JPH058800B2 - - Google Patents

Info

Publication number
JPH058800B2
JPH058800B2 JP59209897A JP20989784A JPH058800B2 JP H058800 B2 JPH058800 B2 JP H058800B2 JP 59209897 A JP59209897 A JP 59209897A JP 20989784 A JP20989784 A JP 20989784A JP H058800 B2 JPH058800 B2 JP H058800B2
Authority
JP
Japan
Prior art keywords
ray
rays
spectroscopic element
wavelength
cumulative film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP59209897A
Other languages
Japanese (ja)
Other versions
JPS6189547A (en
Inventor
Takashi Shoji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rigaku Corp
Original Assignee
Rigaku Industrial Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigaku Industrial Corp filed Critical Rigaku Industrial Corp
Priority to JP59209897A priority Critical patent/JPS6189547A/en
Publication of JPS6189547A publication Critical patent/JPS6189547A/en
Publication of JPH058800B2 publication Critical patent/JPH058800B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/06Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators
    • G21K1/062Devices having a multilayer structure
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K2201/00Arrangements for handling radiation or particles
    • G21K2201/06Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements
    • G21K2201/061Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements characterised by a multilayer structure
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K2201/00Arrangements for handling radiation or particles
    • G21K2201/06Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements
    • G21K2201/067Construction details

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、人工累積膜をX線回折体として用い
たX線分光素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an X-ray spectroscopy element using an artificial cumulative film as an X-ray diffraction material.

〔従来の技術〕[Conventional technology]

蛍光X線分析装置は試料を一次X線または電子
線等で励起して、その試料から発生する二次X線
の波長を検出するものであるが、このような装置
は種々の物質の単結晶板または人工累積膜等から
なる回折体を用いたX線分光素子を必要とする。
このX線分光素子は、波長と素子の格子面間隔と
で定まる一定の角度でX線が入射したときだけ回
折を生じて、効率よくX線を反射することを利用
し、入射角を変化させることにより所望の波長の
X線を分光するものである。
Fluorescence X-ray analyzers excite a sample with primary X-rays or electron beams, and detect the wavelength of secondary X-rays generated from the sample. An X-ray spectroscopy element using a diffraction material made of a plate or an artificial cumulative film is required.
This X-ray spectroscopy element changes the angle of incidence by utilizing the fact that diffraction occurs only when X-rays are incident at a certain angle determined by the wavelength and the lattice spacing of the element, and the X-rays are efficiently reflected. This allows X-rays of a desired wavelength to be separated into spectra.

上記X線分光素子におけるX線の回折条件は、
周知のように、下記のブラツグの式で与えられ
る。
The X-ray diffraction conditions in the above X-ray spectroscopic element are as follows:
As is well known, it is given by the Bragg equation below.

2dsinφ=nλ d:格子の面間隔 φ:入射角、回折角 λ:蛍光X線の波長 n:反射の次数 〔発明が解決しようとする課題〕 ところで、人工累積膜からなるX線分光素子
は、シリコン等の単結晶板(基板)上に適宜の2
種以上の物質を真空蒸着またはスパツタによつて
交互に付着させて積層構造としたもので、上記格
子の面間隔dが大きいことから、波長λの長い軟
X線を分光する場合に用いられる。このX線分光
素子は、表面が鏡面を形成しているので、X線の
入射角を小さくすると、表面で全反射を生ずるX
線の強度が増大して、これが回折X線と共にX線
検出器に入射するので、SN比が低下する。
2dsinφ=nλ d: Interplanar spacing of the grating φ: Incident angle, diffraction angle λ: wavelength of fluorescent X-ray n: order of reflection [Problem to be solved by the invention] By the way, an X-ray spectroscopic element made of an artificial cumulative film has the following properties: Appropriate 2 on a single crystal plate (substrate) such as silicon
It has a laminated structure in which more than one substance is deposited alternately by vacuum evaporation or sputtering, and because the interplanar spacing d of the lattice is large, it is used for spectroscopy of soft X-rays with a long wavelength λ. Since the surface of this X-ray spectroscopic element forms a mirror surface, when the incident angle of X-rays is made small, total reflection of the X-rays occurs on the surface.
As the intensity of the rays increases and they enter the X-ray detector together with the diffracted X-rays, the signal-to-noise ratio decreases.

ここで、単結晶からなる分光結晶の場合には、
前述のブラツグの式における格子面間隔dが、分
子の大きさで定まるから極めて小さい。そのた
め、ブラツグの式から分かるように、回折を生じ
る入射角φが比較的大きくなるから、前述の全反
射を生じにくい。
Here, in the case of a spectroscopic crystal consisting of a single crystal,
The lattice spacing d in the Bragg equation mentioned above is determined by the size of the molecule and is therefore extremely small. Therefore, as can be seen from Bragg's equation, the angle of incidence φ that causes diffraction becomes relatively large, making it difficult for the aforementioned total internal reflection to occur.

これに対し、人工累積膜は、一つの膜(層)に
多数の分子の層を有しているので、格子面間隔d
が分光結晶に比べ著しく大きくなる。そのため、
ブラツグの式から分かるように、回折を生じる入
射角φを分光結晶に比べて著しく小さく設定する
必要があるので、前述の全反射X線の強度が著し
く大きくなつて、SN比が低下する。また、人工
累積膜を有するX線分光素子は、前述のように、
波長の長いX線を分光する場合に用いられ、その
ため、X線分光素子に入射するX線には分光しよ
うとするX線よりも波長の短いX線を含んでいる
ので、全反射X線の強度が大きくなるから、SN
比の低下が著しい。
On the other hand, an artificial cumulative film has many molecular layers in one film (layer), so the lattice spacing d
is significantly larger than that of a spectroscopic crystal. Therefore,
As can be seen from Bragg's equation, it is necessary to set the incident angle φ that causes diffraction to be significantly smaller than that of the spectroscopic crystal, so the intensity of the aforementioned totally reflected X-rays increases significantly and the S/N ratio decreases. Moreover, as mentioned above, the X-ray spectroscopic element having an artificial cumulative film is
It is used to separate X-rays with long wavelengths, and therefore, the X-rays incident on the X-ray spectrometer include X-rays with shorter wavelengths than the X-rays to be separated, so total internal reflection of X-rays is not possible. Since the intensity increases, SN
There is a significant decrease in the ratio.

本発明は、上記従来の問題に鑑みてなされたも
ので、人工累積膜を有するX線分光素子におい
て、全反射X線を減少させて、SN比の高いX線
分光素子を提供することを目的とする。
The present invention was made in view of the above-mentioned conventional problems, and an object of the present invention is to provide an X-ray spectroscopic element having an artificial cumulative film that reduces total internal reflection of X-rays and has a high signal-to-noise ratio. shall be.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、この発明は、人工
累積膜の表面上に、人工累積膜を構成する物質よ
りも密度の小さい物質の表面層を形成している。
In order to achieve the above object, the present invention forms a surface layer of a material having a lower density than the material constituting the artificial cumulative film on the surface of the artificial cumulative film.

〔作用〕[Effect]

以下、実施例の説明に先立つて、この発明の原
理を説明する。
Hereinafter, the principle of the present invention will be explained before explaining the embodiments.

鏡面によるX線の全反射率Iは、入射角ψの低
下に伴つて増大し、0度において1となる。ま
た、全反射率Iが約0.5となる入射角は、X線の
波長をλ(Å)、反射体の密度をρ(g/cm3)とす
ると、0.094λ√度で与えられる。したがつて、
人工累積膜の表面に人工累積膜を構成する分子の
密度よりも密度ρの小さい物質の表面層を形成す
ることによつて、全反射X線の強度を小さくする
ことができる。このため、一定の波長の回折X線
と種々の波長を含む全反射X線との強度比、つま
りSN比を増大し得る。なお、表面層の表面を粗
面とするときは全反射X線が更に減少して、この
効果は一層増大する。
The total reflectance I of X-rays by the mirror surface increases as the incident angle ψ decreases, and becomes 1 at 0 degrees. Further, the incident angle at which the total reflectance I is approximately 0.5 is given by 0.094λ√ degree, where the wavelength of the X-ray is λ (Å) and the density of the reflector is ρ (g/cm 3 ). Therefore,
By forming on the surface of the artificial cumulative film a surface layer of a substance whose density ρ is smaller than the density of the molecules constituting the artificial cumulative film, the intensity of the totally reflected X-rays can be reduced. Therefore, the intensity ratio between the diffracted X-rays of a certain wavelength and the total reflected X-rays containing various wavelengths, that is, the S/N ratio can be increased. Note that when the surface of the surface layer is made rough, the total reflected X-rays are further reduced, and this effect is further enhanced.

〔実施例〕〔Example〕

以下、本発明の一実施例について説明する。 An embodiment of the present invention will be described below.

第1図は本発明実施例のX線分光素子1を用い
た蛍光X線分析装置の構成例を示した図で、素子
1における紙面と平行な断面の一部を拡大した図
を第2図に示してある。すなわち分光素子1は、
シリコン単結晶ウエハからなる基板2の上にシリ
コンおよびタングステンを交互に真空蒸着または
スパツタして、それらの薄層3,4からなる人工
累積膜を形成し、更に、人工累積膜の表面に密度
ρがシリコンおよびタングステンより小さい炭素
の表面層5を真空蒸着によつて1000Å程度の厚さ
に形成したものである。
FIG. 1 is a diagram showing an example of the configuration of an X-ray fluorescence spectrometer using an X-ray spectroscopy element 1 according to an embodiment of the present invention, and FIG. It is shown in That is, the spectroscopic element 1 is
Silicon and tungsten are alternately vacuum-deposited or sputtered on a substrate 2 made of a silicon single crystal wafer to form an artificial cumulative film consisting of thin layers 3 and 4, and a density ρ is further applied to the surface of the artificial cumulative film. A surface layer 5 of carbon, which is smaller than silicon and tungsten, is formed by vacuum evaporation to a thickness of about 1000 Å.

第1図の装置は、このようなX線分光素子1
を、その前面の中心点dを通つて紙面に垂直な軸
により矢印qのように回動自在に支持し、その一
方の側部にソーラスリツト6と蛍常X線分析試料
7およびこの試料7を励起して蛍光X線を発生さ
せるためのX線管8等を設けてある。また、分光
素子1の他方の側部には、ソーラスリツト9およ
び例えば比例計数管のようなX線検出器10を設
けて、その基台11を矢印qのような分光素子1
の回転角速度の2倍の速度で点pを中心として同
方向へ回転するように上記素子の駆動源に連結し
てある。つまり、試料7から発生する蛍光X線の
うちソーラスリツト6を通つたものが入射角φ
(フアイ:図面では「」で示す。)をもつて分光
素子1に入射し、この入射角φによつて定まる一
定波長λのX線に回折を生ずるから、この回折X
線がソーラスリツト9を通つて検出器10で検出
される。
The apparatus shown in FIG. 1 includes such an X-ray spectroscopic element 1.
is supported rotatably in the direction of arrow q by an axis perpendicular to the plane of the paper through the center point d of its front surface, and a solar slit 6, a fluorescent X-ray analysis sample 7, and this sample 7 are attached to one side of the support. An X-ray tube 8 and the like are provided for exciting and generating fluorescent X-rays. Further, on the other side of the spectroscopic element 1, a solar slit 9 and an X-ray detector 10 such as a proportional counter tube are provided, and the base 11 is connected to the spectroscopic element 1 as indicated by the arrow q.
The elements are connected to the drive source of the element so as to rotate in the same direction about point p at a speed twice the rotational angular velocity of . In other words, among the fluorescent X-rays generated from the sample 7, those that pass through the solar slit 6 have an incident angle φ
(indicated by "" in the drawing)) enters the spectroscopic element 1, and diffraction occurs in the X-rays with a constant wavelength λ determined by this incident angle φ, so this diffracted X-ray
The line passes through the solar slit 9 and is detected by a detector 10.

上記装置を用いて、例えば重量比で0.05%程度
のマグネシウムを含んだ鋳鉄を試料7とし、その
マグネシウム(Mg)の特性X線Mg−Kα線の強
度を検出するもものとすると、この信号X線の波
長λsに比較的近い波長λoの雑音成分として鉄の特
性X線Fe−L線がある。第3図、第4図は第1
図の分光素子1および検出器10の基台11を回
転して、分光素子1に対する蛍光X線の入射角φ
を変化させると共に、検出器10の出力を更に波
高分析器に加えて、波長λsおよびλoのX線強度I
を分離して測定した場合の曲線S,Nを示したも
ので、縦軸の目盛は入射角φを0とした場合、す
なわち全反射率100%の強度を1としてある。な
お、第3図は第2図における炭素の表面層5を設
けない従来のX線分光素子を用いた場合を示し、
第4図は第2図のX線分光素子を用いた場合を示
す。
For example, if we use the above device to detect the intensity of the characteristic X-ray Mg-Kα ray of magnesium (Mg) using sample 7, which is cast iron containing about 0.05% magnesium by weight, the signal X The characteristic X-ray Fe-L line of iron is a noise component having a wavelength λ o relatively close to the wavelength λ s of the line. Figures 3 and 4 are the first
By rotating the base 11 of the spectroscopic element 1 and detector 10 shown in the figure, the incident angle φ of the fluorescent X-rays with respect to the spectroscopic element 1 is determined.
At the same time, the output of the detector 10 is further applied to the pulse height analyzer to obtain the X - ray intensities I
The curves S and N are shown when measured separately, and the scale on the vertical axis is 1 when the incident angle φ is 0, that is, the intensity at 100% total reflectance. Note that FIG. 3 shows a case where a conventional X-ray spectroscopic element without the carbon surface layer 5 in FIG. 2 is used,
FIG. 4 shows a case where the X-ray spectroscopic element shown in FIG. 2 is used.

ここで波長λsのMg−Kα線は入射角φsの位置で
回折を生じ、波長λoのFe−L線はψoの位置で回
折してこれらの位置にピーク部を発生するのであ
るが、入射角ψsの位置におけるピーク部の真の高
さを測定することによつて、Mg−Kα線の強度を
正確に知ることができる。しかし、前述のように
波長λ(Å)のX線が密度ρ(g/cm3)の物質に入
射してその約50%が全反射する角度は、0.094λ√
ρ度で与えられるから、従来のX線分光素子のよ
うに例えば密度ρが19.3のタングステン層4にX
線が直接入射する場合には、上記全反射する角度
が大きくなる。これに対し、密度ρが2.2の炭素
層5に入射する場合には、50%が全反射する角度
は、約3分の1に低下する。すなわち、炭素層の
表面層5を設けない場合における全反射部分の半
価角を曲線S,Nについてそれぞれψ0s,ψ0o
し、炭素層5を設けた場合ψ1s,ψ1oとすると、第
3図、第4図に示したように、後者は、前者の約
3分の1の角度となる。
Here, the Mg-Kα ray of wavelength λ s causes diffraction at the position of incident angle φ s , and the Fe-L ray of wavelength λ o diffracts at the position of ψ o , producing peaks at these positions. However, by measuring the true height of the peak at the incident angle ψ s , the intensity of the Mg-Kα ray can be accurately determined. However, as mentioned above, the angle at which an X-ray with wavelength λ (Å) enters a substance with density ρ (g/cm 3 ) and about 50% of it is totally reflected is 0.094λ√
Since it is given by ρ degrees, for example, in a conventional X-ray spectroscopic element, X
When the ray is directly incident, the angle of total reflection becomes large. On the other hand, when the light is incident on the carbon layer 5 having a density ρ of 2.2, the angle at which 50% of the light is totally reflected is reduced to about one-third. That is, if the half-value angles of the total reflection part in the case where the surface layer 5 of the carbon layer is not provided are ψ 0s and ψ 0o for curves S and N, respectively, and ψ 1s and ψ 1o in the case where the carbon layer 5 is provided, then As shown in FIGS. 3 and 4, the latter angle is about one third of the former angle.

更に、検出器10には、入射角ψsにおける回折
X線の強度を測定しようとする波長λsのX線と雑
音成分である波長λoのX線とが同時に入射するか
ら、その強度の和は各図に破線で示したように表
される。従つて、炭素層の表面層5を設けない従
来の分光素子においては、第3図のように測定し
ようとする真のピーク値に全反射に基づく極めて
大きい誤差成分xが加わる。これに対して炭素の
表面層5を設けた本発明のX線分光素子を用いる
ときは、第4図のように、誤差成分yが極めて小
さくなつて、正確な測定を行うことができる。
Furthermore, since the X-ray of wavelength λ s and the noise component of X-ray of wavelength λ o for which the intensity of the diffracted X-ray at the incident angle ψ s is to be measured are simultaneously incident on the detector 10, the intensity of the diffracted X-ray can be measured. The sum is represented by the dashed line in each figure. Therefore, in a conventional spectroscopic element not provided with the carbon surface layer 5, an extremely large error component x due to total reflection is added to the true peak value to be measured as shown in FIG. On the other hand, when the X-ray spectroscopic element of the present invention provided with the carbon surface layer 5 is used, as shown in FIG. 4, the error component y becomes extremely small and accurate measurements can be performed.

〔発明の効果〕 以上実施例について詳述したように、本発明
は、格子面間隔が大きいこから回折角が小さくな
る人工累積膜を有するX線分光素子において、人
工累積膜の表面上に、人工累積膜を構成する物質
よりも密度の小さい物質の表面層を設けたので、
全反射X線の強度を極めて小さくでき、そのた
め、SN比が高くなつて、分光の精度が著しく向
上する。
[Effects of the Invention] As described above in detail with respect to the embodiments, the present invention provides an X-ray spectroscopic element having an artificial cumulative film in which the diffraction angle is small due to the large lattice spacing. Because we provided a surface layer of a material with a lower density than the material that makes up the artificial cumulative film,
The intensity of the totally reflected X-rays can be made extremely small, resulting in a high signal-to-noise ratio and a marked improvement in the accuracy of spectroscopy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例のX線分光素子を用いた
蛍光X線分析装置の構成の一例を示した図、第2
図は第1図におけるX線分光素子の断面の一部を
拡大した図、第3図は従来のX線分光素子を用い
た場合におけるX線の入射角と反射および回折X
線強度との関係を示した曲線、第4図は本発明実
施例のX線分光素子を用いた場合における第3図
と同様の曲線である。なお図において、1はX線
分光素子、2は基板、3はシリコン層、4はタン
グステン層、5は炭素層(表面層)である。
FIG. 1 is a diagram showing an example of the configuration of a fluorescent X-ray spectrometer using the X-ray spectroscopic element of the embodiment of the present invention, and FIG.
The figure is an enlarged view of a part of the cross section of the X-ray spectrometer in Figure 1, and Figure 3 is an enlarged view of the X-ray incident angle, reflection, and diffraction of X-rays when using a conventional X-ray spectrometer.
The curve shown in FIG. 4 showing the relationship with the ray intensity is the same curve as in FIG. 3 when the X-ray spectroscopic element of the embodiment of the present invention is used. In the figure, 1 is an X-ray spectroscopic element, 2 is a substrate, 3 is a silicon layer, 4 is a tungsten layer, and 5 is a carbon layer (surface layer).

Claims (1)

【特許請求の範囲】[Claims] 1 基板上に2種以上の物質を交互に付着させた
人工累積膜からなるX線回折体の表面上に、上記
人工累積膜を構成する物質よりも密度の小さい物
質の表面層を形成したことを特徴とするX線分光
素子。
1. On the surface of an X-ray diffraction material consisting of an artificial cumulative film in which two or more types of substances are alternately deposited on a substrate, a surface layer of a substance having a lower density than the substance constituting the artificial cumulative film is formed. An X-ray spectroscopy element characterized by:
JP59209897A 1984-10-08 1984-10-08 X-ray spectroscopic element Granted JPS6189547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59209897A JPS6189547A (en) 1984-10-08 1984-10-08 X-ray spectroscopic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59209897A JPS6189547A (en) 1984-10-08 1984-10-08 X-ray spectroscopic element

Publications (2)

Publication Number Publication Date
JPS6189547A JPS6189547A (en) 1986-05-07
JPH058800B2 true JPH058800B2 (en) 1993-02-03

Family

ID=16580451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59209897A Granted JPS6189547A (en) 1984-10-08 1984-10-08 X-ray spectroscopic element

Country Status (1)

Country Link
JP (1) JPS6189547A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01213599A (en) * 1988-02-23 1989-08-28 Nippon Telegr & Teleph Corp <Ntt> Reflection type diffraction grating
US7742566B2 (en) * 2007-12-07 2010-06-22 General Electric Company Multi-energy imaging system and method using optic devices

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60178342A (en) * 1984-02-24 1985-09-12 Shimadzu Corp X-ray-spectrum analyzing crystal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60178342A (en) * 1984-02-24 1985-09-12 Shimadzu Corp X-ray-spectrum analyzing crystal

Also Published As

Publication number Publication date
JPS6189547A (en) 1986-05-07

Similar Documents

Publication Publication Date Title
Gullikson et al. A soft x-ray/EUV reflectometer based on a laser produced plasma source
JPH11304728A (en) X-ray measuring device
US5406609A (en) X-ray analysis apparatus
JPH08184572A (en) Total-reflection x-ray analytical apparatus
JPH0769477B2 (en) X-ray spectrometer
De Boer Angular dependence of X‐ray fluorescence intensities
JPH058800B2 (en)
JPH08128971A (en) Exafs measuring device
JPH0682398A (en) X-ray diffraction analyser
JP3026369B2 (en) Soft X-ray multilayer mirror
JP3034420B2 (en) Background correction method for X-ray fluorescence analysis
JPH0798285A (en) X-ray evaluation apparatus
JPH0833359B2 (en) Total reflection X-ray fluorescence analyzer
JP2955142B2 (en) Total reflection X-ray fluorescence analyzer
JP3217871B2 (en) X-ray analyzer and total reflection X-ray fluorescence analyzer
JP3095031B2 (en) Soft X-ray multilayer spectroscopy device
JPH0792112A (en) X-ray evaluation system
JPH0772298A (en) X-ray spectroscope and x-ray spectroscopic element
US6650728B2 (en) Apparatus and method for the analysis of atomic and molecular elements by wavelength dispersive X-ray spectrometric devices
Arndt Phase determination in X-ray crystallography by anomalous scattering techniques
JPH06160312A (en) X-ray evaluation apparatus
SU584234A1 (en) Method and apparatus for measuring monocrystal lattice constants
Martin Filling the spectroscopic gap between microwaves and the infra-red. Part I
JPH03209156A (en) Fluorescent x-ray analysis apparatus and composite artificial multilayered film body
JP4174694B2 (en) X-ray spectrometer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees