JPH0587624B2 - - Google Patents

Info

Publication number
JPH0587624B2
JPH0587624B2 JP62189584A JP18958487A JPH0587624B2 JP H0587624 B2 JPH0587624 B2 JP H0587624B2 JP 62189584 A JP62189584 A JP 62189584A JP 18958487 A JP18958487 A JP 18958487A JP H0587624 B2 JPH0587624 B2 JP H0587624B2
Authority
JP
Japan
Prior art keywords
floor
steel ball
seismic isolation
diameter steel
central body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62189584A
Other languages
Japanese (ja)
Other versions
JPS6433319A (en
Inventor
Kenichi Yano
Minoru Karibe
Tooru Inomata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP18958487A priority Critical patent/JPS6433319A/en
Publication of JPS6433319A publication Critical patent/JPS6433319A/en
Publication of JPH0587624B2 publication Critical patent/JPH0587624B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Foundations (AREA)
  • Floor Finish (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、地震等の外部振動に対する免震床に
関する。 〔従来の技術とその問題点〕 床を免震構造とするには、固定部となるコンク
リート床部分の上方に、さらにフロアパネル等の
可動部を形成し、この可動部と固定部間にバネや
ゴムやベアリング等の免震機構を設け、これで可
動部を支承するとが考えられる。 例えば、コンクリート床に適宜間隔でコイルバ
ネを配設し、その上にフロアパネルを敷設する方
法などもその一例であり、これは鉛直方向の揺れ
に対しては有効であるが、地震時には大きな水平
方向の変位を生じるので、水平方向の動きに対し
ての復元が重視され、縦方向に点在してコイルバ
ネを設けたものではこのような水平方向への大き
な復元力は得られない。 また、ベアリングを介在させてフロアパネルを
支承するようにしたものは相対的な水平変位には
追随できるが復元力を持たせることはできないの
で、別途横方向への引張りバネを組合せるなどし
て復元力を発揮できるようにしており、この引張
りバネが強いとベアリングの動きを阻害してしま
うなどの問題を生じ、両者の調整がきわめて困難
である。 さらに、かかるベアリング支承のものでは水平
2次元的な免震作用のみで、鉛直免震については
何ら考慮されていないものとなる。 一方、可動部としてのフロアパネルを免震機構
で直接支承するにしてもどのように連結するかは
問題であり、ボルト止めするにしてもフロアパネ
ルがある程度の厚みがないとその上面に金具が出
て使い勝手の悪いものとなるし、補修等の時は免
震機構との結合を解除することが必要となり非常
に面倒である。 本発明の目的は前記従来例の不都合を解消し、
地震などの外部振動による相対変位を生じる場合
に、水平方向のみならず鉛直方向の変位にも効果
的に対処できるとともに、フロアパネルを直接支
承せずにその根太部分を支承するようにしたので
少ない免震機構でフロアパネル全体に有効に免震
作用を施すことができ、しかもフロアパネルへの
部分的荷重が異なつてもそれに合わせて調整して
フロアパネル全体に不陸を生じることを防止で
き、またフロアパネル自体の設置及び補修等も楽
に行うことができる免震床を提供することにあ
る。 〔問題点を解決するための手段〕 本発明は前記目的を達成するため、床の固定部
に、周辺に弾性部材を立上げた円錐状凹部を形成
し、ここに置く大径のスチールボール上部を収納
保持体としての中央本体部内に球面受具を介して
収納し、また該大径のスチールボールの上端面を
中央本体部内に収納した多数の小径のスチールボ
ールに当接させ、前記中央本体部の上部に筒体を
摺動自在に嵌合し、中央本体部の下方から外周に
張出すように設けた下部板体下部にストツパーを
突設し、さらに、前記筒体の上面板の端部を外周
に張出させ、前記下部板体とこの端部間に垂直方
向のコイルバネを配設し、上面板の端部から該コ
イルバネの弾性力調整機構としてロツドを上下動
自在に突設し、該ロツドの下端でコイルバネの上
端を受け、また、筒体の上面板から下方に向けて
ダンパーを突設してその先端を中央本体部に係合
し、さらに上面板からフランジを左右両側へ突設
し、該フランジ端を根太端に接合し、該根太上に
支持脚を介してフロアパネルを敷設したことを要
旨とするものである。 〔作用〕 本発明によれば、大径のスチールボールを円錐
状凹部に載せるが、この円錐状凹部は外側へと向
かつて直線状の登り勾配となつているので、床と
下部板体との水平方向への相対変化発生時におけ
る復元力(スチールボールが円錐状凹部の中心位
置に戻ろうとする力)は、両者の相対変位の大小
即ち振巾の大小に関係なく、何処の位置にあろう
とも常に円錐状凹部の傾斜角θによつて一義的に
決まる一定値を保つ。 したがつて、可動側の振動系は、ばね−質量系
とは異なつて常に復元力が一定値を保つことか
ら、下部板体の固有振動数fnは、振巾をaとする
と、
[Industrial Application Field] The present invention relates to a seismic isolation floor against external vibrations such as earthquakes. [Conventional technology and its problems] In order to make the floor a seismic isolation structure, a movable part such as a floor panel is formed above the fixed part of the concrete floor, and a spring is inserted between the movable part and the fixed part. It is conceivable that a seismic isolation mechanism such as rubber, bearings, etc. will be provided to support the moving parts. For example, one method is to place coil springs on a concrete floor at appropriate intervals and then lay floor panels on top of them.This method is effective against vertical shaking, but in the event of an earthquake there is a large amount of horizontal vibration. Therefore, restoration against movement in the horizontal direction is important, and such a large restoring force in the horizontal direction cannot be obtained by providing coil springs scattered in the vertical direction. In addition, floor panels that support floor panels with bearings can follow relative horizontal displacements, but cannot provide restoring force, so it is necessary to use a separate horizontal tension spring in combination. It is designed to exert a restoring force, and if this tension spring is strong, problems such as obstructing the movement of the bearing will occur, making it extremely difficult to adjust the two. Furthermore, such bearing bearings provide only horizontal two-dimensional seismic isolation, and do not take vertical seismic isolation into consideration. On the other hand, even if the floor panel as a movable part is directly supported by a seismic isolation mechanism, there is a problem with how to connect it, and even if it is bolted, if the floor panel is not thick enough, there will be metal fittings on the top surface. It comes out, making it difficult to use, and when repairs are needed, it is necessary to disconnect from the seismic isolation mechanism, which is very troublesome. The purpose of the present invention is to eliminate the disadvantages of the conventional example,
When relative displacement occurs due to external vibrations such as earthquakes, it is possible to effectively deal with displacement not only in the horizontal direction but also in the vertical direction, and because the floor panels are supported by their joists rather than directly, the displacement is reduced. The seismic isolation mechanism can effectively provide seismic isolation to the entire floor panel, and even if the partial load on the floor panel varies, it can be adjusted accordingly to prevent the entire floor panel from becoming uneven. Another object of the present invention is to provide a seismic isolation floor that allows easy installation and repair of the floor panel itself. [Means for Solving the Problems] In order to achieve the above object, the present invention forms a conical recess in which an elastic member is raised around the fixed part of the floor, and a large diameter steel ball is placed in the upper part of the conical recess. is stored in the central body serving as a storage holder via a spherical receiver, and the upper end surface of the large diameter steel ball is brought into contact with a large number of small diameter steel balls stored in the central body, and the central body A cylindrical body is slidably fitted into the upper part of the central body part, a stopper is provided at the bottom of the lower plate body provided so as to protrude from below to the outer periphery of the central main body part, and a stopper is provided at the bottom of the lower plate body, and further, a stopper is provided at the bottom of the lower plate body, and further, a stopper is provided at the bottom of the lower plate body, and the end of the upper plate of the cylindrical body is provided with a stopper. A vertical coil spring is disposed between the lower plate and this end, and a rod is vertically movably protruded from the end of the upper plate as a mechanism for adjusting the elastic force of the coil spring. The lower end of the rod receives the upper end of the coil spring, and a damper is protruded downward from the upper plate of the cylindrical body, its tip engages with the central body, and the flanges are extended from the upper plate to both the left and right sides. The gist is that the flange end is connected to the joist end, and a floor panel is laid on the joist via support legs. [Operation] According to the present invention, a large-diameter steel ball is placed in a conical recess, and since this conical recess has a linear upward slope toward the outside, the connection between the floor and the lower plate is The restoring force (the force that causes the steel ball to return to the center position of the conical recess) when a relative change occurs in the horizontal direction is regardless of the relative displacement between the two, that is, the amplitude, and regardless of the position. also always maintains a constant value uniquely determined by the inclination angle θ of the conical recess. Therefore, in the vibration system on the movable side, unlike the spring-mass system, the restoring force always maintains a constant value, so the natural frequency fn of the lower plate is as follows, where the amplitude is a.

〔実施例〕〔Example〕

以下、図面について本発明の実施例を詳細に説
明する。 第1図は本発明の免震床の1実施例を示す縦断
正面図、第2図は免震機構の詳細を示す縦断正面
図である。 先に免震機構Aから説明すると、略平盤状に形
成した座部1の底部下面に突起2を突設し、該座
部1の上面に、座部1の中央を最深部とし、外側
へと向かつて直線状の登り勾配となつている底面
形状を有する円錐状凹部3を形成し、その周辺に
弾性部材による障壁9を立上げた。 該円錐状凹部3上に水平方向の免震部材として
全体が同一の曲率すなわち純球体からなる大径の
スチールボール4を置くが、該スチールボール4
の上部は収納保持体としての中央本体部5内に球
面受具6a,6bを介して収納し、またスチール
ボール4の上端面は中央本体部5内に収納した多
数の小径のスチールボール7に当接させる。 図中8は、中央本体部5内に球面受具6a,6
bを嵌装固定するためのスナツプリングである。 筒体を上面に設けた下部板体10を該筒体を中
央本体部5の下端に摺動自在に嵌めることで、中
央本体部5の下方から外周に張出すように下部板
体10を設け、この下部板体10の中央下部にス
トツパー11を突設する。 中央本体部5の上部に軸受部材12を介して上
部部材としての筒体13を摺動自在に嵌合し、そ
の上面板14の端部14aを外周に張出させ、前
記下部板体10とこの端部14a間には垂直方向
の免震部材としてコイルバネ15を配設した。 このコイルバネ15の配設に際し、端部14a
からバネ15の弾性力調整機構として下方に向け
てロツド16を上下動自在に突設し、該コイルバ
ネ15の上端は該ロツド16の下端に当接させた
ものである。このロツド16の長さを調整する機
構としてはロツド16をネジとし、ナツトに螺合
させる。 また、上面板14の中央から下方に向けてオイ
ルダンパー17を突設し、そのロツド17aの先
端を中央本体部5に係止し、さらに上面板14の
上面から垂直板によるフランジ18を左右両側へ
突設する。 図中19はオイルダンパー17の位置決め用の
ロツクナツトである。 このような免震機構Aを配設するには、第1図
に示すように床の固定部としてのコンクリート床
22に突起2を介して座部1を定着し、一方、フ
ランジ18端はボルト止め等で鉄骨による根太2
3端に接合する。 従つて、根太23同士は前記フランジ18を介
して相互に連結されるものであり、該根太23上
に支持脚25を介してフロアパネル24を敷設し
た。 なお、他の実施例として、コンクリート床22
を省略し、座部1を床の固定部としての梁上に設
けることも考えられる。 次に使用法及び動作について説明すると、通常
時は大径のスチールボール4は円錐状凹分3の中
央最深部にあり、フロアパネル24へ加えられる
荷重はコイルバネ15及びスチールボール4を介
してコンクリート床22側へ伝えられるが、オイ
ルダンパー17があるので、フロアパネル24上
を人間が歩いた程度の荷重変動ではコイルバネ1
5の弾性力は作用せず、フロアパネル24が上下
動することもない。 また、フロアパネル24上にはコンピユータ等
の機器が置かれるなどして部分的に大きな荷重が
かけられることもあるが、その場合はロツド16
を調整してバネ15の弾性力を強く発揮できるよ
うにすれば、フロアパネル24が部分的に沈むな
どの不陸を生じるおそれはなくなる。 地震等の外部振動を受け、コンクリート床22
と根太23との間に水平方向の相対変位が生じる
ときは、大径のスチールボール4が円錐状凹部3
の上面をいわゆる駆け上がる状態で転動すること
により前記水平方向の相対変位の大小にかかわら
ず対処し、かつ変位の解除時には大径のスチール
ボール4が中心部に向けて滑り下りるように転動
する。 かかるスチールボール4の転動が大きなものと
なると、ストツパー11が弾性部材による障壁9
に当接し、いわゆるシヨツクが吸収される。 さらに、スチールボール4の転動について述べ
ると、該スチールボール4を受ける凹部の形状が
円弧形の場合には、その円弧形状(曲率半径)に
より周期が一定となるが、円錐形状の円錐状凹部
3の場合には振動に伴うスチールボール4の移動
振巾により周期が決まるので、例え共振状態にな
つても共振による振巾の増大が更に新しい固有周
期帯に入ることで共振しないこととなる。このよ
うに振巾の増大に伴い周期は長くなる性質がある
ので、振動はその周期が長くなるように変換され
て揺れの少ないものとなつて根太23へ伝達さ
れ、該根太23の上部に設けた支持脚25を介し
て敷設したフロアパネル24に免震が行われる。 そして、スチールボール4は必ず円錐状凹部3
の中心にもどるので、水平方向の相対変位が解除
された場合に自動的に元の定位置に戻り、いわゆ
る復位が得られる。 一方、鉛直方向の変位に関しては、初期の軽微
なものはダンパー17が所望の緩衝機能を発揮
し、それ以上のものについてはコイルバネ15に
よる緩衝機能が得られる。 このようにして、水平及び鉛直の3次元的免震
が得られるものであり、さらに、免震機構Aは根
太23の相互端の連結部に連結部材として介在さ
れるものであり、根太23の全体を免震すること
で、その上部のフロアパネル24にもこの作用を
そのまま伝達することになる。 〔発明の効果〕 以上述べたように、本発明の免震床は、床の固
定部と可動部としてのフロアパネル間に地震等で
水平方向及び鉛直方向の変位が生じても、小さな
変位はもちろん、大きな変位にも必要な減衰作用
で効果的に対処でき、変位終了後の復位にもすぐ
れたものである。 また、可動部としてのフロアパネルは根太を介
して免震機構に支承されるものであり、面倒な取
付けなしに簡単に施工できるとともに、補修等も
楽に行えるものとなる。 さらに、コイルバネの弾性力を適宜調節できる
ようにしたので、フロアパネル上に部分的に重い
荷重をかけても不陸を生じるおそれのないもので
ある。
Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a longitudinal sectional front view showing one embodiment of the seismic isolation floor of the present invention, and FIG. 2 is a longitudinal sectional front view showing details of the seismic isolation mechanism. To explain the seismic isolation mechanism A first, a protrusion 2 is provided protruding from the lower surface of the bottom of a seat 1 formed in a substantially flat shape, and a protrusion 2 is provided on the upper surface of the seat 1, with the center of the seat 1 being the deepest part, and the projection 2 extending from the outside. A conical recess 3 having a bottom surface having a linear upward slope toward the bottom was formed, and a barrier 9 made of an elastic member was erected around the conical recess 3. A large-diameter steel ball 4 having the same curvature as a whole, that is, a pure sphere, is placed on the conical recess 3 as a horizontal seismic isolation member.
The upper part of the steel ball 4 is stored in the central body part 5 as a storage holder via spherical receivers 6a and 6b, and the upper end surface of the steel ball 4 is connected to a large number of small diameter steel balls 7 stored in the central body part 5. bring it into contact. 8 in the figure indicates spherical receivers 6a, 6 inside the central body portion 5.
This is a snap spring for fitting and fixing b. By slidably fitting the lower plate 10 having a cylinder on the upper surface to the lower end of the central body 5, the lower plate 10 is provided so as to protrude from below to the outer periphery of the central body 5. A stopper 11 is provided protrudingly at the lower center of the lower plate body 10. A cylindrical body 13 as an upper member is slidably fitted to the upper part of the central body part 5 via a bearing member 12, and the end part 14a of the upper plate 14 is made to protrude to the outer periphery, and the lower plate body 10 and A coil spring 15 is disposed between the ends 14a as a vertical seismic isolation member. When arranging this coil spring 15, the end portion 14a
As a mechanism for adjusting the elastic force of the spring 15, a rod 16 is protruded downward from the spring 15 so as to be movable up and down, and the upper end of the coil spring 15 is brought into contact with the lower end of the rod 16. As a mechanism for adjusting the length of the rod 16, the rod 16 is a screw and is screwed into a nut. Further, an oil damper 17 is provided to protrude downward from the center of the top plate 14, and the tip of the rod 17a is locked to the central body portion 5, and further, a flange 18 made of a vertical plate is installed from the upper surface of the top plate 14 on both the left and right sides. to protrude to. In the figure, 19 is a lock nut for positioning the oil damper 17. In order to install such a seismic isolation mechanism A, as shown in FIG. Joist 2 made of steel frame with stops etc.
Join at 3 ends. Therefore, the joists 23 are connected to each other via the flanges 18, and a floor panel 24 is laid on the joists 23 via support legs 25. In addition, as another example, the concrete floor 22
It is also conceivable to omit this and to provide the seat part 1 on a beam as a fixed part of the floor. Next, the usage and operation will be explained. Normally, the large diameter steel ball 4 is located at the deepest center of the conical recess 3, and the load applied to the floor panel 24 is transferred to the concrete through the coil spring 15 and the steel ball 4. This is transmitted to the floor 22 side, but since there is an oil damper 17, the coil spring 1 is
The elastic force 5 does not act, and the floor panel 24 does not move up and down. In addition, there are cases where equipment such as computers is placed on the floor panel 24 and a large load is applied to a portion of the floor panel 24. In that case, the rod 16
If the spring 15 is adjusted so that the elastic force of the spring 15 can be strongly exerted, there is no possibility that the floor panel 24 will partially sink or otherwise become uneven. Due to external vibrations such as earthquakes, the concrete floor 22
When a relative horizontal displacement occurs between the joists 23 and 23, the large diameter steel ball 4
By rolling in a so-called running up state on the upper surface, it is possible to cope with the relative displacement in the horizontal direction regardless of the magnitude, and when the displacement is released, the large diameter steel ball 4 rolls so as to slide down toward the center. do. When the rolling motion of the steel ball 4 becomes large, the stopper 11 becomes a barrier 9 made of an elastic member.
The so-called shock is absorbed. Furthermore, regarding the rolling of the steel ball 4, if the shape of the recess that receives the steel ball 4 is circular, the period will be constant depending on the circular shape (radius of curvature); In the case of the recess 3, the period is determined by the amplitude of movement of the steel ball 4 due to vibration, so even if it becomes resonant, the increase in amplitude due to resonance enters a new natural periodic band, so there will be no resonance. . In this way, as the swing width increases, the period tends to become longer, so the vibration is converted to a longer period and is transmitted to the joist 23 with less shaking, and the vibration is transmitted to the joist 23, Seismic isolation is provided to the installed floor panel 24 via the supporting legs 25. And, the steel ball 4 is always in the conical recess 3
Since it returns to the center, when the horizontal relative displacement is released, it automatically returns to its original position, resulting in what is called a repositioning. On the other hand, regarding vertical displacement, the damper 17 exerts the desired buffering function for initial slight displacements, and for larger displacements, the coil spring 15 provides a buffering function. In this way, horizontal and vertical three-dimensional seismic isolation can be obtained.Furthermore, the seismic isolation mechanism A is interposed as a connecting member at the connecting portion of the mutual ends of the joists 23, and By seismically isolating the entire structure, this effect is directly transmitted to the floor panel 24 above it. [Effects of the Invention] As described above, the seismic isolation floor of the present invention can withstand small displacements even if displacement occurs in the horizontal and vertical directions due to an earthquake or the like between the fixed part of the floor and the floor panel as the movable part. Of course, it can effectively cope with large displacements with the necessary damping action, and is also excellent in returning to its original position after the displacement is completed. In addition, the floor panel as a movable part is supported by the seismic isolation mechanism through the joists, so it can be easily constructed without complicated installation, and repairs can be easily performed. Furthermore, since the elastic force of the coil spring can be adjusted as appropriate, there is no risk of unevenness even if a heavy load is applied to a portion of the floor panel.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の免震床の1実施例を示す縦断
正面図、第2図は本発明で使用する免震機構の一
例を示す縦断正面図である。 1……座部、2……突起、3……円錐状凹部、
4……大径のスチールボール、5……中央本体
部、6a,6b……球面受具、7……小径のスチ
ールボール、8……スナツプリング、9……障
壁、10……下部板体、11……ストツパー、1
2……軸受部材、13……筒体、14……上面
板、14a……端部、15……コイルバネ、16
……ロツド、17……オイルダンパー、17a…
…ロツド、18……フランジ、19……ロツクナ
ツト、22……コンクリート床、23……根太、
24……フロアパネル、25……支持脚。
FIG. 1 is a longitudinal sectional front view showing one embodiment of the seismic isolation floor of the present invention, and FIG. 2 is a longitudinal sectional front view showing an example of the seismic isolation mechanism used in the invention. 1... Seat, 2... Protrusion, 3... Conical recess,
4...Large diameter steel ball, 5...Central main body, 6a, 6b...Spherical receiver, 7...Small diameter steel ball, 8...Snat spring, 9...Barrier, 10...Lower plate, 11...stopper, 1
2...Bearing member, 13...Cylinder body, 14...Top plate, 14a...End portion, 15...Coil spring, 16
... Rod, 17... Oil damper, 17a...
... Rod, 18 ... Flange, 19 ... Lock nut, 22 ... Concrete floor, 23 ... Joist,
24...floor panel, 25...support leg.

Claims (1)

【特許請求の範囲】[Claims] 1 床の固定部に、周辺に弾性部材を立上げた円
錐状凹部を形成し、ここに置く大径のスチールボ
ール上部を収納保持体としての中央本体部内に球
面受具を介して収納し、また該大径のスチールボ
ールの上端面を中央本体部内に収納した多数の小
径のスチールボールに当接させ、前記中央本体部
の上部に筒体を摺動自在に嵌合し、中央本体部の
下方から外周に張出すように設けた下部板体下部
にストツパーを突設し、さらに、前記筒体の上面
板の端部を外周に張出させ、前記下部板体とこの
端部間に垂直方向のコイルバネを配設し、上面板
の端部から該コイルバネの弾性力調整機構として
ロツドを上下動自在に突設し、該ロツドの下端で
コイルバネの上端を受け、また、筒体の上面板か
ら下方に向けてダンパーを突設してその先端を中
央本体部に係合し、さらに上面板からフランジを
左右両側へ突設し、該フランジ端を根太端に接合
し、該根太上に支持脚を介してフロアパネルを敷
設したことを特徴とする免震床。
1. A conical recess with an elastic member raised around the periphery is formed in the fixed part of the floor, and the upper part of a large diameter steel ball placed here is stored in the central main body part serving as a storage holder via a spherical receiver, Further, the upper end surface of the large diameter steel ball is brought into contact with a large number of small diameter steel balls housed in the central body, and a cylindrical body is slidably fitted into the upper part of the central body. A stopper is provided protruding from the lower part of the lower plate provided to extend from below to the outer periphery, and further, an end of the upper plate of the cylindrical body is extended to the outer periphery, and a stopper is provided vertically between the lower plate and this end. A rod is provided at the end of the top plate so as to be movable up and down as a mechanism for adjusting the elastic force of the coil spring, and the lower end of the rod receives the upper end of the coil spring. A damper is provided to protrude downward from the top plate, and its tip engages with the central body part, and flanges are provided to protrude from the top plate to both left and right sides, the flange ends are joined to the joist ends, and the dampers are supported on the joists. A seismic isolation floor characterized by having floor panels installed through legs.
JP18958487A 1987-07-28 1987-07-28 Earthquake isolation floor Granted JPS6433319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18958487A JPS6433319A (en) 1987-07-28 1987-07-28 Earthquake isolation floor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18958487A JPS6433319A (en) 1987-07-28 1987-07-28 Earthquake isolation floor

Publications (2)

Publication Number Publication Date
JPS6433319A JPS6433319A (en) 1989-02-03
JPH0587624B2 true JPH0587624B2 (en) 1993-12-17

Family

ID=16243774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18958487A Granted JPS6433319A (en) 1987-07-28 1987-07-28 Earthquake isolation floor

Country Status (1)

Country Link
JP (1) JPS6433319A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02122833U (en) * 1989-03-10 1990-10-09

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6035711U (en) * 1983-08-12 1985-03-12 三井研削砥石株式会社 Separation or reaction equipment using sintered ceramic filter tubes

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5725942Y2 (en) * 1977-09-21 1982-06-05
JPH0415877Y2 (en) * 1985-05-16 1992-04-09

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6035711U (en) * 1983-08-12 1985-03-12 三井研削砥石株式会社 Separation or reaction equipment using sintered ceramic filter tubes

Also Published As

Publication number Publication date
JPS6433319A (en) 1989-02-03

Similar Documents

Publication Publication Date Title
EP0072869B1 (en) Suspension device
JPH0358009B2 (en)
JPH0514062B2 (en)
US3771270A (en) Self-centering horizontally translatable support/hold-down apparatus for building structures and the like
KR102143344B1 (en) Access Floor with Seismic Isolator with Activation Area and Deactivation Area
JP2586794Y2 (en) Seismic isolation support device for structures
JPH0587624B2 (en)
JPH0547221Y2 (en)
JP2819454B2 (en) Seismic isolation device for small buildings
JPH0210353Y2 (en)
JPH1038022A (en) Base isolation device
JP4284743B2 (en) Seismic isolation display
JPH11166331A (en) Base isolation pull-out resistance device
JP3210928B2 (en) Seismic system for moving wall suspension mechanism
JP3138538U (en) Seismic pedestal and stepped wedge for preventing malfunction
JPH02236354A (en) Floor vibration exempting structure
JP3131271B2 (en) Anti-vibration bearing
JP2000320610A (en) Rack having base isolation structure
JPH0637435U (en) Floor isolation structure
JP2610523B2 (en) Isolation floor
JPH0247465A (en) Earthquake insulation type floor structure
JP4541771B2 (en) Seismic isolation device and seismic isolation structure
JPH088364Y2 (en) Anti-vibration device
JP2007146931A (en) Quake-absorbing equipment and quake-absorbing structure with usage of its quake-absorbing equipment
JP2001182363A (en) Adjustable anchor bolt and base isolation sill base for foundation in wooden building

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071217

Year of fee payment: 14