JPH0587845A - One-terminal trio measuring device and two-terminal trio measuring device - Google Patents

One-terminal trio measuring device and two-terminal trio measuring device

Info

Publication number
JPH0587845A
JPH0587845A JP27454391A JP27454391A JPH0587845A JP H0587845 A JPH0587845 A JP H0587845A JP 27454391 A JP27454391 A JP 27454391A JP 27454391 A JP27454391 A JP 27454391A JP H0587845 A JPH0587845 A JP H0587845A
Authority
JP
Japan
Prior art keywords
measuring device
conductor
conductors
terminal
cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27454391A
Other languages
Japanese (ja)
Other versions
JP3101024B2 (en
Inventor
Hideki Wakamatsu
秀樹 若松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hewlett Packard Japan Inc
Original Assignee
Yokogawa Hewlett Packard Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Hewlett Packard Ltd filed Critical Yokogawa Hewlett Packard Ltd
Priority to JP03274543A priority Critical patent/JP3101024B2/en
Publication of JPH0587845A publication Critical patent/JPH0587845A/en
Application granted granted Critical
Publication of JP3101024B2 publication Critical patent/JP3101024B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a one-terminal trio measuring device and a two -terminal measuring device which permit the high precision measurement in the state where a DUT is one-line-grounded and the outside conductor of a cable is grounded. CONSTITUTION:As for a one-terminal trio measuring device, the DUT of the third conductor side one-line grounding is connected between the first and third conductors of on one side (reverse edge side of a measuring device body) of a three-line coaxial cable 3, and one measurement terminal of an electric current measuring device 13 is connected with the third conductor, and the other measurement terminal is connected with the second conductor side terminal of a voltage signal source 11. While, in a two-terminal trio measuring device, the first conductors on the other edge sides of a pair of three-line coaxial cable are connected, and the second conductors are connected, and further the third conductors are connected, and the DUT is connected in the state where the third conductor side is one-line-grounded between the first and third conductors, and further, the gland terminal (guard terminal) of a DUT mounting circuit is connected with the second conductor. Further, an electric current measuring circuit is connected in series with a variable electric current source, and a voltage measuring device is connected in parallel with a voltage signal source.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、3線同軸ケーブルを用
いた一端子トリオ,二端子トリオ測定装置に関し、例え
ば、単独の被測定対象(以下、「DUT」と言う)を片
線接地状態で、あるいはプリント基板等の回路に搭載さ
れたDUTを片線接地状態で遠隔測定するに好適な上記
測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a one-terminal trio and two-terminal trio measuring device using a three-wire coaxial cable. For example, a single object to be measured (hereinafter referred to as "DUT") is in a single-wire grounded state. The present invention relates to the above-mentioned measuring device suitable for remotely measuring a DUT mounted on a circuit such as a printed circuit board in a single-wire grounded state.

【0002】[0002]

【技術背景】単独の電気部品、あるいはプリント基板に
搭載した電気部品のインダクタンス,静電容量,抵抗等
の測定や、電気回路のインピーダンス等の測定において
は、測定器とDUTとが遠隔位置にある状態で測定を行
わなければならない場合がある。このような遠隔測定で
は、測定器と、該測定器から遠隔位置にあるDUTとを
同軸ケーブルを介して接続するが、これは例えば次のよ
うな場合に有効でありまた必要とされる。 (1)製造ラインにおいて、部品自動送り検査器等を使
用した測定を容易にする。 (2)測定器が組み合わせシステム構成である場合(す
なわち、測定器が複数の測定をできるようになものであ
る場合)においては、DUTと測定器群の間に設けられ
るマルチプレクサの使用や該マルチプレクサによる中継
を容易にする。 (3)電子機器の研究開発においては、測定器から隔離
した恒温槽等の雰囲気中にDUTを置き、該雰囲気を変
化させた状態でのDUTの特性の測定を行うことがある
が、この場合の測定操作を容易にする。
[Technical background] When measuring the inductance, capacitance, resistance, etc. of a single electric component or an electric component mounted on a printed circuit board, or measuring the impedance of an electric circuit, the measuring instrument and the DUT are located at remote positions. It may be necessary to make measurements on the condition. In such telemetry, a measuring device and a DUT located at a remote position from the measuring device are connected via a coaxial cable, which is effective and required in the following cases, for example. (1) In a production line, measurement using an automatic component feeding inspection device or the like is facilitated. (2) Use of a multiplexer provided between the DUT and a group of measuring instruments or the multiplexer when the measuring instruments have a combined system configuration (that is, when the measuring instruments are capable of making a plurality of measurements). Facilitate relaying by. (3) In research and development of electronic equipment, the DUT may be placed in an atmosphere such as a thermostatic chamber isolated from the measuring instrument, and the characteristics of the DUT may be measured in a state where the atmosphere is changed. To facilitate the measurement operation.

【0003】ところで、インピーダンスの遠隔測定にお
いて、上記のようにケーブルを延長する場合、高周波ま
で安定に使用できるものとして、従来、二端子対や四端
子対測定装置が知られている。図5(A),(B)は従
来の二端子対測定装置を示す図であり、これらの装置で
は、測定端子を開放または短絡することで、測定器内部
の電流測定器13または電圧測定器12の何れかの計量
値を0にするように構成できる。図5(A)は高インピ
ーダンスDUTの測定に適した二端子対測定装置を示し
ており、抵抗Rpが接続された電圧信号源11に電圧測
定器12が並列接続され、この回路がケーブル1aの一
方端の中心,外部導体間に接続されると共に、電流測定
器13がケーブル1bの一方端の中心,外部導体間に接
続されている。そして、ケーブル1a,1bの各他方端
H,L側では、外部導体同士は短絡され、中心導体の
H,L端子間にDUT(Zx)が接続されている。な
お、この測定装置では、H,L間を開放して、校正する
ことで、例えばDUT接続によって生ずる静電容量の増
加のみを検出することができる。また、図5(B)は低
インピーダンスDUTの測定に適した二端子対測定装置
を示しており、抵抗Riが接続された電流信号源21に
電流測定器22が直列接続され、この回路がケーブル1
aの一方端の中心,外部導体間に接続されると共に、電
圧測定器23がケーブル1bの一方端の中心,外部導体
間に接続されている。そして、ケーブル1a,1bの各
他方端側では、両中心導体同士,両外部導体同士がそれ
ぞれ短絡され、各短絡端子H,L間(中心導体,外部導
体間)にDUT(Zx)が接続されている。同図(B)
において、H,L間を短絡して、電圧測定器23の計量
値を0に校正することができ、例えば、DUT接続によ
って生ずるインダクタンスの変化のみを検出することが
できる。
By the way, in remote measurement of impedance, a two-terminal pair or four-terminal pair measuring device is conventionally known as a device that can be stably used up to high frequencies when the cable is extended as described above. 5 (A) and 5 (B) are diagrams showing conventional two-terminal pair measuring devices. In these devices, the current measuring device 13 or the voltage measuring device inside the measuring device is opened by opening or shorting the measuring terminals. Any of the twelve metric values can be configured to be zero. FIG. 5A shows a two-terminal pair measuring apparatus suitable for measuring a high impedance DUT, in which a voltage measuring device 12 is connected in parallel to a voltage signal source 11 to which a resistor R p is connected, and this circuit is connected to a cable 1a. The current measuring instrument 13 is connected between the center of one end of the cable 1b and the outer conductor, and is connected between the center of the one end of the cable 1b and the outer conductor. Then, on the other end H, L side of the cables 1a, 1b, the outer conductors are short-circuited to each other, and the DUT (Zx) is connected between the H and L terminals of the center conductor. It should be noted that in this measuring device, by opening between H and L and performing calibration, it is possible to detect only an increase in electrostatic capacitance caused by the DUT connection, for example. Further, FIG. 5B shows a two-terminal pair measuring device suitable for measuring a low impedance DUT, in which a current measuring device 22 is connected in series to a current signal source 21 to which a resistor Ri is connected, and this circuit is connected to a cable. 1
The voltage measuring device 23 is connected between the center of one end of a and the outer conductor, and the voltage measuring device 23 is connected between the center of the one end of the cable 1b and the outer conductor. Then, on the other end side of each of the cables 1a and 1b, both center conductors and both outer conductors are short-circuited, and the DUT (Zx) is connected between the respective short-circuit terminals H and L (between the center conductor and the outer conductor). ing. Same figure (B)
In, the H and L are short-circuited, and the measured value of the voltage measuring device 23 can be calibrated to 0. For example, only the change in the inductance caused by the DUT connection can be detected.

【0004】しかし、インピーダンスの測定において
は、一の測定回路で高インピーダンスから低インピーダ
ンスに亘る測定が要求される場合もある。ところが、図
5(A)の測定装置では、H,L間を短絡した場合に
は、ケーブル1a,1bの直列インピーダンス,電流測
定器13の残留インピーダンスの影響により電圧測定器
12の計量値は0にはならならず、理想短絡を得ること
ができない。したがって、同図(A)の測定装置では低
インピーダンスを測定することはできない。また、図5
(B)の測定装置では、H,L間を開放した場合には、
ケーブル1a,1bの並列アドミタンス,電圧測定器2
3の入力アドミタンスの影響により電流測定器22の計
量値は0にはならず、理想開放を得ることができない。
したがって、同図(B)の測定装置では高インピーダン
スを高精度で測定することができない。
However, in measuring impedance, one measurement circuit may require measurement from high impedance to low impedance. However, in the measuring device of FIG. 5A, when H and L are short-circuited, the measured value of the voltage measuring device 12 is 0 due to the effects of the series impedance of the cables 1a and 1b and the residual impedance of the current measuring device 13. Therefore, the ideal short circuit cannot be obtained. Therefore, low impedance cannot be measured by the measuring device of FIG. Also, FIG.
In the measuring device of (B), when H and L are opened,
Parallel admittance of cables 1a and 1b, voltage measuring device 2
Due to the influence of the input admittance of 3, the measured value of the current measuring device 22 does not become 0, and the ideal opening cannot be obtained.
Therefore, high impedance cannot be measured with high accuracy by the measuring device of FIG.

【0005】図6は従来の四端子対測定装置を示す図で
あり、この測定装置によれば、図5(A),(B)の二
端子対測定装置における不都合を解消できる。すなわ
ち、図6の四端子対測定装置ではDUT接続端子を開放
あるいは短絡することで、測定装置内部の電流測定器3
4,電圧測定器32の計量値を共に0にすることがで
き、理想短絡,理想開放を得ることができる。図6で
は、抵抗Rpが接続された電圧信号源31がケーブル2
aの一方端の中心,外部導体間にそれぞれ接続され、電
圧測定器32の両端子がケーブル2bの一方端の中心,
外部導体間にそれぞれ接続されている。また、可変電流
源33と電流測定器34との直列回路がケーブル2cの
一方端の中心,外部導体間に接続され、増幅器35(こ
の増幅器35の出力は上記可変電流源33の入力とな
る)の両入力端子がケーブル2dの一方端の中心外部導
体間に接続されている。そして、ケーブル2a〜2dの
各他方端においては、各ケーブルの外部導体同士は短絡
されている。また、ケーブル2a,2bの両中心導体の
c,Hp端子にDUTの一端が接続され、ケーブル2
c,2dの両中心導体のLc,Lp端子にDUTの他端が
接続されている。
FIG. 6 is a diagram showing a conventional four-terminal pair measuring device. According to this measuring device, the disadvantages of the two-terminal pair measuring device shown in FIGS. 5A and 5B can be eliminated. That is, in the four-terminal pair measuring device of FIG. 6, by opening or shorting the DUT connection terminal, the current measuring device 3 inside the measuring device is
4. Both the measured values of the voltage measuring device 32 can be set to 0, and ideal short circuit and ideal open can be obtained. In FIG. 6, the voltage signal source 31 connected to the resistor R p is the cable 2
a is connected between the center of one end and the outer conductor, and both terminals of the voltage measuring device 32 are connected to the center of one end of the cable 2b.
Each is connected between outer conductors. A series circuit of the variable current source 33 and the current measuring device 34 is connected between the center of one end of the cable 2c and the outer conductor, and an amplifier 35 (the output of the amplifier 35 serves as the input of the variable current source 33). Both input terminals are connected between the center outer conductors at one end of the cable 2d. The outer conductors of the cables are short-circuited at the other ends of the cables 2a to 2d. In addition, one end of the DUT is connected to the H c and H p terminals of both center conductors of the cables 2a and 2b.
c, the other end of the DUT is connected to L c, L p terminals of both the center conductor of 2d.

【0006】図6の四端子対測定装置では、低インピー
ダンスから高インピーダンスに亘る範囲での測定が要求
される場合に、ケーブル延長の如何にかかわらず、高低
インピーダンスの広い範囲に亘って高精度の測定を実現
できる。以上のように、図5(A)の測定装置により低
インピーダンス測定を犠牲にしても差し支えない場合に
は高インピーダンス測定が、図5(B)の測定装置によ
り高インピーダンス測定を犠牲にしても差し支えない場
合には低インピーダンス測定が、それぞれ高精度で行わ
れる。また、低インピーダンスから高インピーダンスに
亘る範囲での測定が要求される場合には、図6の四端子
対測定装置により、ケーブル延長の如何にかかわらず、
高低インピーダンスの広い範囲に亘って高精度の測定を
実現できる。なお、二端子対方式の測定装置は、例えば
横河・ヒューレット・パッカード株式会社製4280A
に、四端子対方式の測定装置は、例えば同社製4274
A、4275A等に従来から採用されている。
In the four-terminal pair measuring device of FIG. 6, when measurement in a range from low impedance to high impedance is required, regardless of cable extension, high accuracy is achieved over a wide range of high and low impedance. The measurement can be realized. As described above, when the measurement device of FIG. 5A can sacrifice the low impedance measurement, the high impedance measurement can be sacrificed, but the measurement device of FIG. 5B can sacrifice the high impedance measurement. If not, the low impedance measurement is performed with high accuracy. Further, when the measurement in the range from low impedance to high impedance is required, the four-terminal pair measurement device of FIG.
Highly accurate measurement can be realized over a wide range of high and low impedance. The two-terminal pair measuring device is, for example, 4280A manufactured by Yokogawa / Hewlett-Packard Co.
The four-terminal pair measuring device is, for example, 4274 manufactured by the same company.
Conventionally used for A, 4275A and the like.

【0007】ところで、例えば、DUTがプリント基板
に実装されている場合や、該プリント基板上にパターン
として形成されている場合には、該DUTは低インピー
ダンスで接地されていたり、大地間静電容量を有してい
ることがある。このような場合における遠隔測定におい
ては、DUTを片線接地した状態でインピーダンス等の
測定を行う必要がある。二端子対方式では、ケーブルの
外部導体をガード電極として接地して使用するのが通常
であるため、図5(A)のような高インピーダンス用の
測定回路では、片線接地のDUTの測定をすることがで
きない。したがって、片線接地の測定は、図5(B)の
ような低インピーダンス用の測定装置に限られ、インピ
ーダンス測定の応用分野における測定条件が極度に限定
されてしまう。なお参考のため、図5(A),(B)の
外部導体をガード電極として接地した様子を図7
(A),(B)に示す。
By the way, for example, when the DUT is mounted on a printed circuit board or is formed as a pattern on the printed circuit board, the DUT is grounded at a low impedance, or the capacitance between the earth and the ground. May have. In the remote measurement in such a case, it is necessary to measure the impedance and the like while the DUT is grounded with one wire. In the two-terminal pair method, the outer conductor of the cable is normally grounded and used as a guard electrode. Therefore, in the measurement circuit for high impedance as shown in FIG. Can not do it. Therefore, the single-wire grounding measurement is limited to the low impedance measuring device as shown in FIG. 5B, and the measurement conditions in the application field of impedance measurement are extremely limited. For reference, a state in which the outer conductors of FIGS. 5A and 5B are grounded as a guard electrode is shown in FIG.
Shown in (A) and (B).

【0008】また、図6のような四端子対方式の測定装
置では、上述したようにインピーダンス測定範囲を犠牲
にしないで遠隔測定を実現することができるが、ガード
電極として使用される4本の同軸ケーブル2a〜2dの
各外部導体は、測定器のケーシングへの接続,大地間静
電容量等によって図7(C)に示すように基本的には接
地される。同図(C)において、DUT(Zx)の両端
H,Lと、各ケーブルの外部導体2a〜2dから引き出
されたガード端子Gとの間に形成されるアドミタンスを
G1,YG2で表してある。なお、図7(C)において
は、便宜上、DUT搭載回路を3端子回路DUT′で表
し、真の測定対象部分をZxで示してある。同図からも
判るように、もしDUT′のL端子を接地すると、Zx
に電流が供給されない等の不都合が生じ、片線接地され
たZxをうまく測定することができないという問題があ
る。
Further, in the four-terminal pair type measuring device as shown in FIG. 6, although the remote measurement can be realized without sacrificing the impedance measurement range as described above, the four terminals used as the guard electrodes are used. The outer conductors of the coaxial cables 2a to 2d are basically grounded as shown in FIG. 7C by the connection of the measuring instrument to the casing, the capacitance between the ground, and the like. In the same figure (C), the admittance formed between both ends H and L of the DUT (Zx) and the guard terminals G drawn from the outer conductors 2a to 2d of each cable is represented by Y G1 and Y G2. is there. Note that, in FIG. 7C, for convenience, the DUT mounting circuit is represented by a three-terminal circuit DUT ′, and the true measurement target portion is represented by Zx. As can be seen from the figure, if the L terminal of DUT 'is grounded, Zx
However, there is a problem in that no current is supplied to the device, and it is not possible to measure Zx grounded on one wire well.

【0009】なお、従来法においては、絶対に片線接地
DUT測定を許さないと言うわけではなく、ケーブル外
部導体を含め電圧測定器32,電流測定器34,電圧信
号源31を測定器ケーシング及び大地から交流的に浮上
させれば該測定をできないことはないが、ケーブルの外
部導体が接地されていない場合には、外来ノイズ(電磁
界)の遮蔽が不完全となり、またケーブル対大地間容量
が大きく変化したりするので、再現性の良い安定した測
定は望めない。また場合によっては、ケーブルからの測
定信号の輻射の問題も生じるという不都合がある。
In the conventional method, it does not mean that the single-wire grounded DUT measurement is absolutely not permitted, and the voltage measuring device 32, the current measuring device 34, the voltage signal source 31 including the cable outer conductor, and the measuring device casing and Although it is possible to make the measurement if it is levitated from the ground in an alternating current, if the outer conductor of the cable is not grounded, the external noise (electromagnetic field) will be incompletely shielded and the capacitance between the cable and ground will be insufficient. Change greatly, so stable and highly reproducible measurements cannot be expected. Further, in some cases, there is a problem that the problem of radiation of the measurement signal from the cable also arises.

【0010】[0010]

【発明の目的】本発明は、片線接地されたDUT測定に
関する前述のような不都合,問題点を解決すべく提案さ
れたものであって、DUTを片線接地し、かつケーブル
の外部導体を接地した状態での高精度測定を可能とする
一端子トリオ,二端子トリオ測定装置を提供することを
目的とする。
SUMMARY OF THE INVENTION The present invention has been proposed in order to solve the above-mentioned inconveniences and problems relating to the measurement of a single-grounded DUT, in which the DUT is single-grounded and the outer conductor of the cable is It is an object of the present invention to provide a one-terminal trio measurement device and a two-terminal trio measurement device that enable highly accurate measurement in a grounded state.

【0011】[0011]

【発明の概要】本発明の一端子トリオ測定装置では、上
記目的を達成するために、測定装置本体に、中心導体を
構成する第1導体と、該第1導体を被覆する第2導体
と、該第2導体を更に被覆する第3導体とにより形成さ
れる3線同軸ケーブルの一端が接続され、該ケーブルの
他端の第1導体,第3導体にDUT接続端子を有し、
(1)該ケーブルの前記一端側の第1導体,第2導体間
に電圧信号源及び電圧測定器が、第2導体,第3導体間
に電流測定器がそれぞれ接続され、あるいは、(2)該
ケーブルの前記一端側の第1導体,第2導体間に電流測
定器が、第2導体,第3導体間に電圧信号源及び電圧測
定器がそれぞれ接続されて成ることを特徴とする。
SUMMARY OF THE INVENTION In the one-terminal trio measuring device of the present invention, in order to achieve the above object, a measuring device main body comprises a first conductor which constitutes a central conductor, and a second conductor which covers the first conductor. One end of a three-wire coaxial cable formed by a third conductor that further covers the second conductor is connected, and the first conductor and the third conductor at the other end of the cable have DUT connection terminals,
(1) A voltage signal source and a voltage measuring device are connected between the first conductor and the second conductor on the one end side of the cable, and a current measuring device is connected between the second conductor and the third conductor, or (2) A current measuring device is connected between the first conductor and the second conductor on the one end side of the cable, and a voltage signal source and a voltage measuring device are connected between the second conductor and the third conductor, respectively.

【0012】また、本発明の二端子トリオ測定装置で
は、一対の前記3線同軸ケーブルの各一端がそれぞれ測
定装置本体に接続されて成り、該両ケーブルの他端側の
第1導体同士,第2導体同士及び第3導体同士がそれぞ
れ短絡され、第1,第3導体にDUT接続端子を有し、
第2導体に非接地ガード端子を有すると共に、(1)ケ
ーブルの前記一端側において、何れかのケーブルの第
2,第3導体間に電圧信号源が接続され、一方のケーブ
ルの第1,第2導体に該導体間電圧を入力とする増幅器
が接続され、他方のケーブルの第1,第2導体間に前記
増幅器の出力を入力とする可変電流源が接続され、また
は、(2)ケーブルの前記一端側において、何れかのケ
ーブルの第1,第2導体間に電圧信号源が接続され、一
方のケーブルの第2,第3導体に該導体間電圧を入力と
する増幅器が接続され、他方のケーブルの第2,第3導
体間に前記増幅器の出力を入力とする可変電流源が接続
され、上記可変電流源に直列に電流測定器が、上記電圧
信号源に並列に電圧測定器がそれぞれ接続されて成るこ
とを特徴とする。
Also, in the two-terminal trio measuring device of the present invention, one end of each of the pair of the three-wire coaxial cables is connected to the measuring device main body, and the first conductors on the other end side of the both cables, The two conductors and the third conductor are short-circuited, and the first and third conductors have DUT connection terminals,
The second conductor has an ungrounded guard terminal, and (1) at one end side of the cable, a voltage signal source is connected between the second and third conductors of one of the cables, and the first and the first of the one cable are connected. An amplifier for inputting the voltage between the conductors is connected to the two conductors, and a variable current source for inputting the output of the amplifier is connected between the first and second conductors of the other cable, or (2) the cable On the one end side, a voltage signal source is connected between the first and second conductors of one of the cables, an amplifier for inputting the inter-conductor voltage is connected to the second and third conductors of one of the cables, and the other A variable current source having the output of the amplifier as an input is connected between the second and third conductors of the cable, the current measuring device is connected in series to the variable current source, and the voltage measuring device is connected in parallel to the voltage signal source. It is characterized by being connected.

【0013】すなわち、本発明の一端子トリオ測定装置
では、3線同軸ケーブルの他端側(測定器本体の逆端
側)の第1,第3導体間に、第3導体側が片線接地され
た状態でDUTが接続される。また、ケーブルの一端側
(測定器本体側)における電圧信号源の接続態様は、
(i)電圧信号源が第1,第2導体間に接続される場
合、あるいは(ii)第2,第3導体間に接続される場合
の2通り存在する。 (i)の場合、電流測定器の一方の測定端子は第3導体
に、他方の測定端子は電圧信号源の第2導体側端子に接
続され、(ii)の場合、電流測定器の一方の測定端子は
第1導体に、他方の測定端子は電圧信号源の第2導体側
端子とは逆側の端子に接続される。何れの場合であって
も、第3導体が接地電位となるので、測定条件としては
自然な形であり、またケーブルのDUT側の端子(第
1,第3導体の端子)を開放することで従来装置(図5
(A))と同様、I=0(理想開放)の状態が実現でき
ると共に、従来不可能であった片線接地DUTの測定が
可能となる。
That is, in the one-terminal trio measuring device of the present invention, the third conductor side is grounded by one wire between the first and third conductors on the other end side (the opposite end side of the measuring instrument body) of the three-wire coaxial cable. The DUT is connected in the closed state. In addition, the connection mode of the voltage signal source on one end side (measurement device main body side) of the cable is
There are two types: (i) the voltage signal source is connected between the first and second conductors, or (ii) the voltage signal source is connected between the second and third conductors. In the case of (i), one measuring terminal of the current measuring device is connected to the third conductor and the other measuring terminal is connected to the second conductor side terminal of the voltage signal source, and in the case of (ii), one of the current measuring devices is connected. The measurement terminal is connected to the first conductor, and the other measurement terminal is connected to the terminal of the voltage signal source opposite to the second conductor side terminal. In any case, since the third conductor is at the ground potential, the measurement condition is natural, and the terminals on the DUT side of the cable (terminals of the first and third conductors) can be opened. Conventional device (Fig. 5
As in the case of (A)), the state of I = 0 (ideal open) can be realized, and it is possible to measure the one-wire ground DUT, which was impossible in the past.

【0014】一方、本発明の二端子トリオ測定装置で
は、一対の3線同軸ケーブルの他端側の各第1導体同
士,第2導体同士,第3導体同士はそれぞれ接続され、
第1導体,第3導体間に第3導体側が片線接地された状
態でDUTが接続される。そして、例えばDUT搭載回
路のグランド端子(ガード端子)が第2導体に接続され
る。また、ケーブルの測定器本体側における電圧信号
源,増幅器,可変電流源の接続態様は、(i)一方のケ
ーブルの第1,第2導体に増幅器の両入力端子を接続
し、他方のケーブルの第1,第2導体間に前記増幅器の
出力を入力とする可変電流源を接続すると共に、電圧信
号源を何れかのケーブルの第2,第3導体間に接続する
場合、(ii)一方のケーブルの第2,第3導体に増幅器
の両入力端子を接続し、他方のケーブルの第2,第3導
体間に前記増幅器の出力を入力とする可変電流源を接続
すると共に、電圧信号源を何れかのケーブルの第1,第
2導体間に接続する場合が存在する。電流測定器は可変
電流源と直列に接続され、電圧測定器は電圧信号源と並
列に(すなわち、(i)の場合、第2,第3導体間電圧
を、(ii)の場合、第1,第2導体間電圧を測定できる
ように)接続される。そして、この二端子トリオ測定装
置においても、DUTを片線接地した状態での該DUT
の電気係数の測定が高精度で行われる。なお、第2導体
電位(すなわち、DUT搭載回路のグランドの電位)が
(i)の場合には第3導体電位と等しくでき、(ii)の
場合には第1導体電位と等しくできる。
On the other hand, in the two-terminal trio measuring device of the present invention, the first conductors, the second conductors, and the third conductors on the other ends of the pair of three-wire coaxial cables are connected to each other,
The DUT is connected between the first conductor and the third conductor with the third conductor side grounded on one side. Then, for example, the ground terminal (guard terminal) of the DUT mounting circuit is connected to the second conductor. Further, the connection mode of the voltage signal source, the amplifier, and the variable current source on the measuring instrument main body side of the cable is (i) connecting both input terminals of the amplifier to the first and second conductors of one cable and connecting the other cable When a variable current source having the output of the amplifier as an input is connected between the first and second conductors and a voltage signal source is connected between the second and third conductors of either cable, (ii) Both input terminals of the amplifier are connected to the second and third conductors of the cable, and a variable current source having the output of the amplifier as an input is connected between the second and third conductors of the other cable, and a voltage signal source is connected. There is a case where it is connected between the first and second conductors of either cable. The current measuring device is connected in series with the variable current source, and the voltage measuring device is connected in parallel with the voltage signal source (that is, the voltage between the second and third conductors in the case of (i) and the first voltage in the case of (ii)). , So that the voltage across the second conductor can be measured). Also in this two-terminal trio measuring device, the DUT in a state where the DUT is grounded with one wire
The electrical coefficient of is measured with high accuracy. It should be noted that when the second conductor potential (that is, the ground potential of the DUT mounting circuit) is (i), it can be made equal to the third conductor potential, and when it is (ii), it can be made equal to the first conductor potential.

【0015】[0015]

【実施例】本発明の実施例を、トポロジックな考察を交
えて説明する。図1(A)は、図5(A)の測定装置に
おいて、電流測定器13が接続されている側の同軸ケー
ブル1bの中心導体が円筒状であると想定し、該中心導
体及び外部導体を電流測定器13側から該ケーブル1b
のDUT側端を中心に傘状に開きかけた状態を示してお
り、図1(B)は、更に開傘度合が立体角2πを越えた
状態を示している。そして、図1(C)は、開傘の度合
が立体角4πとなり、ケーブル1bの外部導体が、もう
一方のケーブル1aの外部導体に一致した状態を示して
おり、この状態で2本のケーブル1a,1bは、3線同
軸ケーブル3に変換される。すなわち、ケーブル1aの
中心導体により第1導体が、ケーブル1a,1bの外部
導体により第1導体を被覆する第2導体が、ケーブル1
bの中心導体により第2導体を更に被覆する第3導体が
形成される。この場合、電圧信号源11は(抵抗Rp
介して)ケーブル3の一端側の第1,第2導体間に、電
圧測定器12は同じく第1,第2導体間にそれぞれ接続
され、電流測定器13は上記一端側の第2,第3導体間
に接続されることになる。また、DUT(Zx)はケー
ブル3の他端側の第1,第3導体間に接続されることに
なる。
Embodiments of the present invention will be described with topological considerations. 1A, assuming that the center conductor of the coaxial cable 1b on the side to which the current measuring device 13 is connected is cylindrical in the measuring apparatus of FIG. From the current measuring device 13 side to the cable 1b
1B shows a state in which the DUT side end is opened like an umbrella, and FIG. 1B shows a state in which the degree of opening further exceeds the solid angle 2π. Then, FIG. 1C shows a state in which the degree of opening is a solid angle of 4π, and the outer conductor of the cable 1b matches the outer conductor of the other cable 1a. In this state, two cables are shown. 1a and 1b are converted into a three-wire coaxial cable 3. That is, the first conductor is the central conductor of the cable 1a, and the second conductor that covers the first conductor is the external conductor of the cables 1a and 1b.
The center conductor of b forms a third conductor that further covers the second conductor. In this case, the voltage signal source 11 is connected (via the resistance R p ) between the first and second conductors on one end side of the cable 3, and the voltage measuring device 12 is also connected between the first and second conductors, respectively. The measuring instrument 13 is connected between the second and third conductors on the one end side. The DUT (Zx) is connected between the first and third conductors on the other end side of the cable 3.

【0016】また、図2(A)は、図5(A)の測定装
置において、ケーブル1aの中心導体及び外部導体の開
傘途中の状態を示しており、図2(B)は上記と同様に
ケーブル1aのDUT側端を中心に開傘の度合を立体角
4πにしてケーブル1a,1bが3線同軸ケーブル3に
変換された状態を示している。この場合、電圧信号源1
1,電圧測定器12は第2,第3導体間に接続され、電
流測定器13は第1,第2導体間に接続される。これら
の測定装置では、片線接地したDUT(Zx)の接地側
端子が第3導体側に接続される。すなわち、第3導体は
接地電位であり、遮蔽障害,雑音障害等の少ない測定装
置が構成される。図1(C),図2(B)の測定装置の
性能は、図5(A)に示した従来の二端子対測定装置に
よる非接地DUTの測定性能と比較して差異はなく、し
かも本測定装置によれば理想開放(I=0)を実現で
き、高インピーダンスかつ片線接地のDUTを高精度で
測定できる。なお、図1(C)では電流測定器13の一
端子側が、また図2(B)では電圧測定器12の一端子
側が接地電位となるが、図1(C),図2(B)のどち
らを選ぶかは、電圧信号源,電圧測定器,電流測定器そ
れぞれの交流的浮上実現の難易度等によって判断され
る。
Further, FIG. 2A shows a state in which the central conductor and the outer conductor of the cable 1a are being opened in the measuring apparatus of FIG. 5A, and FIG. 2B is the same as the above. 3 shows a state in which the cables 1a and 1b are converted into the three-wire coaxial cable 3 with the degree of opening of the cable 1a as the center and the degree of opening is set to a solid angle of 4π. In this case, the voltage signal source 1
1, the voltage measuring device 12 is connected between the second and third conductors, and the current measuring device 13 is connected between the first and second conductors. In these measuring devices, the ground side terminal of the DUT (Zx) grounded on one line is connected to the third conductor side. That is, the third conductor is at the ground potential, and a measuring device with less shielding interference, noise interference, etc. is constructed. The performance of the measuring device of FIGS. 1 (C) and 2 (B) is the same as that of the ungrounded DUT by the conventional two-terminal pair measuring device shown in FIG. 5 (A). According to the measuring device, ideal opening (I = 0) can be realized, and the DUT with high impedance and one-wire ground can be measured with high accuracy. In addition, although one terminal side of the current measuring device 13 in FIG. 1 (C) and one terminal side of the voltage measuring device 12 in FIG. 2 (B) are at the ground potential, the one in FIG. 1 (C) and FIG. Which one is selected is determined by the difficulty level of realizing the AC levitation of the voltage signal source, the voltage measuring device, and the current measuring device.

【0017】図3(A),(B)、図4(A),(B)
は、上記と同様にして図6の測定装置の一の同軸ケーブ
ルの中心導体及び外部導体を傘状に開いて、外部導体を
他の同軸ケーブルの外部導体に一致させた場合の態様を
示す図である。図3(A)は、図6の測定装置のケーブ
ル2a,2bのそれぞれの中心導体,外部導体を開傘し
て、各外部導体をケーブル2c,2dの外部導体に一致
させ、新たな3線同軸ケーブル4b,4aを形成した場
合を示している。この場合、図6におけるケーブル2b
の中心導体が図3(A)の3線同軸ケーブル4aの第1
導体に、同じくケーブル2a,2bの外部導体が4aの
第2導体に、ケーブル2aの中心導体がケーブル4aの
第3導体に対応する。また、図6の測定装置のケーブル
2c,2dについても同様に、ケーブル2dの中心導体
が図3(A)の3線同軸ケーブル4bの第1導体に、同
じくケーブル2c,2dの外部導体が4bの第2導体
に、ケーブル2cの中心導体がケーブル4bの第3導体
に対応する。この場合、DUT搭載回路のグランド端子
を第2導体のガード端子に接続すると共に、第3導体を
接地することでDUTの片線接地状態での高精度測定を
可能としている。なお、ここで、ガードは、大地からの
交流的に浮上したアクティブガードとなっている。この
ようにして、ケーブル4a,4bの第3導体を接地状態
に置くと共に、DUTを片線接地することができる。
3 (A), (B), 4 (A), (B)
The figure which shows the aspect at the time of making the center conductor and outer conductor of one coaxial cable of the measuring device of FIG. 6 open like an umbrella like the above, and making an outer conductor match the outer conductor of another coaxial cable. Is. FIG. 3 (A) shows that the central conductors and the outer conductors of the cables 2a and 2b of the measuring device of FIG. 6 are opened, and the outer conductors are made to match the outer conductors of the cables 2c and 2d. The case where the coaxial cables 4b and 4a are formed is shown. In this case, the cable 2b in FIG.
Is the first conductor of the three-wire coaxial cable 4a in FIG.
Similarly, the outer conductors of the cables 2a and 2b correspond to the second conductor of 4a, and the center conductor of the cable 2a corresponds to the third conductor of the cable 4a. Similarly, regarding the cables 2c and 2d of the measuring device of FIG. 6, the center conductor of the cable 2d is the first conductor of the three-wire coaxial cable 4b of FIG. 3A, and the outer conductor of the cables 2c and 2d is 4b. The center conductor of the cable 2c corresponds to the third conductor of the cable 4b. In this case, by connecting the ground terminal of the DUT mounted circuit to the guard terminal of the second conductor and grounding the third conductor, it is possible to perform highly accurate measurement in the one-wire grounded state of the DUT. Here, the guard is an active guard that floats up from the earth in an alternating manner. In this way, the third conductor of the cables 4a and 4b can be placed in the grounded state, and the DUT can be grounded in one line.

【0018】図3(B)は、図6の測定装置のケーブル
2a,2bのそれぞれの中心導体,外部導体を開傘し、
各外部導体をケーブル2d,2cの外部導体に一致させ
て3線同軸ケーブル4b,4aを形成して測定装置を構
成した場合を、図4(A)は、図6の測定装置のケーブ
ル2c,2dのそれぞれの中心導体,外部導体を開傘し
て、各外部導体をケーブル2a,2bの外部導体に一致
させて3線同軸ケーブル4b,4aを形成して測定装置
を構成した場合を、図4(B)は図6の測定装置のケー
ブル2c,2dのそれぞれの中心導体,外部導体を開傘
して、各外部導体をケーブル2b,2aの外部導体に一
致させて3線同軸ケーブル4b,4aを形成して測定装
置を構成した場合をそれぞれ示している。これら図3
(B),図4(A),(B)の二端子トリオ測定装置に
おいても、DUT搭載回路のガード端子、(すなわち、
グランド端子)は第2導体に接続され、第3導体のDU
T側端を接地することで、同図(A)の場合と同様、D
UTの片線接地状態での高精度測定が可能となる。図3
(A),(B),図4(A),(B)の測定装置の性能
は、従来の測定装置における非接地DUTの測定精度と
比較して差異はないばかりか、片線接地DUTの測定に
おいて、電圧測定装置または電流測定装置の何れかの一
端子を接地電位とすることができるので、従来装置の測
定精度と比べて格段に高精度となる。なお、図3
(A),(B)では、は電圧測定装置の一端が、図4
(A),(B)では、電流測定装置の一端がそれぞれ接
地電位となっている。どちらの構成を選ぶべきかは、図
1(B),図2(B)の一端子トリオの場合と同様、電
圧信号源,電圧測定器,電流測定器それぞれの交流的浮
上実現の難易度等によって判断される。
FIG. 3B shows that the central conductor and the outer conductor of each of the cables 2a and 2b of the measuring device of FIG.
FIG. 4A shows a case where the measurement device is configured by forming the three-wire coaxial cables 4b and 4a by matching the outer conductors with the outer conductors of the cables 2d and 2c. The case where the measuring device is configured by forming the 3-wire coaxial cables 4b and 4a by opening the respective central conductors and outer conductors of 2d and matching the outer conductors with the outer conductors of the cables 2a and 2b. 4 (B) is a three-wire coaxial cable 4b in which the central conductors and outer conductors of the cables 2c and 2d of the measuring device of FIG. 6 are opened, and the outer conductors are matched with the outer conductors of the cables 2b and 2a. 4a shows the case where the measuring device is formed by forming 4a. These Figure 3
Also in the two-terminal trio measuring device of (B), FIG. 4 (A), and (B), the guard terminal of the DUT-mounted circuit (that is,
Ground terminal) is connected to the second conductor and the DU of the third conductor
By grounding the end on the T side, as in the case of FIG.
Highly accurate measurement is possible in the one-wire grounded state of the UT. Figure 3
The performance of the measuring devices of (A), (B), FIG. 4 (A), and (B) is not different from the measurement accuracy of the ungrounded DUT in the conventional measuring device, and the performance of the single-wire grounded DUT is not different. In the measurement, one terminal of either the voltage measuring device or the current measuring device can be set to the ground potential, so that the precision is remarkably higher than that of the conventional device. Note that FIG.
In (A) and (B), one end of the voltage measuring device is shown in FIG.
In (A) and (B), one end of the current measuring device is at the ground potential. Which configuration should be selected is the same as in the case of the one-terminal trio in FIG. 1 (B) and FIG. 2 (B), the degree of difficulty in realizing AC levitation of each of the voltage signal source, the voltage measuring device, and the current measuring device. Judged by

【0019】[0019]

【発明の効果】以上述べたように、本発明によれば以下
の効果を奏することができる。 (1)一端子トリオ測定装置では、高インピーダンスD
UT用の測定装置では従来不可能であった、外部導体を
接地した状態で、片線接地DUTの測定を高精度で行う
ことが可能となった。 (2)二端子トリオ測定装置でも、片線接地のDUT測
定は従来不可能であったが、第3導体を接地した状態で
の測定が可能となった。 (3)第3導体を接地しているので、外部電磁界の影響
の極めて少ない測定装置を提供できる。
As described above, according to the present invention, the following effects can be obtained. (1) In the one-terminal trio measuring device, high impedance D
It has become possible to measure the one-wire grounded DUT with high accuracy in a state where the outer conductor is grounded, which has been impossible with the conventional UT measuring device. (2) Even with the two-terminal trio measuring device, it has been impossible to measure the DUT with a single wire grounded in the past, but it has become possible to measure with the third conductor grounded. (3) Since the third conductor is grounded, it is possible to provide a measuring device that is extremely less affected by the external electromagnetic field.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一端子トリオ測定装置の一実施例を示
す図であり、(A)は3線同軸ケーブルの中心導体及び
外部導体の開傘途中の状態を、(B)は更に開傘度合が
立体角2πを越えた状態を、(C)は開傘の度合が立体
角4πとなった場合をそれぞれ示す図である。
FIG. 1 is a diagram showing an embodiment of a one-terminal trio measuring device of the present invention, (A) showing a state where a center conductor and an outer conductor of a three-wire coaxial cable are being opened, and (B) further opening. FIG. 3C is a diagram showing a state in which the degree of umbrella exceeds the solid angle 2π, and FIG. 8C is a diagram showing a case in which the degree of opening the umbrella becomes solid angle 4π.

【図2】本発明の一端子トリオ測定装置の他の実施例を
示す図であり、(A)は3線同軸ケーブルの中心導体及
び外部導体の開傘途中の状態を、(B)は開傘の度合が
立体角4πとなった場合をそれぞれ示す図である。
FIG. 2 is a view showing another embodiment of the one-terminal trio measuring device of the present invention, (A) showing a state where the center conductor and the outer conductor of the three-wire coaxial cable are being opened, and (B) showing an open state. It is a figure which respectively shows the case where the degree of an umbrella became solid angle 4pi.

【図3】(A),(B)は本発明の二端子トリオ測定装
置の態様を例示する図である。
3 (A) and 3 (B) are views illustrating an embodiment of the two-terminal trio measuring device of the present invention.

【図4】(A),(B)は本発明の二端子トリオ測定装
置の他の態様を例示する図である。
4 (A) and (B) are diagrams illustrating another embodiment of the two-terminal trio measuring device of the present invention.

【図5】従来の二端子対測定装置を示す図であり、
(A)は高インピーダンスDUTの測定に用いる二端子
対測定装置を、(B)は低インピーダンスDUTの測定
に用いられる二端子対測定装置をそれぞれ示す図であ
る。
FIG. 5 is a diagram showing a conventional two-terminal pair measuring device,
(A) is a figure which shows the two-terminal pair measuring apparatus used for measurement of high impedance DUT, (B) is a figure which shows the two-terminal pair measuring apparatus used for measurement of low impedance DUT, respectively.

【図6】従来の四端子対測定装置を示す図である。FIG. 6 is a diagram showing a conventional four-terminal pair measuring device.

【図7】(A),(B)は図5(A),(B)の外部導
体をガード電極として接地した様子を示す図であり、
(C)は図6の外部導体をガード電極として接地した様
子を示す図である。
7A and 7B are diagrams showing a state in which the outer conductor of FIGS. 5A and 5B is grounded as a guard electrode,
FIG. 7C is a diagram showing a state in which the outer conductor of FIG. 6 is grounded as a guard electrode.

【符号の説明】[Explanation of symbols]

3 3線同軸ケーブル 4a,4b 3線同軸ケーブル 11 電圧信号源 12 電圧測定器 13 電流測定器 31 電圧信号源 32 電圧測定器 33 可変電流源 34 電流測定器 35 増幅器 3 3 wire coaxial cable 4a, 4b 3 wire coaxial cable 11 voltage signal source 12 voltage measuring device 13 current measuring device 31 voltage signal source 32 voltage measuring device 33 variable current source 34 current measuring device 35 amplifier

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 測定装置本体に、中心導体を構成する第
1導体と、該第1導体を被覆する第2導体と、該第2導
体を更に被覆する第3導体とにより形成される3線同軸
ケーブルの一端が接続され、該ケーブルの他端の第1導
体,第3導体に被測定対象接続端子を有する測定装置で
あって、 該ケーブルの前記一端側の第1導体,第2導体間に電圧
信号源及び電圧測定器が、第2導体,第3導体間に電流
測定器がそれぞれ接続され、または、 該ケーブルの前記一端側の第1導体,第2導体間に電流
測定器が、第2導体,第3導体間に電圧信号源及び電圧
測定器がそれぞれ接続されて成ることを特徴とする一端
子トリオ測定装置。
1. A three-wire formed by a first conductor that constitutes a central conductor, a second conductor that covers the first conductor, and a third conductor that further covers the second conductor, in the measuring device main body. A measuring device to which one end of a coaxial cable is connected and which has connection terminals to be measured on a first conductor and a third conductor at the other end of the cable, wherein the first conductor and the second conductor on the one end side of the cable A voltage signal source and a voltage measuring device, and a current measuring device connected between the second conductor and the third conductor, respectively, or a current measuring device between the first conductor and the second conductor on the one end side of the cable, A one-terminal trio measuring device comprising a voltage signal source and a voltage measuring device connected between a second conductor and a third conductor, respectively.
【請求項2】 一対の前記3線同軸ケーブルの各一端が
それぞれ測定装置本体に接続されて成り、 該両ケーブルの他端側の第1導体同士,第2導体同士及
び第3導体同士がそれぞれ短絡され、第1,第3導体に
被測定対象接続端子を有し、第2導体に非接地ガード端
子を有すると共に、 ケーブルの前記一端側において、何れかのケーブルの第
2,第3導体間に電圧信号源が接続され、一方のケーブ
ルの第1,第2導体に該導体間電圧を入力とする増幅器
が接続され、他方のケーブルの第1,第2導体間に前記
増幅器の出力を入力とする可変電流源が接続され、また
は、 ケーブルの前記一端側において、何れかのケーブルの第
1,第2導体間に電圧信号源が接続され、一方のケーブ
ルの第2,第3導体に該導体間電圧を入力とする増幅器
が接続され、他方のケーブルの第2,第3導体間に前記
増幅器の出力を入力とする可変電流源が接続され、 上記可変電流源に直列に電流測定器が、上記電圧信号源
に並列に電圧測定器がそれぞれ接続されて成ることを特
徴とする二端子トリオ測定装置。
2. One end of each of the pair of the three-wire coaxial cables is connected to the main body of the measuring device, and the first conductors, the second conductors, and the third conductors on the other end sides of the both cables are respectively formed. Between the second and third conductors of one of the cables, which is short-circuited, has the connection terminals to be measured on the first and third conductors, has the ungrounded guard terminal on the second conductor, and at the one end side of the cable. Is connected to a voltage signal source, an amplifier for inputting the voltage between the conductors is connected to the first and second conductors of one cable, and the output of the amplifier is input between the first and second conductors of the other cable. Or a voltage signal source is connected between the first and second conductors of one of the cables on one end side of the cable, and the variable current source is connected to the second and third conductors of one of the cables. Connected to an amplifier that inputs voltage between conductors A variable current source having the output of the amplifier as an input is connected between the second and third conductors of the other cable, a current measuring device is connected in series with the variable current source, and a voltage is measured in parallel with the voltage signal source. A two-terminal trio measuring device, characterized in that the devices are connected to each other.
JP03274543A 1991-09-26 1991-09-26 One terminal trio and two terminal trio measuring device and electric coefficient measuring method Expired - Fee Related JP3101024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03274543A JP3101024B2 (en) 1991-09-26 1991-09-26 One terminal trio and two terminal trio measuring device and electric coefficient measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03274543A JP3101024B2 (en) 1991-09-26 1991-09-26 One terminal trio and two terminal trio measuring device and electric coefficient measuring method

Publications (2)

Publication Number Publication Date
JPH0587845A true JPH0587845A (en) 1993-04-06
JP3101024B2 JP3101024B2 (en) 2000-10-23

Family

ID=17543182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03274543A Expired - Fee Related JP3101024B2 (en) 1991-09-26 1991-09-26 One terminal trio and two terminal trio measuring device and electric coefficient measuring method

Country Status (1)

Country Link
JP (1) JP3101024B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7138808B2 (en) 2003-11-28 2006-11-21 Agilent Technologies, Inc. Movable apparatus, a measuring apparatus, a capacitive distance sensing apparatus, and a positioning device
JP2015132585A (en) * 2014-01-15 2015-07-23 中国電力株式会社 distortion measurement device
JP2015175599A (en) * 2014-03-12 2015-10-05 中国電力株式会社 Strain measurement instrument

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7138808B2 (en) 2003-11-28 2006-11-21 Agilent Technologies, Inc. Movable apparatus, a measuring apparatus, a capacitive distance sensing apparatus, and a positioning device
JP2015132585A (en) * 2014-01-15 2015-07-23 中国電力株式会社 distortion measurement device
JP2015175599A (en) * 2014-03-12 2015-10-05 中国電力株式会社 Strain measurement instrument

Also Published As

Publication number Publication date
JP3101024B2 (en) 2000-10-23

Similar Documents

Publication Publication Date Title
JP3442822B2 (en) Measurement cable and measurement system
US6822463B1 (en) Active differential test probe with a transmission line input structure
US5472561A (en) Radio frequency monitor for semiconductor process control
US7126352B2 (en) Method and device for determining the moisture content and conductivity in the ground and in bulk materials
JPH05312859A (en) Impedance meter
US5463323A (en) Impedance meter
US8786273B2 (en) System and method for improving accuracy of high voltage phasing voltmeters
EP0980004B1 (en) Microscopic capacitance measurement system and probing system
US6239587B1 (en) Probe for monitoring radio frequency voltage and current
US3732490A (en) Impedance probe for swept network analyzer system
US6841986B1 (en) Inductively coupled direct contact test probe
US5627476A (en) Milliohm impedance measurement
JP3101024B2 (en) One terminal trio and two terminal trio measuring device and electric coefficient measuring method
JP2698615B2 (en) Circuit element measuring device
JPH06100629B2 (en) Magnetic field measurement probe
US5216373A (en) Circuit element measuring apparatus and method for measuring a parameter of a DUT including a compensation network having an admittance characteristic
JP3862783B2 (en) Impedance measuring device
JPH08146046A (en) Non-contact type voltage probe apparatus
Kusters et al. A direct current comparator bridge for high resistance measurements
JP3102709B2 (en) Electronic element measuring device
US20220043032A1 (en) Non-invasive voltage sensor for polyphase cables
EP0290182A1 (en) High frequency passive probe
Huntley et al. Lumped parameter impedance measurements
Yonekura et al. High-Frequency Impedance Analyzer
EP0443835B1 (en) Circuit element measuring apparatus and method

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20080818

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20080818

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees