JPH0587971A - Emergency core cooling system of nuclear reactor - Google Patents

Emergency core cooling system of nuclear reactor

Info

Publication number
JPH0587971A
JPH0587971A JP3247792A JP24779291A JPH0587971A JP H0587971 A JPH0587971 A JP H0587971A JP 3247792 A JP3247792 A JP 3247792A JP 24779291 A JP24779291 A JP 24779291A JP H0587971 A JPH0587971 A JP H0587971A
Authority
JP
Japan
Prior art keywords
steam
reactor
pressure
cooling system
steam injector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3247792A
Other languages
Japanese (ja)
Other versions
JP2736191B2 (en
Inventor
Kazuyoshi Kataoka
一芳 片岡
Sunao Narabayashi
直 奈良林
Kenji Arai
健司 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3247792A priority Critical patent/JP2736191B2/en
Publication of JPH0587971A publication Critical patent/JPH0587971A/en
Application granted granted Critical
Publication of JP2736191B2 publication Critical patent/JP2736191B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

PURPOSE:To enable highly reliable water injection into a reactor core during reactor accident for a high pressure range to a low pressure range thereof, without any additional dynamic equipments which require very high reliability. CONSTITUTION:At a position higher than a reactor core 14 in a nuclear reactor pressure vessel 13, a gravity falling type core cooling system pool 17 is installed in a nuclear reactor containment vessel 1. Beneath the cooling system pool 17, a pressure suppression pool 15 is also installed and a steam injector 2 is installed in a dry well of the nuclear reactor containment vessel 1, as well. This steam injector 2 is connected to a steam feed line 4 which is connected to the nuclear rotor pressure vessel 13, a steam discharge line 5, a feed water line 3 which is connected to the gravity falling type core cooling system pool 17, and a drain line 36 which is connected to the pressure suppression pool 15, and also both a reducing valve 20 of the steam feed line 4 and a control valve 6 of the feed water line 4 are connected to a controller 38 through signal leads 39 and 40.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は原子炉の緊急炉心冷却系
に係り、特に軽水炉の非常時の高圧炉心注水系として好
適な蒸気インジェクタを使用した原子炉緊急炉心冷却系
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nuclear reactor emergency core cooling system, and more particularly to a nuclear reactor emergency core cooling system using a steam injector suitable as an emergency high pressure core water injection system for light water reactors.

【0002】[0002]

【従来の技術】原子力発電プラントでは万一の原子炉系
配管破断による冷却材の流出にそなえて非常用炉心冷却
系設備(ECCS)を設けている。この設備は各々独立
した多重の系統からなっており、事故の際は自動的に起
動するように構成されている。従来、非常用炉心冷却設
備における原子炉の緊急冷却系に蒸気インジェクタを組
み込んだものが知られている。
2. Description of the Related Art In a nuclear power plant, an emergency core cooling system facility (ECCS) is provided in case of a coolant outflow due to a break of a reactor system piping. This equipment consists of multiple independent systems, and is configured to start automatically in the event of an accident. 2. Description of the Related Art Conventionally, it is known that a steam injector is incorporated into an emergency cooling system of a nuclear reactor in an emergency core cooling facility.

【0003】すなわち、図4に示したように原子炉格納
容器1内に蒸気インジェクタ2を設置し、その蒸気イン
ジェクタ2に給水ライン3と、蒸気ライン4と、冷却水
吐出ライン5を接続する。給水ライン3は給水用逆止弁
6および給水用制御弁7を通って原子炉格納容器1外に
設置した冷却用給水タンク8に接続し、蒸気ライン4は
蒸気供給用制御弁9を介して主蒸気ライン10に接続し、
冷却水吐出ライン5は吐出用逆止弁11を通して主給水管
12に接続し、この主給水管12を介して原子炉格納容器1
内に格納した原子炉圧力容器12に接続している。なお、
図中、符号14は炉心、15は圧力抑制プール、16は隔離冷
却プールをそれぞれ示している。蒸気インジェクタ2は
たとえば図5に示したような構造になっているものであ
る。
That is, as shown in FIG. 4, a steam injector 2 is installed in a reactor containment vessel 1, and a water supply line 3, a steam line 4 and a cooling water discharge line 5 are connected to the steam injector 2. The water supply line 3 is connected to a cooling water supply tank 8 installed outside the reactor containment vessel 1 through a water supply check valve 6 and a water supply control valve 7, and a steam line 4 is connected via a steam supply control valve 9. Connected to the main steam line 10,
The cooling water discharge line 5 is connected to the main water supply pipe through the discharge check valve 11.
12 and the reactor containment vessel 1 via this main water supply pipe 12.
It is connected to the reactor pressure vessel 12 housed inside. In addition,
In the figure, reference numeral 14 is the core, 15 is the pressure suppression pool, and 16 is the isolated cooling pool. The steam injector 2 has a structure as shown in FIG. 5, for example.

【0004】すなわち、図5に示した蒸気インジェクタ
は蒸気供給口21を有するケーシング22にニードル弁23を
有する蒸気噴出ノズル24を設け、この蒸気噴出ノズル24
に水吸込口25を隣接している。この蒸気噴出ノズル24の
下流側に蒸気・水混合ノズル26および昇圧用デフェーザ
27を配設し、逆止弁28を介して吐出口29に連通してい
る。蒸気・水混合ノズル26のスロート部30には、オーバ
ーフロー配水管31に連通するオーバーフロー排水口32が
開口している。
That is, in the steam injector shown in FIG. 5, a casing 22 having a steam supply port 21 is provided with a steam jet nozzle 24 having a needle valve 23, and the steam jet nozzle 24 is provided.
Adjacent to the water suction port 25. A steam / water mixing nozzle 26 and a pressurizing dephasor are provided downstream of the steam jetting nozzle 24.
27 is provided and communicates with the discharge port 29 via the check valve 28. The throat portion 30 of the steam / water mixing nozzle 26 has an overflow drainage port 32 communicating with an overflow water distribution pipe 31.

【0005】そして、例えばニードル弁23をハンドル33
により蒸気噴出ノズル24から引き抜き、蒸気供給口21か
ら供給された蒸気が蒸気噴出ノズル24から噴出すると、
水吸込口25から吸い込まれる供給水(供給蒸気の飽和温
度よりも約70℃低い水温)により蒸気が凝縮されながら
蒸気・水混合ノズル26に流入し、スロート部30で高速水
流となる。つまり、スロート部30で駆動蒸気圧よりも高
く昇圧された高速水流となって冷却水吐出口から冷却水
が流出する構造になっている。
Then, for example, the needle valve 23 is attached to the handle 33.
When the steam supplied from the steam supply port 21 is discharged from the steam discharge nozzle 24 by the steam discharge nozzle 24,
The steam is condensed by the supply water (about 70 ° C. lower than the saturation temperature of the supply steam) sucked from the water suction port 25, flows into the steam / water mixing nozzle 26, and becomes a high-speed water flow in the throat section 30. That is, the throat portion 30 has a structure in which the cooling water flows out from the cooling water discharge port as a high-speed water flow whose pressure is higher than the driving steam pressure.

【0006】このように蒸気インジェクタ2は構造がそ
れほど複雑でなく、それ自身モータなどの動的機器を必
要としない利点がある。また、ケーシング22内にオーバ
ーフロー用逆止弁(図示せず)が設けられており、その
逆止弁から接続されているドレンラインは蒸気インジェ
クタが作動すると蒸気・水混合ノズル24が負圧になり、
その逆止弁は自動的に閉じ、負圧を必要としない利点が
ある。この蒸気インジェクタを用いた原子炉の緊急炉心
冷却系では、冷却材喪失時などにより緊急炉心冷却が必
要な場合、給水制御弁が開き蒸気インジェクタに水が供
給され、蒸気ラインから供給される蒸気が凝縮して、給
水を昇圧して炉心に注入し、炉心冷却が行なわれる。
As described above, the steam injector 2 has an advantage that its structure is not so complicated and that it itself does not require a dynamic device such as a motor. A check valve for overflow (not shown) is provided in the casing 22, and the drain line connected from the check valve causes the steam / water mixing nozzle 24 to have a negative pressure when the steam injector operates. ,
The check valve has the advantage that it automatically closes and does not require negative pressure. In an emergency core cooling system for a nuclear reactor using this steam injector, when emergency core cooling is required due to loss of coolant, etc., the water supply control valve opens and water is supplied to the steam injector, and steam supplied from the steam line is After condensing, the feed water is pressurized and injected into the core to cool the core.

【0007】また、低圧で注入する緊急炉心冷却系には
図6に示すような構成の重力落下式炉心冷却系が知られ
ている。重力落下式炉心冷却系プール17を原子炉格納用
容器1内の炉心14より高い位置に設置し、原子炉圧力容
器13と逆止弁18のある冷却ライン19で結び、原子炉圧力
容器13には複数個の減圧弁20が取付けられる。圧力抑制
プール15と逆止弁18との間には均圧ライン34が結ばれ、
均圧ライン34には均圧ライン用制御弁35が設けられてい
る。この重力落下式炉心冷却系は、重力を駆動力として
いるため、ポンプなどの動的な機器が不必要で、構造も
簡単である。この重力落下式緊急炉心冷却系では、配管
破断などの事故が起きた場合、減圧弁20が開いて原子炉
圧力容器13内の圧力を下げ、重力落下による冷却水が炉
心に流入され冷却を行う。
As an emergency core cooling system for injecting at a low pressure, a gravity-drop type core cooling system having a structure shown in FIG. 6 is known. The gravity-drop core cooling system pool 17 is installed at a position higher than the core 14 in the reactor containment vessel 1, and is connected to the reactor pressure vessel 13 with a cooling line 19 having a check valve 18 to form a reactor pressure vessel 13. Is equipped with a plurality of pressure reducing valves 20. A pressure equalizing line 34 is connected between the pressure suppression pool 15 and the check valve 18,
The pressure equalizing line 34 is provided with a pressure equalizing line control valve 35. Since this gravity drop type core cooling system uses gravity as a driving force, it does not require a dynamic device such as a pump and has a simple structure. In this gravity drop type emergency core cooling system, when an accident such as pipe breakage occurs, the pressure reducing valve 20 opens to reduce the pressure in the reactor pressure vessel 13, and cooling water due to gravity drop flows into the core for cooling. ..

【0008】[0008]

【発明が解決しようとする課題】しかしながら、蒸気イ
ンジェクタ2を用いた原子炉の緊急炉心冷却系では、蒸
気インジェクタ2が起動するためには、流入した蒸気が
接触して凝縮が起こる界面が必要である。界面を形成す
るためには冷却水の蒸気インジェクタ2への供給がなく
てはならないので、ポンプなどの駆動系が別途必要であ
る。蒸気インジェクタを用いた原子炉の冷却系は、冷却
材喪失時などにより緊急炉心冷却が必要な場合、蒸気イ
ンジェクタ2を駆動する蒸気供給用制御弁9及び給水用
制御弁7が確実に開いて給水タンク8内の水が流入しな
ければならない。そのため、これらの起動に必要な系を
用意しなければ蒸気インジェクタが作動しないという課
題がある。
However, in the emergency core cooling system of a nuclear reactor using the steam injector 2, in order for the steam injector 2 to start, an interface at which the inflowing steam comes into contact and condensation occurs is required. is there. Since cooling water must be supplied to the steam injector 2 to form the interface, a separate drive system such as a pump is required. In a reactor cooling system using a steam injector, when emergency core cooling is required due to loss of coolant or the like, the steam supply control valve 9 and the water supply control valve 7 that drive the steam injector 2 are reliably opened to supply water. The water in the tank 8 must flow in. Therefore, there is a problem that the steam injector does not operate unless a system necessary for starting these is prepared.

【0009】また、重力落下式緊急炉心冷却系では、減
圧20の開放により原子炉圧力容器13内の圧力を急速に大
気圧まで減圧して重力落下による冷却水が炉心に注入さ
れるようにしなくてはならないので、事故時に開く信頼
性の高い大容量の減圧弁を従来のBWRの約2倍の台数
程度多く用いなければならないという課題である。
In the gravity drop type emergency core cooling system, the pressure inside the reactor pressure vessel 13 is rapidly reduced to the atmospheric pressure by opening the depressurization 20 so that the cooling water due to the gravity drop is not injected into the core. Therefore, it is a problem that a large number of highly reliable pressure reducing valves that open at the time of an accident must be used in an amount of about twice the number of conventional BWRs.

【0010】本発明は上記課題を解決するためになされ
たもので、蒸気インジェクタの起動系をもち、高圧から
低圧にわたって高い信頼性をもって事故時に炉心に注水
出来る原子炉の緊急炉心冷却を提供することにある。
The present invention has been made to solve the above problems, and provides an emergency core cooling system for a nuclear reactor which has a steam injector start-up system and which can highly reliably inject water into the core in the event of an accident from high pressure to low pressure. It is in.

【0011】[0011]

【課題を解決するための手段】第1の発明は原子炉格納
容器内に格納された原子炉圧力容器と、この原子炉圧力
容器内に配置された炉心よりも高い位置でかつ前記原子
炉格納容器内に設置された重力落下式炉心冷却系プール
と、この重力落下式冷却系プールの下方に設置された圧
力抑制プールと、前記原子炉格納容器のドライウエル内
にに設置された蒸気インジェクタと、この蒸気インジェ
クタの蒸気流入口と前記原子炉圧力容器とを結ぶ蒸気供
給ラインと、前記蒸気インジェクタの給水口と前記重力
落下式炉心冷却系プールとを結ぶ給水ラインと、前記蒸
気インジェクタの冷却水吐出口と前記原子炉圧力容器と
を結ぶ冷却水吐出ラインと、前記蒸気インジェクタのド
レン口と前記圧力抑制プールとを結ぶドレンラインと、
前記蒸気供給ラインの減圧弁と前記給水ラインの制御弁
と制御する制御装置とを具備したことを特徴とする。
A first aspect of the present invention is to provide a reactor pressure vessel housed in a reactor containment vessel, and a reactor containment vessel at a position higher than a reactor core arranged in the reactor pressure vessel. A gravity drop core cooling system pool installed in the vessel, a pressure suppression pool installed under the gravity drop cooling system pool, and a steam injector installed in the dry well of the reactor containment vessel. , A steam supply line connecting the steam inlet of the steam injector and the reactor pressure vessel, a water supply line connecting the water supply port of the steam injector and the gravity drop core cooling system pool, and cooling water of the steam injector A cooling water discharge line connecting the discharge port and the reactor pressure vessel, a drain line connecting the drain port of the steam injector and the pressure suppression pool,
A control device for controlling the pressure reducing valve of the steam supply line and the control valve of the water supply line are provided.

【0012】第2の発明は原子炉格納容器内に格納され
た原子炉圧力容器と、この原子炉圧力容器内に配置され
た炉心よりも高い位置でかつ前記原子炉格納容器内に設
置された重力落下式炉心冷却系プールと、この重力落下
式冷却系プールの下方に設置された圧力抑制プールと、
前記原子炉格納容器のドライウエル内にに設置された蒸
気インジェクタと、この蒸気インジェクタの蒸気流入口
と前記原子炉圧力容器とを結ぶ蒸気供給ラインと、前記
蒸気インジェクタの給水口と前記重力落下式炉心冷却系
プールとを結ぶ給水ラインと、前記蒸気インジェクタの
冷却水吐出口と前記原子炉圧力容器とを結ぶ冷却水吐出
ラインと、前記蒸気インジェクタのドレン口と前記圧力
抑制プールとを結ぶドレンラインと、前記圧力抑制プー
ル内に設置された給水循環ポンプと、この給水ポンプと
給水循環用逆止弁を有しかつ前記重力落下式冷却プール
とを結ぶ給水循環ラインを具備したことを特徴とする。
The second invention is installed in the reactor containment vessel at a position higher than the reactor pressure vessel housed in the reactor containment vessel and the reactor core arranged in the reactor pressure vessel. Gravity drop type core cooling system pool, pressure suppression pool installed below this gravity drop type cooling system pool,
A steam injector installed in the dry well of the reactor containment vessel, a steam supply line connecting the steam inlet of the steam injector and the reactor pressure vessel, a water inlet of the steam injector, and the gravity drop type. A water supply line connecting the core cooling system pool, a cooling water discharge line connecting the cooling water discharge port of the steam injector and the reactor pressure vessel, and a drain line connecting the drain port of the steam injector and the pressure suppression pool And a water supply circulation pump installed in the pressure suppression pool, and a water supply circulation line having the water supply pump and a check valve for water supply circulation and connecting the gravity drop type cooling pool. ..

【0013】第3の発明は原子炉格納容器内に格納され
た原子炉圧力容器と、この原子炉圧力容器内に配置され
た炉心よりも高い位置でかつ前記原子炉格納容器内に設
置された重力落下式炉心冷却系プールと、この重力落下
式冷却系プールの下方に設置された圧力抑制プールと、
前記原子炉格納容器のドライウエル内にに設置された蒸
気インジェクタと、この蒸気インジェクタの蒸気流入口
と前記原子炉圧力容器とを結ぶ蒸気供給ラインと、前記
蒸気インジェクタの給水口と前記重力落下式炉心冷却系
プールとを結ぶ給水ラインと、前記蒸気インジェクタの
冷却水吐出口と前記原子炉圧力容器とを結ぶ冷却水吐出
ラインと、前記蒸気インジェクタのドレン口と前記圧力
抑制プールとを結ぶドレンラインと、前記原子炉格納容
器のドライウエル内に設置された蓄圧給水タンクと、こ
の蓄圧給水タンクと前記蒸気インジェクタの給水口とを
結ぶ起動用制御弁を有する蓄圧ラインと、前記減圧弁と
前記起動用制御弁とを制御する制御装置とを具備したこ
とを特徴とする。
According to a third aspect of the present invention, the reactor pressure vessel stored in the reactor containment vessel and the reactor pressure vessel installed at a position higher than the reactor core arranged in the reactor pressure vessel. Gravity drop type core cooling system pool, pressure suppression pool installed below this gravity drop type cooling system pool,
A steam injector installed in the dry well of the reactor containment vessel, a steam supply line connecting the steam inlet of the steam injector and the reactor pressure vessel, a water inlet of the steam injector, and the gravity drop type. A water supply line connecting the core cooling system pool, a cooling water discharge line connecting the cooling water discharge port of the steam injector and the reactor pressure vessel, and a drain line connecting the drain port of the steam injector and the pressure suppression pool An accumulator water supply tank installed in the dry well of the reactor containment vessel, and an accumulator line having a start-up control valve connecting the accumulator water supply tank and the water supply port of the steam injector, the pressure reducing valve and the start-up valve. And a control device for controlling the control valve for use.

【0014】[0014]

【作用】第1の発明においては、たとえば緊急時に、ま
ず、重力落下式炉心冷却系プールから起動用に蒸気イン
ジェクタに給水し、次いで減圧弁から開放された蒸気を
蒸気インジェクタに取り入れ蒸気インジェクタを起動す
る。前記炉心冷却系プールの水を炉心に昇圧して注入
し、炉心を冷却する。これにより高圧から低圧まで広い
圧力範囲で冷却水を注入することできる。
In the first aspect of the invention, in an emergency, for example, first, the gravity drop type core cooling system pool supplies water to the steam injector for startup, and then the steam released from the pressure reducing valve is introduced into the steam injector to start the steam injector. To do. Water in the core cooling system pool is pressurized and injected into the core to cool the core. Thereby, the cooling water can be injected in a wide pressure range from high pressure to low pressure.

【0015】第2の発明においては、通常運転時に重力
落下式冷却炉心系プールから、蒸気インジェクタのドレ
ンラインを通じて圧力抑制プールに流れ込む水量だけ圧
力抑制プールからポンプで重力落下炉心冷却系プールに
汲み上げる。緊急時には減圧弁から開放された蒸気を蒸
気インジェクタに取り入れ蒸気インジェクタを起動す
る。重力落下式炉心冷却系プールの水を炉心に昇圧して
注入する。よって、常に重力により蒸気インジェクタに
給水することで、蒸気インジェク駆動用の給水ポンプな
どの動的機器と、緊急時に作動する制御弁を省略するこ
とができる。その他の作用は第1の発明と同様である。
In the second aspect of the present invention, during normal operation, the gravity drop type cooling core system pool is pumped up from the pressure suppression pool to the gravity drop core cooling system pool by the amount of water flowing into the pressure suppression pool through the drain line of the steam injector. In an emergency, the steam released from the pressure reducing valve is introduced into the steam injector to activate the steam injector. Gravity drop type core cooling system pool water is pressurized and injected into the core. Therefore, by constantly supplying water to the steam injector by gravity, it is possible to omit a dynamic device such as a water supply pump for driving the steam injector and a control valve that operates in an emergency. Other functions are similar to those of the first invention.

【0016】第3の発明においては、緊急時にまず蓄圧
給水タンクから蒸気インジェクタに起動用水を供給し、
次いで減圧弁から開放された蒸気を蒸気インジェクタに
取り入れ、蒸気インジェクタを起動する。この起動によ
り冷却系プールの水を炉心に昇圧して炉心に注入する。
また、緊急冷却用には炉心上方の重力落下式炉心冷却系
プールから蒸気インジェクタを給水することで、蒸気イ
ンジェクタ駆動用の給水ポンプなどの動的機器を省略す
ることがぢきる。その他の作用は第1の発明と同様であ
る。
In the third aspect of the invention, in an emergency, the starting water is first supplied from the accumulator water supply tank to the steam injector,
Next, the steam released from the pressure reducing valve is introduced into the steam injector, and the steam injector is activated. By this start-up, the water in the cooling system pool is pressurized and injected into the core.
In addition, for emergency cooling, by supplying steam injectors from a gravity-drop type core cooling system pool above the core, it is possible to omit dynamic equipment such as the water pump for driving the steam injectors. Other functions are similar to those of the first invention.

【0017】[0017]

【実施例】図1を参照しながら本発明に係る原子炉の緊
急炉心冷却系の第1の実施例を説明する。図中、図4お
よび図6と同一部分には同一符号を付して重複する部分
の説明は省略する。
EXAMPLE A first example of the emergency core cooling system for a nuclear reactor according to the present invention will be described with reference to FIG. In the figure, the same parts as those in FIG. 4 and FIG.

【0018】すなわち、図1において、蒸気インジェク
タ2には給水口と結ぶ給水ライン3、蒸気流入口と結ぶ
蒸気供給ライン4、冷却水吐出口と結ぶ冷却水吐出ライ
ン5およびドレンライン36が接続されている。給水ライ
ン3は給水用制御弁6を通して重力落下式冷却系プール
17に、蒸気ライン4は減圧弁20を通して原子炉圧力容器
13に、冷却水吐出ライン5は吐出用逆止弁11を通じて原
子炉圧力容器13に、ドレライン36はドレン用逆止弁37を
介して圧力抑制プール15にそれぞれ結ばれている。給水
用制御弁6と減圧弁20は制御装置37に信号線38,39を介
してそれぞれ接続している。
That is, in FIG. 1, a water supply line 3 connected to a water supply port, a steam supply line 4 connected to a steam inlet, a cooling water discharge line 5 connected to a cooling water discharge port, and a drain line 36 are connected to the steam injector 2. ing. The water supply line 3 passes through a water supply control valve 6 and is a gravity-drop type cooling system pool.
17, the steam line 4 is passed through the pressure reducing valve 20 to the reactor pressure vessel.
13, the cooling water discharge line 5 is connected to the reactor pressure vessel 13 via the discharge check valve 11, and the drain line 36 is connected to the pressure suppression pool 15 via the drain check valve 37. The water supply control valve 6 and the pressure reducing valve 20 are connected to the control device 37 via signal lines 38 and 39, respectively.

【0019】配管破断等により緊急炉心冷却が必要な場
合、圧力容器13内の水位の低下により、まず給水用制御
弁6が開き蒸気インジェクタ2に給水ライン3を通じて
水を供給する。次いでタイマーなどの制御系装置38を持
つ制御弁6と連動した減圧弁20が開き、蒸気インジェク
タ2に蒸気が供給されると、蒸気インジェクタ2内部で
蒸気の凝縮が起こり、蒸気インジェクタ2が作動し、供
給水を供給蒸気圧以上、つまり、原子炉圧力容器13内の
圧力以上に昇圧する。この昇圧によって吐出用逆止弁11
が開くため炉心14に注水できる。一方、蒸気インジェク
タ2が作動する蒸気インジェクタ2内の蒸気・水混合ノ
ズルは負圧になり、ドレン用逆止弁37によりドレン36は
閉じる。また、実プラントの施工においては蒸気インジ
ェクタの起動特性を良くするため、蒸気インジェクタ2
はドライウエル内のなるべく低い位置に設置し、重力落
下式炉心冷却系プール17との水頭差を大きくすることが
重要である。
When emergency core cooling is required due to pipe breakage or the like, the water supply control valve 6 first opens to supply water to the steam injector 2 through the water supply line 3 due to a decrease in the water level in the pressure vessel 13. Next, when the pressure reducing valve 20 linked with the control valve 6 having the control system device 38 such as a timer is opened and the steam is supplied to the steam injector 2, the steam is condensed inside the steam injector 2 and the steam injector 2 is activated. The supply water is boosted to a pressure equal to or higher than the supply vapor pressure, that is, a pressure in the reactor pressure vessel 13 or higher. Check valve for discharge 11
Since it opens, water can be poured into the core 14. On the other hand, the steam / water mixing nozzle in the steam injector 2 in which the steam injector 2 operates has a negative pressure, and the drain check valve 37 closes the drain 36. Further, in the construction of an actual plant, in order to improve the starting characteristics of the steam injector, the steam injector 2
Is installed in the dry well as low as possible, and it is important to increase the water head difference from the gravity drop type core cooling system pool 17.

【0020】第1の実施例によれば、緊急炉心冷却系と
しての蒸気インジェクタを起動するために必要な系統を
もち、重力落下式炉心冷却系より高い圧力で、原子炉圧
力容器内の圧力以上に昇圧した冷却水を炉心に注入出来
るので、高圧から低圧まで広い圧力範囲で炉心注水が可
能となり、高い信頼性の要求される減圧弁の数も大幅に
減らすことができ、よりいっそう原子炉の安全性が高ま
る。また系の構成も簡単で、かつ、従来技術を利用でき
るのでコスト的にも優れ、原子炉の緊急冷却系として好
適するものである。
According to the first embodiment, the system has a system necessary for starting the steam injector as the emergency core cooling system, and has a pressure higher than that of the gravity drop type core cooling system and higher than the pressure in the reactor pressure vessel. Since it is possible to inject the boosted cooling water into the core, it is possible to inject water into the core in a wide pressure range from high pressure to low pressure, and it is possible to significantly reduce the number of pressure reducing valves that require high reliability. Increases safety. Further, the system configuration is simple, and the conventional technology can be used, so that the cost is excellent, and the system is suitable as an emergency cooling system for a nuclear reactor.

【0021】つぎに図2を参照しながら本発明の第2の
実施例を説明する。図2において、蒸気インジェクタ2
には給水口と結ぶ給水ライン3、蒸気流入口と結ぶ蒸気
供給ライン4、冷却吐出口と結ぶ冷却水吐出ライン5と
ドレンライン36が接続されている。給水ライン3は給水
用逆止弁41を通じて重力落下式冷却系プール17に、蒸気
供給ライン4は減圧弁20を通して原子炉圧力器13に、冷
却水吐出ライン5は吐出用逆止弁11を通じて原子炉圧力
容器13に、ドレンライン36はドレン用逆止弁37を介して
圧力抑制プール15にそれぞれ結ばれている。圧力抑制プ
ール15内には給水循環ポンプ42が設置されている。この
給水循環ポンプ42は動落下式炉心冷却系プール17に給水
循環ライン43によって結ばれている。給水循環ライン43
には給水循環用逆止弁44が接続されている。また、原子
炉が通常運転時は、常に前記蒸気インジェクタ7に供給
されている冷却水がドレンライン36から圧力抑制プール
15に流れ、圧力抑制プール15から重力落下式炉心冷却系
プール17まで循環ポンプ42で圧力抑制プール水をくみあ
げる閉じた系で循環している。この閉じた系で循環して
いる冷却水は、蒸気インジェクタ7の起動時にそのイン
ジェクタにおいて、蒸気との凝縮界面を連続的に形成す
るものであるため、大量の流量を必要としない。したが
って循環ポンプ42は、要領は小さくてよく、揚程も高々
圧力抑制プール15から隔離冷却プール16までなので小型
で消費電力の低いものが使用でき、そのうえ、通常時の
み作動し、原子炉が緊急冷却が必要なときは作動する必
要がないため、信頼性の極度に高いものを使用する必要
はない。
Next, a second embodiment of the present invention will be described with reference to FIG. In FIG. 2, the steam injector 2
A water supply line 3 connected to a water supply port, a steam supply line 4 connected to a steam inlet, a cooling water discharge line 5 connected to a cooling discharge port, and a drain line 36 are connected to the. The water supply line 3 is supplied through the water supply check valve 41 to the gravity drop cooling system pool 17, the steam supply line 4 is supplied through the pressure reducing valve 20 to the reactor pressure device 13, and the cooling water discharge line 5 is supplied through the discharge check valve 11. A drain line 36 is connected to the furnace pressure vessel 13 via a drain check valve 37 to the pressure suppression pool 15. A water supply circulation pump 42 is installed in the pressure suppression pool 15. The water supply circulation pump 42 is connected to the dynamic drop type core cooling system pool 17 by a water supply circulation line 43. Water supply circulation line 43
A check valve 44 for water supply circulation is connected to the. Further, during normal operation of the nuclear reactor, the cooling water supplied to the steam injector 7 is constantly fed from the drain line 36 to the pressure suppression pool.
Flowing from the pressure suppression pool 15 to the gravity-falling core cooling system pool 17 is circulated in a closed system in which a circulation pump 42 pumps up the pressure suppression pool water. The cooling water that circulates in this closed system does not require a large flow rate because it continuously forms a condensation interface with the steam at the injector when the steam injector 7 is started. Therefore, the circulation pump 42 needs only a small procedure, and since the lift is at most from the pressure suppression pool 15 to the isolated cooling pool 16, it is possible to use a small one with low power consumption. It does not need to be extremely reliable as it does not need to be activated when is needed.

【0022】配管破断等により緊急炉心冷却系が必要な
場合、原子炉圧力容器13内の水位の低下により減圧弁8
が開いて、蒸気インジェクタ2に蒸気が供給される。重
力により給水ライン3を通じて常に供給水の流量がある
ため、蒸気の凝縮が起こり、蒸気インジェクタ2が作動
し、供給水を供給蒸気圧以上、すなわち、原子炉圧力容
器2内の圧力以上に昇圧し、よって吐出用逆止弁11が開
くため炉心14に注水できる。一方、蒸気インジェクタ2
が作動すると蒸気インジェクタ内部の蒸気・水混合ノズ
ルは負圧になり、ドレン用逆止弁37によりドレンライン
36は閉じる。また、実プラントの施工においては蒸気イ
ンジェクタの起動特性を良くするため、蒸気インンッジ
ェクタ7はドライウエル内のなるべく低い位置に設置
し、重力落下式炉心冷却系プール17との水頭差を大きく
することが重要である。
When an emergency core cooling system is required due to pipe breakage or the like, the pressure reducing valve 8 is caused by a decrease in the water level in the reactor pressure vessel 13.
Is opened and steam is supplied to the steam injector 2. Since there is always a flow rate of supply water through the water supply line 3 due to gravity, steam condensation occurs, the steam injector 2 operates, and the supply water is boosted to a pressure higher than the supply steam pressure, that is, a pressure in the reactor pressure vessel 2 or higher. Therefore, since the discharge check valve 11 opens, water can be poured into the core 14. Meanwhile, the steam injector 2
Is activated, the steam / water mixing nozzle inside the steam injector becomes negative pressure, and the check valve 37 for drain drains the drain line.
36 closes. Further, in the construction of an actual plant, in order to improve the starting characteristics of the steam injector, the steam injector 7 is installed in the dry well at a position as low as possible to increase the water head difference from the gravity drop type core cooling system pool 17. This is very important.

【0023】第2の実施例によれば、緊急炉心冷却系と
しての蒸気インジェクタを起動するために高い信頼性が
要求される蒸気インジェクタ給水ポンプ等の動的機器
と、緊急時に高度な制御により作動する制御弁を省略で
きる。一方、重力落下式炉心冷却系より高い圧力で原子
炉圧力容器内の圧力以上に昇圧した冷却水を炉心に注入
できるので、高圧から低圧まで広い圧力範囲で炉心注水
が可能となり、高い信頼性の要求される減圧弁の数も大
幅に減らすことができる。
According to the second embodiment, a dynamic device such as a steam injector feed pump, which requires high reliability for starting a steam injector as an emergency core cooling system, and an advanced control in an emergency. The control valve to operate can be omitted. On the other hand, since cooling water that has been pressurized to a pressure higher than that in the reactor pressure vessel at a pressure higher than that of the gravity drop type core cooling system can be injected into the core, core water injection is possible in a wide pressure range from high pressure to low pressure, and high reliability The number of pressure reducing valves required can also be significantly reduced.

【0024】つぎに図3を参照しながら本発明の第3の
実施例を説明する。図3において、蒸気インジェクタ2
には給水口と結ぶ起動用蓄圧ライン45、同じく給水口を
結ぶ給水ライン3、蒸気流入口と結ぶ蒸気供給ライン
4、冷却水吐出口と結ぶ冷却水吐出ライン5およびドレ
ンライン36が接続されている。各々蓄圧ライン45は起動
用制御弁46を通じて蓄圧給水タンク47、給水ライン3は
給水用逆止弁41を通して重力落下式炉心冷却系プール1
7,蒸気供給ライン4は減圧弁20を通して原子炉圧力容
器13、冷却水吐出ライン5は吐出用逆止弁11を通じて原
子炉圧力13、ドレンライン36はドレン用逆止弁37を介し
て圧力抑制プール15に結ばれている。減圧弁20と起動用
制御46は信号線40,48により制御装置38にそれぞれ接続
している。
Next, a third embodiment of the present invention will be described with reference to FIG. In FIG. 3, the steam injector 2
Is connected to a starting accumulator line 45 connected to the water supply port, a water supply line 3 also connected to the water supply port, a steam supply line 4 connected to the steam inlet, a cooling water discharge line 5 connected to the cooling water discharge port, and a drain line 36. There is. The accumulator line 45 passes through the control valve 46 for starting and the accumulator water supply tank 47, and the water supply line 3 passes through the check valve 41 for supplying water.
7. Reactor pressure vessel 13 through pressure reducing valve 20 for steam supply line 4, reactor pressure 13 through discharge check valve 11 for cooling water discharge line 5, and pressure control through drain check valve 37 for drain line 36. It is tied to pool 15. The pressure reducing valve 20 and the starting control 46 are connected to the control device 38 by signal lines 40 and 48, respectively.

【0025】しかして、配管破断等により緊急炉心冷却
が必要な場合、原子炉圧力容器13内の水位の低下によ
り、まず蒸気インジェクタ2の起動用制御弁46が開、蒸
気インジェクタ2に蓄圧給水タンク47から蓄圧ライン45
を通じて起動用水を供給し、次いでタイマーなどの制御
装置38で前記制御弁46と連動した減圧弁20が開き、蒸気
インジェクタ2に蒸気が供給されると蒸気インジュクタ
2は起動する。そして、蒸気インジェクタ2の内部で蒸
気の凝縮が起り、蒸気インジェクタ2が作動し重力落下
式炉心冷却系プール17からの供給水を供給蒸気圧以上、
すなわち、原子炉圧力容器13内の圧力以上に昇圧するこ
とによって吐出用逆止弁11が開くため炉心14に注水でき
る。一方、蒸気インジェクタ2が作動する蒸気インジェ
クタ2の内部の蒸気・水混合ノズルは負圧になり、蒸気
インジェクタドレン用逆止弁37によりドレンライン36は
閉じる。また、実プラントの施工においては蒸気インジ
ェクタ2の起動特性を良くするため、蒸気インジェクタ
2はドライウエル内のなるべく低い位置に設置し、重力
落下式炉心冷却系プール17との水頭差を大きくすること
が重要である。
However, when emergency core cooling is required due to pipe breakage or the like, the control valve 46 for starting the steam injector 2 is first opened due to the decrease in the water level in the reactor pressure vessel 13, and the steam injector 2 stores the accumulator water tank. 47 to accumulator line 45
Water is supplied to the steam injector 2, and then the pressure reducing valve 20 linked with the control valve 46 is opened by the control device 38 such as a timer, and the steam injector 2 is started when steam is supplied to the steam injector 2. Then, condensation of steam occurs inside the steam injector 2, the steam injector 2 operates, and the supply water from the gravity drop type core cooling system pool 17 is supplied steam pressure or more,
That is, since the discharge check valve 11 opens by increasing the pressure in the reactor pressure vessel 13 or more, water can be injected into the reactor core 14. On the other hand, the steam / water mixing nozzle inside the steam injector 2 in which the steam injector 2 operates becomes negative pressure, and the check line 37 for the steam injector drain closes the drain line 36. In order to improve the starting characteristics of the steam injector 2 in the construction of an actual plant, the steam injector 2 should be installed at the lowest possible position in the dry well to increase the water head difference from the gravity drop type core cooling system pool 17. is important.

【0026】この第3の実施例によれば、緊急炉心冷却
系として蒸気インジェクタを起動するために必要な系統
をもち、重力落下炉心冷却系より高い圧力で、原子炉圧
力容器内の圧力以上に昇圧した冷却水を炉心に注入でき
るので、高圧から低圧まで広い圧力範囲で炉心注水が可
能となり、高い信頼性の要求される減圧弁の数も減らす
ことが、よりいっそう原子炉の安全性が高まる。また、
系の構成も簡単で、かつ、従来からある技術を利用して
いるのでコスト的にも優れ、原子炉の緊急冷却系として
好適である。
According to the third embodiment, the emergency core cooling system has a system necessary for starting the steam injector, and the pressure is higher than that of the gravity drop core cooling system and is higher than the pressure in the reactor pressure vessel. Since boosted cooling water can be injected into the core, core water injection is possible in a wide pressure range from high pressure to low pressure, and reducing the number of pressure reducing valves that require high reliability further enhances reactor safety. .. Also,
Since the system configuration is simple and the existing technology is used, the cost is excellent and it is suitable as an emergency cooling system for a nuclear reactor.

【0027】[0027]

【発明の効果】本発明によれば重力落下式炉心冷却系プ
ールに接続する給水ラインから重力により蒸気インジェ
クタに給水することで蒸気インジェクタ起動用給水ポン
プなどの動的機器を省略できる。また、減圧弁から開放
される蒸気を蒸気インジェクタに取り入れ、その蒸気イ
ンジェクタを起動させることで重力落下式炉心冷却系プ
ールの冷却水を原子炉圧力器内の圧力以上に昇圧して炉
心に注入出来るので、高圧から低圧まで広い圧力範囲で
冷却水を注入することができ、急速な減圧を必要としな
いため高い信頼性の要求される減圧弁の数を減らすこと
ができる。
According to the present invention, by supplying water to the steam injector by gravity from the water supply line connected to the gravity drop type core cooling system pool, it is possible to omit the dynamic equipment such as the water supply pump for starting the steam injector. In addition, the steam released from the pressure reducing valve is introduced into the steam injector, and by activating the steam injector, the cooling water in the gravity drop type core cooling system pool can be boosted to a pressure higher than the pressure in the reactor pressure vessel and injected into the core. Therefore, cooling water can be injected in a wide pressure range from high pressure to low pressure, and rapid depressurization is not required, so the number of pressure reducing valves required to have high reliability can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る原子炉の緊急炉心冷却系の第1の
実施例を示す系統図。
FIG. 1 is a system diagram showing a first embodiment of an emergency core cooling system for a nuclear reactor according to the present invention.

【図2】本発明に係る原子炉の緊急炉心冷却系の第2の
実施例を示す系統図。
FIG. 2 is a system diagram showing a second embodiment of an emergency core cooling system for a nuclear reactor according to the present invention.

【図3】本発明に係る原子炉の緊急炉心冷却系の第3の
実施例を示す系統図。
FIG. 3 is a system diagram showing a third embodiment of an emergency core cooling system for a nuclear reactor according to the present invention.

【図4】従来の原子炉の緊急炉心冷却系の第1の例を示
す系統図。
FIG. 4 is a system diagram showing a first example of a conventional emergency core cooling system for a nuclear reactor.

【図5】図4における蒸気インジェクタの1例を示す縦
断面図。
5 is a vertical sectional view showing an example of the steam injector in FIG.

【図6】従来の原子炉の緊急炉心冷却系の第2の例を示
す系統図。
FIG. 6 is a system diagram showing a second example of a conventional emergency core cooling system for a nuclear reactor.

【符号の説明】[Explanation of symbols]

1…原子炉格納容器、2…蒸気インジェクタ、3…給水
ライン、4…蒸気供給ライン、5…冷却水吐出ライン、
6…給水用制御弁、7…給水用止弁、8…冷却水用給水
タンク、9…蒸気供給用制御弁、10…主蒸気ライン、11
…吐出用逆止弁、12…主給水管、13…原子炉圧力容器、
14…炉心、15…圧力抑制プール、16…隔離冷却プール、
17…重力落下炉心冷却系プール、18…逆止弁、19…冷却
ライン、20…減圧弁、21…蒸気供給口、22…ケーシン
グ、23…ニードル弁、24…蒸気噴出ノズル、25…水吸込
口、26…蒸気噴出ノズル、27…昇圧用デフューザ、28…
逆止弁、29…吐出口、30…スロート部、31…オーバーフ
ロー配水管、32…オーバーフロー排水口、33…ハンド
ル、34…均圧ライン、35…均圧ライン用制御弁、36…ド
レンライン、37…ドレン用逆止弁、38…制御装置、39,
40,48…信号線、41…給水用逆止弁、42…給水循環ポン
プ、43…給水循環ライン、44…給水循環用逆止弁、45…
蓄圧ライン、46…起動用制御弁、47…蓄圧給水タンク。
DESCRIPTION OF SYMBOLS 1 ... Reactor containment vessel, 2 ... Steam injector, 3 ... Water supply line, 4 ... Steam supply line, 5 ... Cooling water discharge line,
6 ... Water supply control valve, 7 ... Water supply stop valve, 8 ... Cooling water supply tank, 9 ... Steam supply control valve, 10 ... Main steam line, 11
… Check valve for discharge, 12… Main water supply pipe, 13… Reactor pressure vessel,
14 ... Reactor core, 15 ... Pressure suppression pool, 16 ... Isolation cooling pool,
17 ... Gravity drop core cooling system pool, 18 ... Check valve, 19 ... Cooling line, 20 ... Pressure reducing valve, 21 ... Steam supply port, 22 ... Casing, 23 ... Needle valve, 24 ... Steam injection nozzle, 25 ... Water suction Mouth, 26 ... Steam ejection nozzle, 27 ... Booster diffuser, 28 ...
Check valve, 29 ... Discharge port, 30 ... Throat part, 31 ... Overflow water pipe, 32 ... Overflow drain port, 33 ... Handle, 34 ... Pressure equalizing line, 35 ... Pressure equalizing line control valve, 36 ... Drain line, 37 ... Check valve for drain, 38 ... Control device, 39,
40, 48 ... Signal lines, 41 ... Water supply check valve, 42 ... Water supply circulation pump, 43 ... Water supply circulation line, 44 ... Water supply circulation check valve, 45 ...
Accumulation line, 46 ... Control valve for start-up, 47 ... Accumulation water tank.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 原子炉格納容器内に格納された原子炉圧
力容器と、この原子炉圧力容器内に配置された炉心より
も高い位置でかつ前記原子炉格納容器内に設置された重
力落下式炉心冷却系プールと、この重力落下式冷却系プ
ールの下方に設置された圧力抑制プールと、前記原子炉
格納容器のドライウエル内にに設置された蒸気インジェ
クタと、この蒸気インジェクタの蒸気流入口と前記原子
炉圧力容器とを結ぶ蒸気供給ラインと、前記蒸気インジ
ェクタの給水口と前記重力落下式炉心冷却系プールとを
結ぶ給水ラインと、前記蒸気インジェクタの冷却水吐出
口と前記原子炉圧力容器とを結ぶ冷却水吐出ラインと、
前記蒸気インジェクタのドレン口と前記圧力抑制プール
とを結ぶドレンラインと、前記蒸気供給ラインの減圧弁
と前記給水ラインの制御弁とを制御する制御装置とを具
備したことを特徴とする原子炉の緊急炉心冷却系。
1. A reactor pressure vessel housed in a reactor containment vessel, and a gravity drop type installed in the reactor containment vessel at a position higher than a reactor core arranged in the reactor pressure vessel. Core cooling system pool, pressure suppression pool installed below this gravity drop cooling system pool, steam injector installed in the dry well of the reactor containment vessel, and steam inlet of this steam injector A steam supply line connecting the reactor pressure vessel, a water supply line connecting the water supply port of the steam injector and the gravity drop core cooling system pool, a cooling water discharge port of the steam injector, and the reactor pressure vessel. Cooling water discharge line connecting
A drain line that connects the drain port of the steam injector and the pressure suppression pool, and a control device that controls a pressure reducing valve of the steam supply line and a control valve of the water supply line. Emergency core cooling system.
【請求項2】 原子炉格納容器内に格納された原子炉圧
力容器と、この原子炉圧力容器内に配置された炉心より
も高い位置でかつ前記原子炉格納容器内に設置された重
力落下式炉心冷却系プールと、この重力落下式冷却系プ
ールの下方に設置された圧力抑制プールと、前記原子炉
格納容器のドライウエル内にに設置された蒸気インジェ
クタと、この蒸気インジェクタの蒸気流入口と前記原子
炉圧力容器とを結ぶ蒸気供給ラインと、前記蒸気インジ
ェクタの給水口と前記重力落下式炉心冷却系プールとを
結ぶ給水ラインと、前記蒸気インジェクタの冷却水吐出
口と前記原子炉圧力容器とを結ぶ冷却水吐出ラインと、
前記蒸気インジェクタのドレン口と前記圧力抑制プール
とを結ぶドレンラインと、前記圧力抑制プール内に設置
された給水循環ポンプと、この給水ポンプと給水循環用
逆止弁を有しかつ前記重力落下式冷却系プールとを結ぶ
給水循環ラインを具備したことを特徴とする原子炉の緊
急炉心冷却系。
2. A reactor pressure vessel housed in a reactor containment vessel, and a gravity drop type installed in the reactor containment vessel at a position higher than a reactor core arranged in the reactor pressure vessel. Core cooling system pool, pressure suppression pool installed below this gravity drop cooling system pool, steam injector installed in the dry well of the reactor containment vessel, and steam inlet of this steam injector A steam supply line connecting the reactor pressure vessel, a water supply line connecting the water supply port of the steam injector and the gravity drop core cooling system pool, a cooling water discharge port of the steam injector, and the reactor pressure vessel. Cooling water discharge line connecting
A drain line that connects the drain port of the steam injector and the pressure suppression pool, a water supply circulation pump installed in the pressure suppression pool, the water supply pump and a check valve for water supply circulation, and the gravity drop type An emergency core cooling system for a nuclear reactor, comprising a water supply circulation line connecting with a cooling system pool.
【請求項3】 原子炉格納容器内に格納された原子炉圧
力容器と、この原子炉圧力容器内に配置された炉心より
も高い位置でかつ前記原子炉格納容器内に設置された重
力落下式炉心冷却系プールと、この重力落下式冷却系プ
ールの下方に設置された圧力抑制プールと、前記原子炉
格納容器のドライウエル内にに設置された蒸気インジェ
クタと、この蒸気インジェクタの蒸気流入口と前記原子
炉圧力容器とを結ぶ蒸気供給ラインと、前記蒸気インジ
ェクタの給水口と前記重力落下式炉心冷却系プールとを
結ぶ給水ラインと、前記蒸気インジェクタの冷却水吐出
口と前記原子炉圧力容器とを結ぶ冷却水吐出ラインと、
前記蒸気インジェクタのドレン口と前記圧力抑制プール
とを結ぶドレンラインと、前記原子炉格納容器のドライ
ウエル内に設置された蓄圧給水タンクと、この蓄圧給水
タンクと前記蒸気インジェクタの給水口とを結ぶ起動用
制御弁を有する蓄圧ラインと、前記減圧弁と前記起動用
制御弁とを制御する制御装置とを具備したことを特徴と
する原子炉の緊急炉心冷却系。
3. A reactor pressure vessel stored in the reactor containment vessel, and a gravity drop type installed in the reactor containment vessel at a position higher than the reactor core arranged in the reactor pressure vessel. Core cooling system pool, pressure suppression pool installed below this gravity drop cooling system pool, steam injector installed in the dry well of the reactor containment vessel, and steam inlet of this steam injector A steam supply line connecting the reactor pressure vessel, a water supply line connecting the water supply port of the steam injector and the gravity drop core cooling system pool, a cooling water discharge port of the steam injector, and the reactor pressure vessel. Cooling water discharge line connecting
A drain line that connects the drain port of the steam injector and the pressure suppression pool, a pressure storage water supply tank installed in the dry well of the reactor containment vessel, and connects the pressure storage water supply tank and the water supply port of the steam injector. An emergency core cooling system for a nuclear reactor, comprising: a pressure accumulating line having a start-up control valve; and a control device for controlling the pressure reducing valve and the start-up control valve.
JP3247792A 1991-09-26 1991-09-26 Reactor core cooling system Expired - Fee Related JP2736191B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3247792A JP2736191B2 (en) 1991-09-26 1991-09-26 Reactor core cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3247792A JP2736191B2 (en) 1991-09-26 1991-09-26 Reactor core cooling system

Publications (2)

Publication Number Publication Date
JPH0587971A true JPH0587971A (en) 1993-04-09
JP2736191B2 JP2736191B2 (en) 1998-04-02

Family

ID=17168722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3247792A Expired - Fee Related JP2736191B2 (en) 1991-09-26 1991-09-26 Reactor core cooling system

Country Status (1)

Country Link
JP (1) JP2736191B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2800504A1 (en) * 1999-11-02 2001-05-04 Framatome Sa Injection of aqueous solution containing neutron absorber into reactor circuit comprises use of pressurized steam as propellant

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01136097A (en) * 1987-11-24 1989-05-29 Hitachi Ltd Injector for fluid into pressure container
JPH0273198A (en) * 1988-09-08 1990-03-13 Nippon Atom Ind Group Co Ltd Emergency core cooler for nuclear reactor
JPH0375593A (en) * 1989-08-17 1991-03-29 Toshiba Corp Nuclear power plant
JPH03100496A (en) * 1989-09-14 1991-04-25 Hitachi Ltd Nuclear reactor having emergency cooling water replenishing equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01136097A (en) * 1987-11-24 1989-05-29 Hitachi Ltd Injector for fluid into pressure container
JPH0273198A (en) * 1988-09-08 1990-03-13 Nippon Atom Ind Group Co Ltd Emergency core cooler for nuclear reactor
JPH0375593A (en) * 1989-08-17 1991-03-29 Toshiba Corp Nuclear power plant
JPH03100496A (en) * 1989-09-14 1991-04-25 Hitachi Ltd Nuclear reactor having emergency cooling water replenishing equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2800504A1 (en) * 1999-11-02 2001-05-04 Framatome Sa Injection of aqueous solution containing neutron absorber into reactor circuit comprises use of pressurized steam as propellant

Also Published As

Publication number Publication date
JP2736191B2 (en) 1998-04-02

Similar Documents

Publication Publication Date Title
KR101447029B1 (en) Multi-stage safety injection device and passive safety injection system having the same
JPH0411836B2 (en)
KR920009648B1 (en) Emergency feedwater system for generators of a nuclear power plant
US4278500A (en) Pressurized water reactor
JPS5895295A (en) Water spray device by steam drive
JP2856865B2 (en) Core cooling equipment for nuclear power plants
JPH0587971A (en) Emergency core cooling system of nuclear reactor
US4812286A (en) Shroud tank and fill pipe for a boiling water nuclear reactor
JPH05264774A (en) Emergency reactor cooling equipment
US4035231A (en) Emergency cooling device for a nuclear reactor
JP4045431B2 (en) Reactor water injection equipment
JPS61169796A (en) Supply device for coolant of boiling water type reactor
JP3093350B2 (en) Steam injector device
JPH04223296A (en) Atomic power plant, passive safe injecting apparatus and stand-by condensing porous dispersing apparatus
JPH06201880A (en) Boric acid flowout prevention device
JP2001349975A (en) Nuclear reactor water injection facility using steam turbine drive pump
JPH08327010A (en) Water hammer preventing apparatus for water supply system
JPH0273198A (en) Emergency core cooler for nuclear reactor
JPH02222878A (en) Residual heat removal system of nuclear power plant
CN117790019A (en) Nuclear reactor passive jet cooling system and cooling method
JPH06331779A (en) Cooling water injection unit and nuclear reactor
JPH09184891A (en) Spray device for pressurizer of pressurized water reactor
JPH03216592A (en) Cooling water supplying device of boiling water nuclear reactor
JPS62228197A (en) Light water type reactor
JP2799060B2 (en) Feed water heater drain pump up device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees