グラ
フである。
Figure 1 is a graph of the relationship between Sb 3+ concentration and whiteness, Figure 2 is a graph of the relationship between Co 2+ concentration and whiteness, Figure 3 is a graph of the relationship between PH and whiteness, and Figure 4 is a graph of Ni 2+ /
Figure 5 is a graph showing the relationship between Sb 3+ molar ratio and whiteness.
Relationship graph between Co 2+ /Sb 3+ molar ratio and whiteness, 6th
The figure is a graph of the relationship between Fe 3+ /Sb 3+ molar ratio and whiteness.
FIG. 7 is a graph showing the relationship between the salt water spray time and the area where white rust occurs.

Claims (1)

【特許請求の範囲】 1 アンチモンイオンaを0.2〜5g/lと、ニツ
ケルイオン、鉄イオン、コバルトイオンからなる
金属イオンbから選ばれた1種類又は2種類以上
を10〜100g/lとを含有し、且つ前記金属イオ
ンb/アンチモンイオンaモル比が5〜110であ
り、PHが6以下である酸性水溶液からなる亜鉛又
は亜鉛合金の黒色化処理液。 2 前記金属イオンb/アンチモンイオンaモル
比が25〜70である特許請求の範囲第1項記載の亜
鉛又は亜鉛合金の黒色化処理液。 3 亜鉛又は亜鉛合金を、アンチモンイオンaを
0.2〜5g/lと、ニツケルイオン、鉄イオン、コ
バルトイオンからなる金属イオンbから選ばれた
1種類又は2種類以上を10〜100g/lとを含有
し、且つ前記金属イオンb/前記アンチモンイオ
ンaモル比が5〜110であり、PHが6以下である
酸性水溶液にて処理して黒色皮膜を形成させた
後、その表面にリン酸皮膜を施すことを特徴とす
る亜鉛又は亜鉛合金の黒色化処理方法。 4 前記金属イオンb/アンチモンイオンaモル
比が25〜70である特許請求の範囲第3項記載の亜
鉛又は亜鉛合金の黒色化処理方法。 5 亜鉛又は亜鉛合金を、アンチモンイオンaを
0.2〜5g/lと、ニツケルイオン、鉄イオン、コ
バルトイオンからなる金属イオンbから選ばれた
1種類又は2種類以上を10〜100g/lとを含有
し、且つ前記金属イオンb/前記アンチモンイオ
ンaモル比が25〜70であり、PHが6以下である酸
性水溶液にて処理して黒色皮膜を形成させた後、
その表面にCr皮膜量として1〜1000mg/m2のク
ロメート皮膜を施すことを特徴とする亜鉛又は亜
鉛合金の黒色化処理方法。 6 亜鉛又は亜鉛合金を、アンチモンイオンaを
0.2〜5g/lと、ニツケルイオン、鉄イオン、コ
バルトイオンからなる金属イオンbから選ばれた
1種類又は2種類以上を10〜100g/lとを含有
し、且つ前記金属イオンb/前記アンチモンイオ
ンaモル比が25〜70であり、PHが6以下である酸
性水溶液にて処理して黒色皮膜を形成させた後、
その表面に皮膜厚として0.01〜3μmのアルカリ珪
酸塩皮膜を施すことを特徴とする亜鉛又は亜鉛合
金の黒色化処理方法。 7 亜鉛又は亜鉛合金を、アンチモンイオンaを
0.2〜5g/lと、ニツケルイオン、鉄イオン、コ
バルトイオンからなる金属イオンbから選ばれた
1種類又は2種類以上を10〜100g/lとを含有
し、且つ前記金属イオンb/前記アンチモンイオ
ンaモル比が25〜70であり、PHが6以下である酸
性水溶液にて処理して黒色皮膜を形成させた後、
その表面に樹脂皮膜を施すことを特徴とする亜鉛
又は亜鉛合金の黒色化処理方法。 8 亜鉛又は亜鉛合金を、アンチモンイオンaを
0.2〜5g/lと、ニツケルイオン、鉄イオン、コ
バルトイオンからなる金属イオンbから選ばれた
1種類又は2種類以上を10〜100g/lとを含有
し、且つ前記金属イオンb/前記アンチモンイオ
ンaモル比が25〜70であり、PHが6以下である酸
性水溶液にて処理して黒色皮膜を形成させた後、
その表面にCr皮膜量として1〜1000mg/m2のク
ロメート皮膜を施し、更にその上に樹脂皮膜を施
すことを特徴とする亜鉛又は亜鉛合金の黒色化処
理方法。 〔産業上の利用分野〕 本発明は、亜鉛又は亜鉛合金、特に亜鉛又は亜
鉛合金メツキストリツプ鋼板を連続的且つ短時間
に処理して、その表面に黒色皮膜を形成させるも
のに用いられる黒色化処理液及びその方法に関す
るものである。本発明における亜鉛又は亜鉛合金
には、スパングルの生成や耐食性の向上等を目的
として、亜鉛メツキ浴にAl,Co,Cr,Ni,Mg,
In,Ti,Pb,Sn,Mo,Fe,Mnの中から選ばれ
た1種又は2種以上の金属を加えてメツキされた
ものも含まれる。 〔従来の技術〕 最近、亜鉛又は亜鉛合金メツキストリツプ鋼板
を連続的且つ短時間に黒色化処理又はそれに更に
クリヤー塗装をして自動車部品や電子部品、冷蔵
庫部品等に適用することが試みられている。 黒色化処理法としては、黒色クロメート法が特
開昭58−193376号公報に開示されているが、この
方法は処理液に銀塩を用いるため費用がかゝり
又、短時間処理が不可能であり好ましくない。又
特公昭45−27690号公報に金属目的物表面上に黒
色艶消し被覆を生成せしめる方法が記載されてい
る。この方法は、金属目的物の表面を3価のアン
チモン塩の酸性水溶液と接触させ黒色アンチモン
の沈着物を沈着させる第1段処理と、次いでその
上にリン酸塩保護被覆を沈着させる第2段処理と
からなつているが、この第1段処理で皮膜の黒色
度が充分でなく、それに皮膜むらがあるので、第
2段処理後も良好なる黒色皮膜を得ることが出来
ず実用的でない。 〔発明が解決しようとする問題点〕 本発明は、短時間処理の出来るしかも安価な改
良されたアンチモン含有酸性水溶液であつて、亜
鉛又は亜鉛合金の高度な皮膜黒色度及び皮膜むら
のない優れた皮膜を得る黒色化処理液及びその方
法を提供することを目的としている。 〔問題点を解決するための手段〕 本発明の目的を達成させるその黒色化処理液
は、アンチモンイオンaを0.2〜5.0g/lと、ニ
ツケルイオン、鉄イオン、コバルトイオンからな
る金属イオンbから選ばれた1種類又は2種類以
上を10〜100g/lとを含有し、且つ前記金属イ
オンb/前記アンチモンイオンaモル比が5〜
110好ましくは25〜70であり、PHが6以下である
水溶液である。 この水溶液に、フツ化物イオンを添加すると更
に短時間で均一な黒色皮膜を形成させることが出
来る。 アンチモンイオンは、酒石酸アンチモニルカリ
ウム、3塩化アンチモン、5塩化アンチモン等の
溶解性塩から導かれ、その濃度は0.2〜5.0g/l
で用いられる。0.2g/l未満では、短時間で黒色
皮膜を形させるには不充分であり、5.0g/lをこ
えると、形成される黒色皮膜の付着性が劣り好ま
しくない。 ニツケル、鉄、コバルトの金属イオンは、炭酸
ニツケル、硝酸ニツケル、塩化ニツケル、酸化ニ
ツケル、硫酸ニツケル、硝酸第1鉄、硝酸第2
鉄、塩化第1鉄、塩化第2鉄、硫酸第1鉄、硫酸
第2鉄、炭酸コバルト、塩化コバルト、硝酸コバ
ルト、硫酸コバルト等の無機塩及び酢酸ニツケ
ル、クエンサン第2鉄アンモン、酢酸コバルト等
の有機化合物から導かれる。その濃度は、黒色度
の高い皮膜を得るために、金属イオンとして10〜
100g/l、好ましくは18g/l以上必要であり、
且つ前記金属イオン/アンチモンイオンのモル比
が5〜110、好ましくは25〜70の範囲である。経
済的な面を考慮すると、金属イオン濃度の上限
は、100g/l以下、好ましくは50g/l以下とす
べきである。 ニツケル、鉄、コバルトの金属イオン中、ニツ
ケルイオンが皮膜反応性から見て最も好ましい。 フツ化物イオンは、フツ化水素酸、ケイフツ化
水素酸、硼フツ化水素酸等から導かれ、その濃度
は1〜60g/lで用いられるが、好ましくは3〜
30g/lである。1g/l未満では皮膜の均一性が
劣り、60g/lをこえると形成される黒色皮膜の
密着性が劣化し更に装置腐食が激しく、作業環境
も悪くなる。 前記黒色化処理液のPH調整は、塩酸、硫酸、硝
酸、フツ化水素酸、ケイフツ化水素酸、硼フツ化
水素酸等の無機酸、酢酸等の有機酸でも良い。 前記黒色化処理液に、処理液の安定化及び被処
理物に対するスラツジの付着防止のために、酒石
酸、クエン酸、リンゴ酸、蓚酸、コハク酸又はそ
の塩類等の錯化剤を添加することが出来る。その
添加量は、添加の効果及び経済上のことを考慮す
ると錯化剤は0.1〜40g/lである。 本発明の黒色化処理液は、被処理素材の亜鉛と
アンチモン、ニツケル、鉄、コバルトの置換反応
を利用したものであり、処理時間と液温に大きく
影響を受ける。液温は高いほど反応速度が速くな
るので室温以上が好ましく、特にストリツプメツ
キ鋼板を連続的に処理すると処理時間が10秒以下
になるので、その場合30℃以上であることが好ま
しい。液温の上限は、水分の蒸発、安全性、省エ
ネルギー等を考慮して80℃以下とするのが好まし
い。 本発明の黒色化処理液によつて形成された黒色
皮膜は耐食性及び密着性が不充分である。この耐
食性及び密着性を向上させるために、黒色化処理
後、水洗した後、クロメート皮膜、リン酸塩皮
膜、アルカリ珪酸塩皮膜又は樹脂皮膜を施す。 黒色化処理後リン酸塩皮膜を施すと黒色度が増
す。 耐指紋性の向上は、前記皮膜の表面に樹脂皮膜
又はアルカリ珪酸塩を主成分とする皮膜を施すこ
とにより達成される。 本発明における樹脂皮膜は、水溶性、エマルジ
ヨン性又はデイスパージヨン性の有機高分子樹脂
水溶液でもつて処理されて形成された公知の皮膜
であり、例えば特公昭60−33192号公報に開示さ
れた皮膜で、その樹脂の例としては、現在使用さ
れている酢酸ビニル、塩化ビニル、塩化ビニリデ
ンなどのビニル系、およびその共重合体、アクリ
ル酸、メタクリル酸、アクリル酸エステル、メタ
クリル酸エステル、ヒドロキシアクリル酸、ヒド
ロキシアクリル酸エステルなどのアクリル系およ
びその共重合体、アルキツド系、エポキシ系、尿
素系、フツ素系、ウレタン系、エステル系、スチ
レン系、オレフイン系およびそれらの共重合体、
ブタジエンなどの合成ゴム系および天然高分子な
どの樹脂があげられる。この有機高分子樹脂水性
液に、必要に応じてクロム化合物やシリカ等の無
機物を添加することが出来る。 クロメート皮膜は、例えば特開昭50−28444号
公報、特開昭60−218483号公報に開示された皮膜
であり、部分的に還元されたクロム酸水溶液でも
つて形成させるのが好ましく、必要に応じて樹脂
や数10〜数1000Åのシリカ粒子(シリカゾル、ヒ
ユームドシリカ)を含有させても良い。クロム酸
水溶液中のCr3+/Cr6+重量比は、糖類、アルコー
ル類等の有機還元剤や無機還元剤で還元して1/1
〜1/3とするが良く、水溶液のPHは1.5〜4.0の範
囲が良い。クロメート皮膜量は、余り多くすると
黒色皮膜が隠され黒色度が弱くなり、又少なくす
るとクロメート皮膜の効果が弱くなるので、Cr
皮膜量として1〜1000mg/m2、好ましくは10〜
200mg/m2とする。 アルカリ珪酸塩を主成分とする皮膜は、例えば
特公昭57−2274号公報に開示されたものがあり、
一般式M2O,nSiO2(M:Na,K,Li、アンモニ
ウム又はアミン、n:2〜20)で表わされるアル
カリ珪酸塩を主成分とする水溶液にて処理するこ
とによつて得られるが、必要に応じてこれに更に
クロム酸等のクロム化合物を添加する。アルカリ
珪酸塩皮膜量は、クロメート皮膜を施すのと同様
の理由により、皮膜として0.01〜3μmとする。 リン酸塩皮膜は、第1リン酸亜鉛、リン酸亜鉛
カルシウム、リン酸アルミニウム、第1リン酸マ
ンガン、第1リン酸ソーダ、第1リン酸アンモン
等を主成分とするPH2.5〜5のリン酸塩水溶液を
用いるが、最も密着性の良い強固な皮膜を形成す
るには、リン酸亜鉛系水溶液が望ましい。例え
ば、特公昭42−12130号公報に記載されているリ
ン酸塩水溶液が用いられる。 本発明においては、第1段の黒色皮膜及び第2
段のクロメート皮膜、リン酸塩皮膜、アルカリ珪
酸塩皮膜又は樹脂皮膜で耐食性のある皮膜が形成
されるが、更に第3段処理を加えた、即ち、黒色
皮膜→塗布型クロメート皮膜→樹脂皮膜又はアル
カリ珪酸塩皮膜、黒色皮膜→リン酸塩皮膜→樹脂
皮膜→塗布型クロメート皮膜又はアルカリ珪酸塩
皮膜の皮膜を亜鉛又は亜鉛合金の表面に施すこと
により一段と優れた耐食性皮膜を得ることが出来
る。 本発明の黒色化処理方法の処理工程の1例は、
次の如くである。(脱脂→水洗)→第1段処理→
水洗→〔チタンコロイド水溶液による表面調整〕
→第2段処理→水洗→〔第3段処理〕→乾燥 こゝで〔 〕の部分の工程は必要に応じて行
う。 第1段、第2段及び第3段処理条件は、常温〜
90℃で任意の時間、スプレー、浸漬、ロールコー
ト法等により処理される。 第2段及び第3段処理には、前記以外にタンニ
ン酸水溶液、フイチン酸水溶液等の公知の処理水
溶液を用いても良い。 〔作用〕 亜鉛又は亜鉛合金を本発明の黒色化処理液に接
触させると、処理液中のSb,Ni,Co,Feのイオ
ンが素材のZnとの置換反応によつて亜鉛又は亜
鉛合金表面に折出する。しかし反応時に、Sbと、
Ni,Co又はFeと、Znの標準電極電位の違いか
ら、折出、溶解反応が選択的かつ段階的に進行す
る。即ち、Sb,Ni(あるいはCo,Fe)、Znの順に
折出し易く、Zn,Ni(あるいはCo,Fe)、Sbの順
に溶解し易い。置換反応はSbだけの折出やZnだ
けの溶解が起こるのではなく、Sb,Ni(あるいは
Co,Fe)、Znの金属が折出と溶解を繰り返して
いき、その結果として光を吸収する構造の皮膜を
造り出している。 黒色化処理液の条件設定の際、皮膜の白色度
〔W(Lab)〕をスガ試験機株式会社製のカラーコ
ンピユーターを用いて測定することによつて黒色
度の目安とした。白色度は、W(Lab)=100−
〔(100−L)2+a2+b21/2で表わされ、W値が小
さいほど黒色に近づく。 Sb3+濃度を種々変化させた液温50℃の
Ni2+15g/l,SiF6 2-4g/l含有塩酸酸性水溶液
に、亜鉛付着量20g/m2の亜鉛メツキ鋼板を10秒
間浸漬して形成させた皮膜の白色度を第1図に示
す。この図から分かるように、黒色皮膜を得るに
はSb3+濃度0.2g/l以上、好ましくは1.3g/l以
上必要である。 Co2+濃度を種々変化させた液温50℃の
Sb3+1.5g/l,SiF6 2-4g/l含有塩酸酸性水溶液
にて、亜鉛付着量20g/m2の亜鉛メツキ鋼板を5
秒間スプレー処理し形成させた皮膜の白色度を第
2図に示す。この図から分かるように、黒色皮膜
を得るにはCo2+濃度10g/l以上、好ましくは
18g/l以上必要であることが分かる。又Ni2+
Fe3+についてもCo2+とほぼ同様の値を示す。 PHを種々変化させた液温50℃のSb3+1.5g/l,
Fe3+20g/l含有水溶液にて、亜鉛付着量20g/
m2の亜鉛メツキ鋼板を5秒間スプレー処理し形成
させた皮膜の白色度を第3図に示す。この図か
ら、黒色皮膜を得るには処理水溶液のPHを6以下
にするのが良いことが分かる。 Sb3+濃度とNi2+,Co2+,Fe3+濃度とを種々変
化させた液温50℃のSiF6 2-4g/l含有塩酸酸性水
溶液にて、亜鉛付着量20g/m2の亜鉛メツキ鋼板
を5秒間スプレー処理し形成させた皮膜の白色度
に対する処理水溶液中のNi2+とSb3+とのモル比
の関係を第4図、Co2+とSb3+とのモル比の関係
を第5図、Fe3+とSb3+とのモル比の関係を第6
図にグラフにて示す。これらの図から、処理水溶
液中のNi2+,Co2+又はFe3+の金属イオン/Sb3+
モル比は、5〜110、好ましくは25〜70が黒色皮
膜を得るのに適することが分かる。 〔実施例 1〕 電気亜鉛メツキ鋼板、酒石酸マンチモニルカリ
ウムをSb換算で4g/lと、酢酸コバルトをCo換
算で10g/lとを含有し、且つ、PHが、1.5で50〜
60℃に加温された塩酸酸性水溶液に10秒間浸漬し
て黒色皮膜を形成させ、水洗し、次いで55〜65℃
に加温された全酸度20ポイントの亜鉛用リン酸亜
鉛を主成分とする水溶液(ボンデライト3300。日
本パーカライジング社製)に10秒間浸漬して水洗
し、乾燥し、外観判定及び皮膜の密着製試験を行
つた結果を第1表に示す。 〔実施例 2〕 電気亜鉛メツキ鋼板を、3塩化アンチモンを
Sb換算で0.5g/lと、硫酸第1鉄をFe換算で
25g/lとを含有し、且つ、PHが1.3で55〜65℃に
加温された塩酸酸性水溶液に、7秒間浸漬して黒
色皮膜を形成させ、水洗し、次いで55〜65℃に加
温された全酸度25ポイントの亜鉛用リン酸亜鉛を
主成分とする水溶液(ボンデライト3300。日本パ
ーカライジング社製)に7秒間浸漬して後水洗
し、60〜70℃の0.1g/lクロム酸水溶液に3秒間
浸漬して液切りしてから乾燥し、外観判定及び皮
膜の密着性試験を行つた結果を第1表に示す。 〔実施例 3〕 電気亜鉛メツキ鋼板及び合金化溶融亜鉛メツキ
鋼板を、酒石酸アンチモニルカリウムをSB換算
で1.5g/lと、塩化ニツケルをNi換算で30g/l
と、珪フツ酸をF換算で10g/lとを含有し、且
つPHが1.5で60〜70℃に加温された塩酸酸性水溶
液に5秒(電気亜鉛メツキ鋼板の場合)〜10秒間
(合金化溶融亜鉛メツキ鋼板の場合)浸漬して黒
色皮膜を形成させ、水洗し、次いで60〜70℃に加
温された全酸度15ポイントの亜鉛用リン酸亜鉛を
主成分とする水溶液(ボンデライト3300。日本パ
ーカライジング社製)に10秒間浸漬して水洗し、
乾燥し、外観判定及び密着性試験を行つた結果を
第1表に示す。 〔比較例 1〕 電気亜鉛メツキ鋼板を、酒石酸マンチモニルカ
リウムをSb換算で1g/l含有し、且つPHが1.5で
50〜60℃に加温された塩酸酸性水溶液に10秒間浸
漬して、黒色皮膜を形成させ、水洗し、次いで55
〜65℃に加温された全酸度20ポイントの亜鉛用リ
ン酸亜鉛を主成分とする水溶液(ボンデライト
3300。日本パーカライジング社製)に10秒間浸漬
して水洗し、乾燥し、外観判定及び密着性試験を
行つた結果を第1表に示す。 〔比較例 2〕 実施例1の第1段処理のみを行い、水洗、乾燥
し、外観判定及び密着性試験を行つた結果を第1
表に示す。 【表】 〔実施例 4〕 塩酸水溶液に酒石酸アンチモニルカリウムを
Sb換算で3g/lと、硝酸ニツケルをNi換算で
30g/lと、珪フツ酸をF換算で5g/lとを溶解
し、前記水溶液のNi2+/Sb3+モル比を21、PHを
1.7に調整した黒色化処理液を建浴し、50〜55℃
に加温した。 亜鉛メツキ鋼板を、この処理液に10秒間浸漬し
て黒色皮膜を形成させ、水洗し、乾燥した。 〔実施例 5〕 亜鉛メツキ鋼板に、乾燥工程を除く実施例4の
処理を行い、次いで固形分濃度が20g/l,
Cr3+/Cr6+の重量比が2/3、PHがKOHで2.5に調
整された塗布型クロメート処理水溶液にて塗布
し、ロールパス後乾燥した。 〔実施例 6〕 亜鉛メツキ鋼板に、乾燥工程を除く実施例4の
処理を行い、次いでアクリル樹脂水溶液(ウオー
ターゾルS744…大日本インキ株式会社製)を乾
燥皮膜で1μmになるように塗布乾燥した。 〔実施例 7〕 亜鉛メツキ鋼板に、乾燥工程を除く実施例4の
処理を行い、 次いでSiO2換算で50g/lの濃度になるように
調整されたリチウムシリケート(Li2O・4,
8SiO2)水溶液をロールコータによつて塗布し乾
燥した。 〔実施例 8〕 亜鉛メツキ鋼板に、乾燥工程を除く実施例4の
処理を行い、次いで60〜65℃に加温された亜鉛用
リン酸亜鉛を主成分とするリン酸塩皮膜処理水溶
液(ボンデライト3300…日本パーカライジング株
式会社製)に10秒間浸漬して後、水洗し、乾燥し
た。 〔実施例 9〕 亜鉛メツキ鋼板に、実施例5の処理を行つた
後、実施例6のアクリル樹脂水溶液による塗布、
乾燥を行つた。 〔実施例 10〕 亜鉛メツキ鋼板に、実施例5の処理を行つた
後、実施例7のリチウムシリケート水溶液による
塗布、乾燥を行つた。 〔実施例 11〕 亜鉛メツキ鋼板に、乾燥を除く実施例8の処理
を行つた後、実施例6のアクリル樹脂水溶液によ
る塗布、乾燥を行つた。 〔実施例 12〕 亜鉛メツキ鋼板に、乾燥を除く実施例8の処理
を行つた後、実施例5の塗布型クロメート処理水
溶液による塗布、乾燥の処理を行つた。 〔実施例 13〕 亜鉛メツキ鋼板に、乾燥を除く実施例8の処理
を行つた後、実施例7のリチウムシリケート水溶
液による塗布、乾燥を行つた。 〔比較例 3〕 黒色化処理液に硝酸ニツケルを含有させない以
外は、実施例4と同じ方法で亜鉛メツキ鋼板を処
理した。 〔比較例 4〕 黒色化処理液の硝酸ニツケル濃度をNi換算で
5g/l及びNi2+/Sb3+モル比を10とした以外は
実施例4と同じ方法で亜鉛メツキ鋼板を処理し
た。 〔比較例 5〕 黒色化処理液の酒石酸マンチモニルカリウムを
Sb換算で1g/l、硝酸ニツケルをNi換算で60g/
l及びNi2+/Sb3+モル比を120とした以外は実施
例4と同じ方法で亜鉛メツキ鋼板を処理した。 〔比較例 6〕 黒色化処理液の酒石酸マンチモニルカリウムを
Sb換算で4.6g/l、硝酸ニツケルをNi換算で
10g/l及びNi2+/Sb3+モル比を4.5とした以外は
実施例4と同じ方法で亜鉛メツキ鋼板を処理し
た。 前記実施例4,5,6,7,8,9,10,11,
12,13及び比較例3,4,5,6で処理された亜
鉛メツキ鋼板について、耐指紋性試験を行つた結
果を第2表に、皮膜の密着性試験を行つた結果を
第3表に、白色度測定結果を第4表に、塩水噴霧
試験を行つた結果を第7図に示す。 【表】 【表】 【表】 【表】 【表】 〔発明の効果〕 本発明は、短時間で亜鉛又は亜鉛合金表面に黒
色皮膜を形成させることが出来、処理液に銀塩を
用いないので、従来の黒色クロメート法よりも安
価に施工することが出来る。又、特公昭45−
27690号公報に記載されている黒色艶消し被覆を
生成せしめる方法によりも、黒色に且つ均一に亜
鉛又は亜鉛合金表面に皮膜を形成させることが出
来る。 又、黒色皮膜の上に、更にクロメート皮膜、リ
ン酸塩皮膜、アルカリ珪酸塩皮膜又は樹脂皮膜が
施されるので、耐指紋珪、皮膜密着性、耐食性の
点についても優れている。
[Claims] 1 Contains 0.2 to 5 g/l of antimony ions a and 10 to 100 g/l of one or more metal ions selected from metal ions b consisting of nickel ions, iron ions, and cobalt ions. A blackening treatment solution for zinc or zinc alloy comprising an acidic aqueous solution having the metal ion b/antimony ion a molar ratio of 5 to 110 and a pH of 6 or less. 2. The blackening treatment solution for zinc or zinc alloy according to claim 1, wherein the metal ion b/antimony ion a molar ratio is 25 to 70. 3 Zinc or zinc alloy, antimony ion a
0.2 to 5 g/l and 10 to 100 g/l of one or more types selected from metal ion b consisting of nickel ion, iron ion, and cobalt ion, and the metal ion b/the antimony ion A black zinc or zinc alloy, characterized in that it is treated with an acidic aqueous solution having a molar ratio of 5 to 110 and a pH of 6 or less to form a black film, and then a phosphoric acid film is applied to the surface thereof. processing method. 4. The method for blackening zinc or zinc alloy according to claim 3, wherein the metal ion b/antimony ion a molar ratio is 25 to 70. 5 Zinc or zinc alloy, antimony ion a
0.2 to 5 g/l and 10 to 100 g/l of one or more types selected from metal ion b consisting of nickel ion, iron ion, and cobalt ion, and the metal ion b/the antimony ion After forming a black film by treating with an acidic aqueous solution having a molar ratio of 25 to 70 and a pH of 6 or less,
A method for blackening zinc or zinc alloy, which comprises applying a chromate film with a Cr film amount of 1 to 1000 mg/m 2 on the surface thereof. 6 Zinc or zinc alloy, antimony ion a
0.2 to 5 g/l and 10 to 100 g/l of one or more types selected from metal ion b consisting of nickel ion, iron ion, and cobalt ion, and the metal ion b/the antimony ion After forming a black film by treating with an acidic aqueous solution having a molar ratio of 25 to 70 and a pH of 6 or less,
1. A method for blackening zinc or zinc alloy, comprising applying an alkali silicate film with a thickness of 0.01 to 3 μm on the surface thereof. 7 Zinc or zinc alloy, antimony ion a
0.2 to 5 g/l and 10 to 100 g/l of one or more types selected from metal ion b consisting of nickel ion, iron ion, and cobalt ion, and the metal ion b/the antimony ion After forming a black film by treating with an acidic aqueous solution having a molar ratio of 25 to 70 and a pH of 6 or less,
A method for blackening zinc or zinc alloy, the method comprising applying a resin film to the surface of the zinc or zinc alloy. 8 Zinc or zinc alloy, antimony ion a
0.2 to 5 g/l and 10 to 100 g/l of one or more types selected from metal ion b consisting of nickel ion, iron ion, and cobalt ion, and the metal ion b/the antimony ion After forming a black film by treating with an acidic aqueous solution having a molar ratio of 25 to 70 and a pH of 6 or less,
A method for blackening zinc or zinc alloy, which comprises applying a chromate film with a Cr film amount of 1 to 1000 mg/m 2 on the surface thereof, and further applying a resin film thereon. [Industrial Application Field] The present invention relates to a blackening treatment liquid used for continuously and quickly treating zinc or zinc alloys, particularly zinc or zinc alloy metal strip steel sheets, to form a black film on the surface thereof. and its method. The zinc or zinc alloy used in the present invention includes Al, Co, Cr, Ni, Mg,
It also includes those plated with one or more metals selected from In, Ti, Pb, Sn, Mo, Fe, and Mn. [Prior Art] Recently, attempts have been made to continuously and quickly blacken zinc or zinc alloy metal strip steel sheets, or to apply them to automobile parts, electronic parts, refrigerator parts, etc. by subjecting them to blackening treatment or further clear coating them. As a blackening treatment method, a black chromate method is disclosed in Japanese Patent Application Laid-Open No. 193376/1982, but this method uses silver salt in the treatment solution, which is expensive and cannot be carried out in a short time. This is not desirable. Furthermore, Japanese Patent Publication No. 45-27690 describes a method for producing a black matte coating on the surface of a metal object. The method involves a first stage treatment in which the surface of the metal object is contacted with an acidic aqueous solution of a trivalent antimony salt to deposit a black antimony deposit, followed by a second stage treatment in which a phosphate protective coating is deposited thereon. However, since the blackness of the film is not sufficient in this first stage treatment and the film is uneven, it is not possible to obtain a good black film even after the second stage treatment, making it impractical. [Problems to be Solved by the Invention] The present invention is an improved antimony-containing acidic aqueous solution that can be processed in a short time and is inexpensive. The object of the present invention is to provide a blackening treatment solution and method for obtaining a film. [Means for Solving the Problems] The blackening treatment solution that achieves the object of the present invention contains antimony ions a of 0.2 to 5.0 g/l and metal ions b consisting of nickel ions, iron ions, and cobalt ions. It contains 10 to 100 g/l of one or more selected types, and the molar ratio of the metal ion b/the antimony ion a is 5 to 100 g/l.
110 is preferably 25 to 70, and is an aqueous solution with a pH of 6 or less. If fluoride ions are added to this aqueous solution, a uniform black film can be formed in a shorter time. Antimony ions are derived from soluble salts such as antimony potassium tartrate, antimony trichloride, and antimony pentachloride, and their concentration is 0.2 to 5.0 g/l.
used in If it is less than 0.2 g/l, it is insufficient to form a black film in a short time, and if it exceeds 5.0 g/l, the adhesion of the black film formed will be poor, which is not preferred. Nickel, iron, and cobalt metal ions include nickel carbonate, nickel nitrate, nickel chloride, nickel oxide, nickel sulfate, ferrous nitrate, and ferric nitrate.
Inorganic salts such as iron, ferrous chloride, ferric chloride, ferrous sulfate, ferric sulfate, cobalt carbonate, cobalt chloride, cobalt nitrate, cobalt sulfate, nickel acetate, ferric ammonium citric acid, cobalt acetate, etc. derived from organic compounds. In order to obtain a film with a high degree of blackness, the concentration of metal ions should be 10 to 10%.
100g/l, preferably 18g/l or more is required,
Further, the metal ion/antimony ion molar ratio is in the range of 5 to 110, preferably 25 to 70. Considering economic aspects, the upper limit of the metal ion concentration should be below 100 g/l, preferably below 50 g/l. Among the metal ions of nickel, iron, and cobalt, nickel ions are most preferred from the viewpoint of film reactivity. The fluoride ion is derived from hydrofluoric acid, hydrosilicic acid, hydroborofluoric acid, etc., and is used at a concentration of 1 to 60 g/l, preferably 3 to 60 g/l.
It is 30g/l. If it is less than 1 g/l, the uniformity of the film will be poor, and if it exceeds 60 g/l, the adhesion of the black film formed will deteriorate, and equipment will be severely corroded and the working environment will be poor. The pH of the blackening treatment liquid may be adjusted using an inorganic acid such as hydrochloric acid, sulfuric acid, nitric acid, hydrofluoric acid, hydrofluoric acid, or fluoroboric acid, or an organic acid such as acetic acid. A complexing agent such as tartaric acid, citric acid, malic acid, oxalic acid, succinic acid or salts thereof may be added to the blackening treatment liquid in order to stabilize the treatment liquid and prevent sludge from adhering to the object to be treated. I can do it. The amount of the complexing agent to be added is 0.1 to 40 g/l, taking into account the effects and economy of addition. The blackening treatment liquid of the present invention utilizes a substitution reaction between zinc of the material to be treated and antimony, nickel, iron, and cobalt, and is greatly influenced by treatment time and liquid temperature. The higher the liquid temperature, the faster the reaction rate, so it is preferably room temperature or higher. In particular, if a strip-plated steel plate is treated continuously, the treatment time will be 10 seconds or less, so in that case it is preferably 30°C or higher. The upper limit of the liquid temperature is preferably 80° C. or lower in consideration of moisture evaporation, safety, energy saving, etc. The black film formed by the blackening treatment liquid of the present invention has insufficient corrosion resistance and adhesion. In order to improve this corrosion resistance and adhesion, a chromate film, a phosphate film, an alkali silicate film, or a resin film is applied after the blackening treatment and washing with water. If a phosphate film is applied after blackening treatment, the degree of blackness will increase. The improvement in fingerprint resistance can be achieved by applying a resin film or a film containing an alkali silicate as a main component to the surface of the film. The resin film in the present invention is a known film formed by treatment with an aqueous solution of a water-soluble, emulsion-type or dispersion-type organic polymer resin, such as the film disclosed in Japanese Patent Publication No. 60-33192. Examples of such resins include currently used vinyl-based resins such as vinyl acetate, vinyl chloride, and vinylidene chloride, as well as their copolymers, acrylic acid, methacrylic acid, acrylic esters, methacrylic esters, and hydroxyacrylic acid. , acrylic systems such as hydroxyacrylic acid esters and their copolymers, alkyd systems, epoxy systems, urea systems, fluorine systems, urethane systems, ester systems, styrene systems, olefin systems and their copolymers,
Examples include resins such as synthetic rubbers such as butadiene and natural polymers. An inorganic substance such as a chromium compound or silica can be added to this organic polymer resin aqueous liquid as necessary. The chromate film is, for example, a film disclosed in JP-A-50-28444 and JP-A-60-218483, and is preferably formed using a partially reduced chromic acid aqueous solution. Alternatively, resin or silica particles (silica sol, fumed silica) having a size of several tens to several thousand angstroms may be contained. The weight ratio of Cr 3+ /Cr 6+ in the chromic acid aqueous solution is reduced to 1/1 by reducing it with an organic or inorganic reducing agent such as sugar or alcohol.
The pH of the aqueous solution should preferably be ~1/3, and the pH of the aqueous solution should be in the range of 1.5 to 4.0. If the amount of chromate film is too large, the black film will be hidden and the blackness will be weakened, and if it is too small, the effect of the chromate film will be weakened.
Film amount: 1 to 1000 mg/m 2 , preferably 10 to 1000 mg/m 2
200mg/ m2 . For example, a film containing an alkali silicate as a main component is disclosed in Japanese Patent Publication No. 57-2274,
It can be obtained by treatment with an aqueous solution containing an alkali silicate as a main component represented by the general formula M 2 O, nSiO 2 (M: Na, K, Li, ammonium or amine, n: 2-20). , If necessary, a chromium compound such as chromic acid is further added to this. The amount of the alkali silicate film is set to 0.01 to 3 μm for the same reason as the chromate film. The phosphate film has a pH of 2.5 to 5, and contains zinc monophosphate, calcium zinc phosphate, aluminum phosphate, manganese monophosphate, sodium monophosphate, ammonium monophosphate, etc. as the main components. A phosphate aqueous solution is used, but a zinc phosphate aqueous solution is preferred in order to form a strong film with the best adhesion. For example, the phosphate aqueous solution described in Japanese Patent Publication No. 42-12130 is used. In the present invention, the first stage black film and the second stage black film are used.
A corrosion-resistant film is formed by the step chromate film, phosphate film, alkali silicate film, or resin film, but a third stage treatment is added, that is, black film → paint-on chromate film → resin film or By applying an alkali silicate film, black film → phosphate film → resin film → coated chromate film, or alkali silicate film on the surface of zinc or zinc alloy, a film with even better corrosion resistance can be obtained. One example of the treatment steps of the blackening treatment method of the present invention is:
It is as follows. (Degreasing → Water washing) → 1st stage treatment →
Water washing → [Surface conditioning with titanium colloid aqueous solution]
→ 2nd stage treatment → washing with water → [3rd stage treatment] → drying Here, the steps in [ ] are performed as necessary. The first, second, and third stage treatment conditions range from room temperature to
Treated at 90°C for any length of time by spraying, dipping, roll coating, etc. In addition to the above, known treatment aqueous solutions such as tannic acid aqueous solution and phytic acid aqueous solution may be used in the second and third stage treatments. [Operation] When zinc or zinc alloy is brought into contact with the blackening treatment solution of the present invention, Sb, Ni, Co, and Fe ions in the treatment solution are transferred to the surface of zinc or zinc alloy through a substitution reaction with Zn of the material. Depart. However, during the reaction, Sb and
Due to the difference in standard electrode potential between Ni, Co, or Fe and Zn, the precipitation and dissolution reactions proceed selectively and stepwise. That is, Sb, Ni (or Co, Fe), and Zn are easily precipitated in this order, and Zn, Ni (or Co, Fe), and Sb are easily dissolved in that order. The substitution reaction does not result in the precipitation of only Sb or the dissolution of only Zn, but rather the precipitation of Sb, Ni (or
Metals such as Co, Fe), and Zn repeatedly precipitate and dissolve, resulting in a film with a structure that absorbs light. When setting the conditions for the blackening treatment solution, the whiteness [W (Lab)] of the film was measured using a color computer manufactured by Suga Test Instruments Co., Ltd., as a measure of the degree of blackness. The whiteness is W (Lab) = 100−
[(100-L) 2 +a 2 +b 2 ] It is expressed as 1/2 , and the smaller the W value, the closer to black it becomes. The liquid temperature was 50℃ with various Sb 3+ concentrations.
Figure 1 shows the whiteness of the film formed by immersing a galvanized steel sheet with a zinc coating of 20 g/m 2 in an acidic hydrochloric acid solution containing 15 g/l of Ni 2+ and 2-4 g/l of SiF 6 for 10 seconds. . As can be seen from this figure, an Sb 3+ concentration of 0.2 g/l or more, preferably 1.3 g/l or more is required to obtain a black film. At a liquid temperature of 50℃ with various Co 2+ concentrations
A galvanized steel sheet with a zinc coating of 20 g/m 2 was treated with an acidic aqueous solution of hydrochloric acid containing 1.5 g/l of Sb 3+ and 2-4 g/l of SiF 6 .
Figure 2 shows the whiteness of the film formed by the second spray treatment. As can be seen from this figure, in order to obtain a black film, the Co 2+ concentration must be at least 10 g/l, preferably
It turns out that 18g/l or more is required. Also Ni 2+ ,
Fe 3+ also shows almost the same value as Co 2+ . Sb 3+ 1.5g/l at 50°C with various pH changes,
In an aqueous solution containing Fe 3+ 20g/l, the amount of zinc deposited is 20g/l.
Figure 3 shows the whiteness of the film formed by spraying a 5-second galvanized steel sheet. From this figure, it can be seen that in order to obtain a black film, it is best to keep the pH of the treated aqueous solution at 6 or less. A zinc coating of 20 g/m 2 was prepared using a hydrochloric acid aqueous solution containing 2-4 g/l of SiF 6 at a temperature of 50°C with various concentrations of Sb 3+ and Ni 2+ , Co 2+ , and Fe 3+ . Figure 4 shows the relationship between the molar ratio of Ni 2+ and Sb 3+ in the treatment solution to the whiteness of the film formed by spraying a galvanized steel sheet for 5 seconds, and the molar ratio of Co 2+ and Sb 3+ Figure 5 shows the relationship between , and Figure 6 shows the relationship between the molar ratio of Fe 3+ and Sb 3+ .
This is shown graphically in the figure. From these figures, it can be seen that metal ions of Ni 2+ , Co 2+ or Fe 3+ / Sb 3+ in the treated aqueous solution
It has been found that a molar ratio of 5 to 110, preferably 25 to 70, is suitable for obtaining a black film. [Example 1] Electrogalvanized steel sheet, containing 4 g/l of mantimonyl potassium tartrate in terms of Sb and 10 g/l of cobalt acetate in terms of Co, and having a pH of 1.5 and 50 to
Dip in an acidic solution of hydrochloric acid heated to 60℃ for 10 seconds to form a black film, wash with water, and then soak at 55-65℃.
Immersed in an aqueous solution (Bonderite 3300, manufactured by Nippon Parkerizing Co., Ltd.) mainly composed of zinc phosphate for zinc with a total acidity of 20 points for 10 seconds, washed with water, dried, and subjected to appearance evaluation and film adhesion testing. The results are shown in Table 1. [Example 2] Electrolytic galvanized steel sheet was coated with antimony trichloride.
0.5g/l in terms of Sb and ferrous sulfate in terms of Fe.
25g/l, and had a pH of 1.3 and was heated to 55-65°C, immersed for 7 seconds to form a black film, washed with water, and then heated to 55-65°C. It was immersed in an aqueous solution (Bonderite 3300, manufactured by Nippon Parkerizing Co., Ltd.) mainly composed of zinc phosphate with a total acidity of 25 points for 7 seconds, then rinsed with water, and then soaked in a 0.1 g/l chromic acid aqueous solution at 60 to 70°C. Table 1 shows the results of immersion for 3 seconds, draining, drying, appearance evaluation and film adhesion test. [Example 3] Electrolytic galvanized steel sheets and alloyed hot-dip galvanized steel sheets were treated with antimonyl potassium tartrate of 1.5 g/l in terms of SB and nickel chloride of 30 g/l in terms of Ni.
and a hydrochloric acid aqueous solution containing 10 g/l of silicic acid in terms of F and having a pH of 1.5 and heated to 60 to 70°C for 5 seconds (for electrogalvanized steel sheets) to 10 seconds (for alloys). (For hot-dip galvanized steel sheets) Dip to form a black film, wash with water, and then heat to 60 to 70°C in an aqueous solution containing zinc phosphate as the main component (Bonderite 3300) with a total acidity of 15 points. (manufactured by Nippon Parkerizing Co., Ltd.) for 10 seconds and rinsed with water.
Table 1 shows the results of drying, appearance evaluation and adhesion test. [Comparative Example 1] An electrogalvanized steel sheet containing 1 g/l of mantimonyl potassium tartrate in terms of Sb and a pH of 1.5.
Dip for 10 seconds in an acidic solution of hydrochloric acid heated to 50 to 60℃ to form a black film, wash with water, and then
An aqueous solution mainly composed of zinc phosphate for zinc with a total acidity of 20 points (Bonderite
3300. (manufactured by Nippon Parkerizing Co., Ltd.) for 10 seconds, washed with water, dried, and subjected to appearance evaluation and adhesion test. Table 1 shows the results. [Comparative Example 2] Only the first stage treatment of Example 1 was performed, the results were washed with water, dried, and subjected to appearance judgment and adhesion test.
Shown in the table. [Table] [Example 4] Adding antimonyl potassium tartrate to aqueous hydrochloric acid solution
3g/l in terms of Sb and nickel nitrate in terms of Ni.
30 g/l and 5 g/l of silicic acid in terms of F, the Ni 2+ /Sb 3+ molar ratio of the aqueous solution was 21, and the PH was
Prepare a bath with the blackening treatment solution adjusted to 1.7, and heat it to 50-55℃.
It was heated to A galvanized steel sheet was immersed in this treatment solution for 10 seconds to form a black film, washed with water, and dried. [Example 5] A galvanized steel sheet was subjected to the treatment of Example 4 except for the drying step, and then the solid content concentration was 20 g/l,
A coated chromate treatment aqueous solution with a weight ratio of Cr 3+ /Cr 6+ of 2/3 and pH adjusted to 2.5 with KOH was applied, and dried after roll pass. [Example 6] A galvanized steel sheet was treated as in Example 4 except for the drying step, and then an aqueous acrylic resin solution (Watersol S744, manufactured by Dainippon Ink Co., Ltd.) was applied and dried to a dry film thickness of 1 μm. . [Example 7] A galvanized steel sheet was subjected to the treatment of Example 4 except for the drying process, and then lithium silicate (Li 2 O 4 ,
8SiO 2 ) aqueous solution was applied using a roll coater and dried. [Example 8] A galvanized steel sheet was subjected to the treatment of Example 4 excluding the drying step, and then heated to 60 to 65 ° C. A phosphate film treatment aqueous solution (Bonderite 3300 (manufactured by Nippon Parkerizing Co., Ltd.) for 10 seconds, washed with water, and dried. [Example 9] After applying the treatment of Example 5 to a galvanized steel sheet, coating with the acrylic resin aqueous solution of Example 6,
I did drying. [Example 10] A galvanized steel sheet was subjected to the treatment of Example 5, and then coated with the lithium silicate aqueous solution of Example 7 and dried. [Example 11] A galvanized steel sheet was subjected to the treatment of Example 8 except for drying, and then coated with the aqueous acrylic resin solution of Example 6 and dried. [Example 12] A galvanized steel sheet was subjected to the treatment of Example 8 except for drying, and then coated with the coating type chromate treatment aqueous solution of Example 5 and dried. [Example 13] A galvanized steel sheet was subjected to the treatment of Example 8 except for drying, and then coated with the lithium silicate aqueous solution of Example 7 and dried. [Comparative Example 3] A galvanized steel sheet was treated in the same manner as in Example 4, except that the blackening treatment liquid did not contain nickel nitrate. [Comparative Example 4] Concentration of nickel nitrate in blackening treatment solution in terms of Ni
A galvanized steel sheet was treated in the same manner as in Example 4, except that the Ni 2+ /Sb 3+ molar ratio was 5 g/l and 10. [Comparative Example 5] Mantimonyl potassium tartrate in the blackening treatment solution was
1g/l in terms of Sb, 60g/l in terms of Ni nitrate
A galvanized steel sheet was treated in the same manner as in Example 4, except that the Ni 2+ /Sb 3+ molar ratio was 120. [Comparative Example 6] Mantimonyl potassium tartrate in the blackening treatment solution was
4.6g/l in terms of Sb, nickel nitrate in terms of Ni
A galvanized steel sheet was treated in the same manner as in Example 4, except that the Ni 2+ /Sb 3+ molar ratio was 10 g/l and 4.5. Examples 4, 5, 6, 7, 8, 9, 10, 11,
Regarding the galvanized steel sheets treated in Comparative Examples 12, 13 and Comparative Examples 3, 4, 5, and 6, the results of the fingerprint resistance test are shown in Table 2, and the results of the film adhesion test are shown in Table 3. Table 4 shows the results of the whiteness measurement, and FIG. 7 shows the results of the salt spray test. [Table] [Table] [Table] [Table] [Table] [Effects of the invention] The present invention can form a black film on the surface of zinc or zinc alloy in a short time, and does not use silver salt in the treatment solution. Therefore, it can be constructed at a lower cost than the conventional black chromate method. Also, special public service in 1977-
The method for forming a black matte coating described in Japanese Patent No. 27690 also allows a black and uniform coating to be formed on the surface of zinc or zinc alloy. Moreover, since a chromate film, phosphate film, alkali silicate film, or resin film is further applied on the black film, it is also excellent in terms of fingerprint resistance, film adhesion, and corrosion resistance.
JP7125086A 1985-06-24 1986-03-31 Treating solution for blackening zinc or zinc alloy and blackening method Granted JPS6289879A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP13611985 1985-06-24
JP60-136119 1985-06-24

Publications (2)

Publication Number Publication Date
JPS6289879A JPS6289879A (en) 1987-04-24
JPH0588314B2 true JPH0588314B2 (en) 1993-12-21

Family

ID=15167746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7125086A Granted JPS6289879A (en) 1985-06-24 1986-03-31 Treating solution for blackening zinc or zinc alloy and blackening method

Country Status (1)

Country Link
JP (1) JPS6289879A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101950495B1 (en) * 2018-04-03 2019-02-20 (주)지씨엠씨 Coating agent for forming rust-preventive coating layer of metal

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2841912B2 (en) * 1991-03-29 1998-12-24 日本鋼管株式会社 Weldable black steel plate
US5387473A (en) * 1992-03-31 1995-02-07 Nkk Corporation Weldable black steel sheet with low-gloss appearance
JP4980607B2 (en) * 2005-11-21 2012-07-18 オーエム工業株式会社 Blackening treatment method for hot dip galvanized steel and blackened hot dip galvanized steel obtained thereby
JP5591758B2 (en) * 2011-05-11 2014-09-17 株式会社大和化成研究所 Aqueous solution for blackening treatment of metal surface and blackening treatment method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101950495B1 (en) * 2018-04-03 2019-02-20 (주)지씨엠씨 Coating agent for forming rust-preventive coating layer of metal

Also Published As

Publication number Publication date
JPS6289879A (en) 1987-04-24

Similar Documents

Publication Publication Date Title
AU608374B2 (en) Conversion coating solution for treating metal surfaces
EP0038122A1 (en) Forming corrosion-resistant coatings upon the surfaces of metals, especially zinc
JPS61174973A (en) Method of improving corrosion resistanceof self-migration coating resin coating
US5178690A (en) Process for sealing chromate conversion coatings on electrodeposited zinc
US4663245A (en) Hot-dipped galvanized steel sheet having excellent black tarnish resistance and process for producing the same
US3506499A (en) Method of surface-treating zinc,aluminum and their alloys
EP0250792A1 (en) A chromate treatment of a metal coated steel sheet
JPH0588314B2 (en)
JP3088623B2 (en) Method for forming zinc phosphate film on metal surface
JPS63161176A (en) Treatment liquid for blackening zinc or zinc alloy and its method
JP2950481B2 (en) Metal surface treatment method
JPH06306632A (en) Bright bluing method for hot dip-aluminum alloy plated steel sheet
JPH07278891A (en) Pretreatment for coating of metal material
US3372064A (en) Method for producing black coatings on metal surfaces
JP3219453B2 (en) Manufacturing method of galvanized steel sheet with excellent blackening resistance
JPS6128751B2 (en)
JP2816559B2 (en) Manufacturing method of black galvanized steel sheet
US2313925A (en) Coating metals by the aid of acid sulphites
JPS6335784A (en) Zinc or zinc alloy blackening solution and blackening method
JP2596211B2 (en) Post-treatment method of zinc-coated steel sheet
JP4258924B2 (en) Phosphate conversion treatment method for galvanized steel sheet
JPS62290880A (en) Zinc or zinc alloy blackening solution and blackening method
JP5118275B2 (en) Zinc phosphate treatment agent
JP3425268B2 (en) Method for producing galvanized steel sheet with excellent pressability, chemical conversion property, and degreasing solution contamination resistance
JPS5834178A (en) Chromate treatment for plated steel plate