JPH0587568B2 - - Google Patents

Info

Publication number
JPH0587568B2
JPH0587568B2 JP213290A JP213290A JPH0587568B2 JP H0587568 B2 JPH0587568 B2 JP H0587568B2 JP 213290 A JP213290 A JP 213290A JP 213290 A JP213290 A JP 213290A JP H0587568 B2 JPH0587568 B2 JP H0587568B2
Authority
JP
Japan
Prior art keywords
layer
cylinder
brazing
shell
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP213290A
Other languages
Japanese (ja)
Other versions
JPH03207820A (en
Inventor
Hiroshi Okada
Tetsuo Shima
Kazuyoshi Inai
Katsunori Kawaguchi
Takao Mihara
Hiroshi Iyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Nippon Steel Corp
Original Assignee
Kubota Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp, Nippon Steel Corp filed Critical Kubota Corp
Priority to JP213290A priority Critical patent/JPH03207820A/en
Publication of JPH03207820A publication Critical patent/JPH03207820A/en
Publication of JPH0587568B2 publication Critical patent/JPH0587568B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、鋼材熱処理炉用ハースロールおよび
その製造方法に関する。 〔従来の技術〕 連続焼鈍炉等の鋼材熱処理炉(炉内雰囲気温
度:約600〜1000℃)内に配設されるハースロー
ルは、第4図に示すように、胴部材(シエル)1
の両端開口部にアクスル部材4,4が溶接等によ
り接合された構造を有している。 上記ロールシエル1は、SCH22(0.4C−20Ni−
25Cr−Fe)等に代表されるNi−Cr系耐熱鋼から
なる中空円筒体である。炉内に装入された冷延鋼
板等の被加熱鋼材は、そのロールシエル1表面に
担持され、炉中移送過程で所定温度に加熱されて
炉の出側より送出される。 〔発明が解決しようとする課題〕 熱処理炉内のハースロールは、炉内雰囲気に曝
されて高温度(例えば、950〜980℃)に加熱され
た状態にある。他方、炉内に装入されてそのシエ
ル1表面に担持される冷延鋼板等の被加熱鋼材S
はシエル1に比べて著しく低温度である。 このため、シエル1は、被加熱鋼材Sの接触に
よる冷却作用を受け、被加熱鋼材の接触する表面
領域(鋼材接触領域面)a1と、その左右両側の被
加熱鋼材接触しない表面領域(非接触領域面)a2
との間に温度差(例えば、約150〜200℃)を生じ
る。被加熱鋼材の搬送が繰返される連続操炉条件
下、シエル表面の鋼材接触両域面a1と非接触領域
面a2との境界部付近には両領域面の温度差に伴う
熱歪みに起因して凹凸じわが発生する。被加熱鋼
材Sの幅寸法は、その製品仕様により例えは700
〜1300mmと広狭様々に変化するので、実炉操業に
おいては、シエル1の表面の広い領域に亘つてし
わの発生をみる。また、上記温度差による熱歪み
と共に、被加熱鋼材の荷重による曲げ・クラツシ
ング応力が相乗作用するために、上記しわの発生
のみならず、微細クラツクの発生・進展を不可避
的に生じる。シエル表面に上記のしわやクラツク
等の肌あれが生じると、その凹凸模様が、シエル
に担持された移送される被加熱鋼材に転写され、
その表面品質が損なわれる原因となる。また、シ
エル表面のしわやクラツクの発生によりハースロ
ールの連続耐用寿命が短くなり、そのメンテナン
スに要する労力・コストの負担増大、およびロー
ルの取替えのための炉操業の中断とそれによる操
炉効率の低下等の不利を余儀なくされる。 本発明は上記に鑑みてなされたものであり、被
加熱鋼材の表面品質の低下やロールメンテナンス
の負担増大・操炉効率の低下等の原因となるシエ
ル表面のしわやクラツク等の肌あれが効果的に抑
制防止される改良されたハースロールおよびその
製造方法を提供する。 〔課題を解決するための手段および作用〕 本発明に係る鋼材熱処理炉用ハースロールは、
耐熱鋼からなるシエルの内側周面に、ろう材層を
介して高熱伝導金属からなる伝熱層が積層接合さ
れていることを特徴ととしている。 第1図は本発明のハースロールのシエルの積層
構造を模式的に示している。3は高熱伝導金属か
らなる伝熱層であり、該伝熱層3は、ろう材層2
を介してシエル1の内側周面に積層接合されてい
る。 シエル1の内側周面に伝熱層3が積層接合され
ている本発明のハースロールにおいては、シエル
1の表面の前記しわやクラツクの発生原因となる
鋼材接触領域面a1と非接触領域面a2との間の温度
差およびそれによる熱歪みが、伝熱層3を介して
行われる速やかな熱移動(熱拡散)によつて効果
的に緩和・解消される。 本発明のハースロールのシエル1は、従来のハ
ースロールにおけるそれと同じようにSCH22
等に代表されるNi−Cr系耐熱鋼からなる中空円
筒体である。その内側周面に積層接合される伝熱
層3である高熱伝導金属とは、シエル1の耐熱鋼
よりも大きい熱伝導率を有する金属という意味で
あり、熱伝導率の大きいもの程好ましい。その金
属材料の具体的選択に際しては、実炉使用時の熱
影響(シエルの温度は、例えば950〜980℃に達す
る)による軟化・溶融を生じないものであること
が付加的条件として課せられる。かかる条件を満
たす最も好適な代表的高熱伝導金属として銅
(Cu)が挙げられる。銅は、その熱伝導率が
0.923cal/cm・sec・deg)と、シエルを形成する
耐熱鋼(その熱伝導率は、概ね0.07〜0.08cal/
cm・sec・degである)に比し著しく大きく、か
つ実炉使用に耐え得る高融点(約1083℃)を有し
ている。もつとも、その銅は純粋の銅に限定され
ず、上記説明から理解されるように、シエルの鋼
材接触両域面a1と非接触領域面a2との間の効果的
な熱移動と、炉内雰囲気の影響に耐える高融点が
確保される範囲内において、合金成分または不純
物としての各種元素を含有するものであつて構わ
ない。従つて、本明細書にいう伝熱層を形成する
銅またはその他の高熱伝導金属は、上記のように
純粋のそれに限定されず広義に解釈されなければ
ならない。 なお、伝熱層3の層厚は、シエル1の肉厚や使
用温度等に応じて適宜決定されるが、シエル1の
肉厚が約10〜30mmで、使用時の加熱温度が約950
〜980℃である通常のハースロールにおいて、伝
熱層3を銅で形成する場合の層厚は約15〜30mmと
してよい。 本発明は上記シエル1と伝熱層3との当接界面
をろう材層2を介して接合することとした。シエ
ルと伝熱層3との積層接合構造を形成する他の方
法として、例えば爆薬の爆圧エネルギを利用する
方法、または遠心力鋳造法によりシエル1内周面
に高熱伝導金属からなる伝熱層3を鋳造する方法
等が考えられるが、前者の方法ではシエル1と伝
熱層3の界面の広い面積に亘つて確実な接合状態
の形成を保証することは困難であり、後者の方法
では界面の全体に亘る確実な冶金的結合関係を形
成し得るものの、シエル材料(耐熱鋼)と伝熱層
材料(銅等)との融合による材質劣化(界面での
金属間化合物の生成に伴う脆化等)を避け得ず、
また鋳造時に発生する有害ヒユームは安全衛生上
の問題を惹起する。ろう接法によればこのような
問題を伴わずにシエル1と伝熱層3の界面の全周
全長に亘る一様かつ確実な積層接合構造を形成す
ることができる。 ろう材には多くの種類が知られているが、その
選択に当つては、伝熱層形成材料の融点、および
実炉使用温度との関係を考慮すべきは言うまでも
ない。すなわち、そのろう材は、伝熱層3を形成
する銅等の高熱伝導金属の融点より低いろう接温
度を有し、かつハースロールの実炉使用において
軟化溶融しない融点を有するものであることを要
する。またシエル1を形成する耐熱鋼(SCH2
2等)と伝熱層3を形成する高熱伝導金属(銅
等)とは熱膨張係数の差が比較的大きい(SCH
22耐熱鋼:約14.1×10-6/℃、銅:17.1×
10-6/℃)ので、炉内の昇・降温過程(昇温速
度:例えば70〜100℃/Hr、降温速度:例えば
150〜200℃/Hr)において両層間に生じる熱応
力の吸収緩和層となる中間的な熱膨張係数を有す
るものであることが望ましい。 これらの諸要求を満たす最も好適なろう材はニ
ツケルろうであり、その具体例として、JIS
Z3265に規定されるBNi−2(Cr:6〜8%,
B:2.75〜3.5%,Si:4〜5%,Fe2.5〜3.5%,
C:0.06%以下、P:0.02%以下、Ni:Bal)、
BNi−3(2:2.75〜3.5%,Si:4〜5%,Fe:
0.5%以下、C:0.06%以下、P:0.02%以下、
Ni:Bal)、BNi−4(B:1.5〜2.2%,Si:3〜
4%,Fe:1.5%以下、C:0.06%以下、P:0.02
%以下、Ni:Bal)等が挙げられる。また、この
ほか黄銅ろう、例えばJIS Z3262に規定された
BCuZn−6(Cu46〜50%,Ni:9〜11%,Pb:
0.05%以下、Al:0.01%以下、P:0.25%以下、
Si:0.04〜0.25%,Zn:Bal)や、BCuZn−7
(Cu:46〜49%,Ni:10〜11%,Ag:0.3〜1
%,Si:0.15%以下、Zn:Bal)等の使用も可能
である。 なお、ろう材層2の層厚は、例えば0.1〜0.5mm
程度が適当である。 次に本発明のハースロールの製造方法について
説明する。その胴部材は、伝熱層3となる高熱伝
導金属からなる中空円筒体の外側周面にろう材層
を溶射形成し、これを別途準備したシエル1材で
ある耐熱鋼からなる中空円筒体に内嵌して直立姿
勢とし、その外側の中空円筒体と内側の中空円筒
体のクリアランスの上端開口部に、補給用ろう材
を装填したうえ、真空炉中、ろう材を加熱溶融す
ることにより製造される。これを第2図を参照し
て説明する。 10は耐熱鋼からなる中空円筒体(以下、「外
層筒体」)、30は高熱伝導金属からなる中空円筒
体(以下、「内層筒体」)であり、20は内層筒体
30の外側周面を被覆するろう材層である。な
お、外層筒体10は代表的には遠心力鋳造管材に
所要の機械加工が加えられた中空筒体であり、内
層筒体30は、高熱伝導金属板をロールフオーミ
ングに代表される成形加工法で円筒形状に成形
し、突合せ面をTIG溶接等で接合することにより
製作することができる。内層筒体30の表面のろ
う材層20は溶射法により形成される。溶射法に
は、ガス溶射、アーク溶射、高周波溶射、プラズ
マ溶射等があるが、上記ろう材溶射層20はガス
溶射により好適に形成することができる。 外層筒体10に対する内層筒体30の嵌め合せ
は、外層筒体10を加熱し拡径膨張させて行えば
よい。その外層筒体10と内層筒体30との嵌合
界面のクリアランスCの上端開口部に補給用ろう
材21を装填する。図では外層筒体10と内層筒
体30の上端に余長部分E1(この部分は、ろう
接完了後、切断除去される)を設け、その円環状
空間V内に補給用ろう材21を与えている。この
ろう材21は嵌合界面のクリアランスCに対する
ろう材の不足分を補う役目を有している。なお、
40は、ろう接過程で溶融したろう材がクリアラ
ンスCの下端開口にり漏出するのを防止するため
に下端部にあてがわれた台盤部材である。 上記外層筒体10と内層筒体30との嵌合体を
直立姿勢として、真空炉中、所定のろう接温度に
加熱保持する。その加熱処理において、嵌合界面
に与えられたろう材溶射層20の溶融と、クリア
ランスC上端のろう材21の溶融流下によるろう
材の補給効果により、嵌合界面の全周全長に亘つ
て外層筒体10と内層筒体30のろう接が達成さ
れる。 上記加熱処理において、嵌合体が長尺体(例え
ば軸方向長さ約1500〜3000mm)である場合、その
嵌合界面に対するろう材の不足分の補給を、クリ
アランスCの上端開口から行うだけでは、下部領
域に到るまで充分な補給効果を確保することは困
難である。このような場合には、クリアランスの
上端開口部のほかに、その高さ方向の1個所ない
しは複数個所に補給用ろう材を装填しておくとよ
い。第2図中、22,22,…はその例を示して
いる。その補給用ろう材22,22,…は、外層
筒体10に嵌め合わされる前の内層筒体30の外
周面に円周方向の溝条31,31,…を形成しそ
の溝条内に充填しておけばよい。その溝条31,
31,…のサイズは例えば開口幅約5mm、深さ約
5mmであり、各溝条の凹陥部内のろう材22,2
2,…は、溶射により充填するか、あるいはペー
スト状のろう材として詰め込んでもよい。なお、
隣り合う溝条と溝条の間隔は、例えば200〜300mm
としてよい。 伝熱層3となる内層筒体30にこのような円周
溝条31,31,…を形成すると、その伝導伝熱
の一様性が損なわれ熱拡散効果が阻害される原因
ともなるように思われるが、そのような懸念は全
くなく、むしろ嵌合界面の各部分に対するろう材
の十分な補給による確実なろう接が保証される結
果として、伝熱層3を介した熱移動によるシエル
1の偏熱緩和・均温化効果の向上をみる。 上記加熱処理による嵌合界面のろう接を完了し
たのち、両端の余長部分E1,E2を切断除去
し、所定の機械加工を加え、これを別途準備した
アクスル4と接合することにより所定のハースロ
ールに組立てられる。 〔実施例〕 下記ロールAおよびBを供試ロールとして炉中
試験を行つた。 〔〕 供試ロール ロールAおよびBの胴部の構成は次のとおりで
ある。但し、いずれもシエルの外径は400mm、軸
方向長さは950mmである。 ロールA(発明例) シエル:0.4C−20Ni−25Cr−Fe(SCH22相当) 肉厚25mm 伝熱層:無酸素銅、層厚25mm ろう材層:ニツケルろう(7Cr−3B−5Si−3Fe−
0.1C−Ni,BNi−2相当)、層厚 約0.5
mm ロールB(従来例) 上記ロールAのシエルと同一の耐熱鋼からなる
単層材。 上記ロールAおよびBのそれぞれに、第3図
〔〕〔〕に示すように、胴部の軸方向中央位置
および中央位置から、距離L=450mm離れた位置
に、内周面側から熱電対温度計取付け孔を形成
し、それぞれに熱電対温度計イおよびロを差込み
固定した。取付け孔深さはシエル肉厚の1/2とし
た。 〔〕 炉中試験 供試ロールAおよびBを、加熱炉(雰囲気ガ
ス:98%N2−2%H2)内に設置し、その胴部表
面に冷板材Sを接触担持させ、冷板材Sの冷却効
果により生じるシエル1のイとロの間の温度差
(ΔT)を測定した。但し、冷板材Sは予め350℃
に加熱昇温してシエル表面に載置した。また、試
験は雰囲気温度550℃とし、ロール温度が350℃に
昇温した状態で冷板材Sを載置した。なお、冷板
材Sの板幅は400mmであり、従つて冷板材Sのエ
ツジから熱電対温度計ロまでの距離lは約250mm
である。測定結果を第1表に示す。
[Industrial Field of Application] The present invention relates to a hearth roll for a steel heat treatment furnace and a method for manufacturing the same. [Prior Art] As shown in Fig. 4, a hearth roll installed in a steel heat treatment furnace such as a continuous annealing furnace (furnace atmosphere temperature: approximately 600 to 1000°C) has a shell member (shell) 1.
It has a structure in which axle members 4, 4 are joined to openings at both ends by welding or the like. The above roll shell 1 is SCH22 (0.4C−20Ni−
It is a hollow cylindrical body made of Ni-Cr heat-resistant steel such as 25Cr-Fe). A steel material to be heated, such as a cold-rolled steel plate, charged into the furnace is supported on the surface of the roll shell 1, heated to a predetermined temperature in the process of being transferred through the furnace, and sent out from the exit side of the furnace. [Problems to be Solved by the Invention] The hearth roll in the heat treatment furnace is exposed to the atmosphere in the furnace and is heated to a high temperature (for example, 950 to 980°C). On the other hand, a heated steel material S such as a cold-rolled steel plate is charged into the furnace and supported on the surface of the shell 1.
has a significantly lower temperature than Ciel 1. Therefore, the shell 1 receives a cooling effect due to contact with the heated steel material S, and has a surface area a 1 in contact with the heated steel material (steel material contact area surface) and a surface area on both left and right sides that does not contact the heated steel material (non-contact surface area). Contact area surface) a 2
A temperature difference (for example, about 150 to 200°C) is generated between the two. Under continuous furnace operation conditions in which the steel to be heated is repeatedly conveyed, there is a thermal strain caused by the temperature difference between the two surfaces near the boundary between the steel contact area A 1 and the non-contact area A 2 on the shell surface. This causes uneven wrinkles. The width dimension of the heated steel material S is, for example, 700 mm depending on the product specifications.
Since the width varies widely from ~1,300 mm, wrinkles occur over a wide area on the surface of the shell 1 during actual furnace operation. Furthermore, since the bending and crushing stress due to the load of the heated steel material acts synergistically with the thermal strain due to the temperature difference, not only the wrinkles described above but also the generation and development of minute cracks inevitably occur. When the above-mentioned roughness such as wrinkles and cracks occurs on the shell surface, the uneven pattern is transferred to the heated steel material carried by the shell and transferred.
This causes the surface quality to be impaired. In addition, the occurrence of wrinkles and cracks on the surface of the shell shortens the continuous service life of the hearth roll, increasing the labor and cost required for its maintenance, and interrupting furnace operation to replace the roll, which reduces furnace operation efficiency. be forced to suffer disadvantages such as declines. The present invention has been made in view of the above, and is effective against rough skin such as wrinkles and cracks on the shell surface, which cause deterioration of the surface quality of heated steel materials, increased burden of roll maintenance, and decrease in furnace operation efficiency. To provide an improved hearth roll that is prevented from being inhibited and a method for manufacturing the same. [Means and effects for solving the problem] The hearth roll for a steel heat treatment furnace according to the present invention has the following features:
It is characterized in that a heat transfer layer made of a high heat conductive metal is laminated and bonded to the inner peripheral surface of a shell made of heat-resistant steel via a brazing filler metal layer. FIG. 1 schematically shows the laminated structure of the shell of the hearth roll of the present invention. 3 is a heat transfer layer made of a high heat conductive metal, and the heat transfer layer 3 is similar to the brazing material layer 2.
It is laminated and bonded to the inner circumferential surface of the shell 1 via. In the hearth roll of the present invention in which the heat transfer layer 3 is laminated and bonded to the inner circumferential surface of the shell 1, the surface of the shell 1 has a steel material contact area surface a1 and a non-contact area surface that cause the wrinkles and cracks. The temperature difference between a 2 and the resulting thermal strain is effectively alleviated and eliminated by rapid heat transfer (thermal diffusion) performed through the heat transfer layer 3. Shell 1 of the hearth roll of the present invention is SCH22 similar to that of the conventional hearth roll.
It is a hollow cylindrical body made of Ni-Cr heat-resistant steel, such as Ni-Cr heat-resistant steel. The high heat conductive metal that is the heat transfer layer 3 laminated and bonded to the inner peripheral surface means a metal that has a higher thermal conductivity than the heat resistant steel of the shell 1, and the higher the thermal conductivity, the more preferable it is. When specifically selecting the metal material, an additional condition is imposed that it not cause softening or melting due to thermal effects during actual furnace use (the temperature of the shell reaches, for example, 950 to 980°C). Copper (Cu) is the most suitable typical high heat conductive metal that satisfies these conditions. Copper has a thermal conductivity of
0.923 cal/cm・sec・deg) and heat-resistant steel that forms the shell (its thermal conductivity is approximately 0.07 to 0.08 cal/deg).
cm・sec・deg), and has a high melting point (approximately 1083°C) that can withstand use in an actual furnace. However, the copper is not limited to pure copper, and as understood from the above explanation, effective heat transfer between the steel contact surface A 1 and the non-contact region surface A 2 of the shell and the furnace It may contain various elements as alloy components or impurities within a range that ensures a high melting point that can withstand the influence of the internal atmosphere. Therefore, the copper or other high heat conductive metal forming the heat transfer layer referred to in this specification is not limited to pure metal as described above and must be interpreted in a broad sense. The thickness of the heat transfer layer 3 is appropriately determined depending on the thickness of the shell 1 and the operating temperature, but it is preferable that the thickness of the shell 1 is approximately 10 to 30 mm and the heating temperature during use is approximately 950 mm.
In a normal hearth roll having a temperature of ~980°C, when the heat transfer layer 3 is made of copper, the layer thickness may be approximately 15 to 30 mm. In the present invention, the abutting interface between the shell 1 and the heat transfer layer 3 is bonded via the brazing material layer 2. Other methods for forming the laminated bonding structure between the shell and the heat transfer layer 3 include, for example, a method using explosive pressure energy, or a heat transfer layer made of a high heat conductive metal on the inner circumferential surface of the shell 1 by centrifugal casting. However, with the former method, it is difficult to ensure the formation of a reliable bond over a wide area of the interface between the shell 1 and the heat transfer layer 3, and with the latter method, the interface Although it is possible to form a reliable metallurgical bonding relationship throughout the entire structure, material deterioration due to the fusion of the shell material (heat-resistant steel) and the heat transfer layer material (copper, etc.) (embrittlement due to the formation of intermetallic compounds at the interface) etc.) cannot be avoided,
In addition, harmful fumes generated during casting pose health and safety problems. According to the brazing method, a uniform and reliable laminated bonding structure can be formed over the entire circumference and length of the interface between the shell 1 and the heat transfer layer 3 without such problems. Many types of brazing filler metals are known, and it goes without saying that when selecting one, the relationship between the melting point of the heat transfer layer forming material and the actual furnace operating temperature should be considered. That is, the brazing material has a welding temperature lower than the melting point of the high heat conductive metal such as copper that forms the heat transfer layer 3, and has a melting point that does not soften or melt when the hearth roll is used in an actual furnace. It takes. In addition, the heat-resistant steel (SCH2) that forms shell 1
There is a relatively large difference in thermal expansion coefficient between the high heat conductive metal (copper, etc.) forming the heat transfer layer 3 (SCH
22 heat-resistant steel: approx. 14.1×10 -6 /℃, copper: 17.1×
10 -6 /℃), so the temperature increase and decrease process in the furnace (temperature increase rate: e.g. 70 to 100℃/Hr, temperature decrease rate: e.g.
It is desirable that the material has an intermediate coefficient of thermal expansion to serve as a layer for absorbing and relaxing the thermal stress generated between the two layers at temperatures of 150 to 200° C./Hr). The most suitable brazing filler metal that meets these requirements is nickel brazing filler metal, and as a specific example, JIS
BNi-2 (Cr: 6-8%,
B: 2.75-3.5%, Si: 4-5%, Fe2.5-3.5%,
C: 0.06% or less, P: 0.02% or less, Ni: Bal),
BNi-3 (2: 2.75-3.5%, Si: 4-5%, Fe:
0.5% or less, C: 0.06% or less, P: 0.02% or less,
Ni: Bal), BNi-4 (B: 1.5~2.2%, Si: 3~
4%, Fe: 1.5% or less, C: 0.06% or less, P: 0.02
% or less, Ni:Bal), etc. In addition, brass solders, such as those specified in JIS Z3262, are also available.
BCuZn-6 (Cu46-50%, Ni: 9-11%, Pb:
0.05% or less, Al: 0.01% or less, P: 0.25% or less,
Si: 0.04~0.25%, Zn: Bal), BCuZn-7
(Cu: 46-49%, Ni: 10-11%, Ag: 0.3-1
%, Si: 0.15% or less, Zn: Bal), etc. can also be used. The thickness of the brazing material layer 2 is, for example, 0.1 to 0.5 mm.
The degree is appropriate. Next, a method for manufacturing a hearth roll of the present invention will be explained. The body member is made by thermally spraying a brazing metal layer on the outer peripheral surface of a hollow cylindrical body made of a high heat conductive metal, which becomes the heat transfer layer 3, and then attaches this to a hollow cylindrical body made of heat-resistant steel, which is the shell 1 material prepared separately. Manufactured by inserting the filler metal into an upright position, filling the top opening of the gap between the outer hollow cylinder and the inner hollow cylinder with replenishing brazing filler metal, and then heating and melting the filler filler metal in a vacuum furnace. be done. This will be explained with reference to FIG. 10 is a hollow cylindrical body made of heat-resistant steel (hereinafter referred to as "outer layer cylinder"), 30 is a hollow cylinder made of high heat conductive metal (hereinafter referred to as "inner layer cylinder"), and 20 is an outer circumference of inner layer cylindrical body 30. This is a brazing material layer that covers the surface. The outer layer cylindrical body 10 is typically a hollow cylinder obtained by applying required machining to a centrifugally cast pipe material, and the inner layer cylindrical body 30 is formed by forming a high heat conductive metal plate, such as roll forming. It can be manufactured by forming it into a cylindrical shape using a method and joining the butt surfaces using TIG welding or the like. The brazing material layer 20 on the surface of the inner cylindrical body 30 is formed by a thermal spraying method. Thermal spraying methods include gas spraying, arc spraying, high frequency spraying, plasma spraying, etc., and the brazing filler metal sprayed layer 20 can be suitably formed by gas spraying. The fitting of the inner layer cylindrical body 30 to the outer layer cylindrical body 10 may be carried out by heating the outer layer cylindrical body 10 and expanding its diameter. A brazing filler metal 21 for replenishment is loaded into the upper end opening of the clearance C at the fitting interface between the outer layer cylinder 10 and the inner layer cylinder 30. In the figure, an extra length portion E1 (this portion is cut and removed after soldering is completed) is provided at the upper ends of the outer layer cylinder 10 and the inner layer cylinder 30, and a replenishing brazing material 21 is provided in the annular space V. ing. This brazing filler metal 21 has the role of making up for the lack of brazing filler metal with respect to the clearance C at the fitting interface. In addition,
Reference numeral 40 denotes a base plate member attached to the lower end of the clearance C to prevent the melted brazing material from leaking through the lower end opening of the clearance C. The fitted body of the outer layer cylindrical body 10 and the inner layer cylindrical body 30 is held in an upright position and heated to a predetermined soldering temperature in a vacuum furnace. In the heat treatment, due to the melting of the brazing material sprayed layer 20 applied to the fitting interface and the replenishment effect of the brazing material by melting and flowing down the brazing material 21 at the upper end of the clearance C, the outer layer cylinder is formed over the entire circumference of the fitting interface. The soldering of the body 10 and the inner cylindrical body 30 is achieved. In the above heat treatment, if the fitted body is a long body (for example, about 1500 to 3000 mm in axial length), it is not possible to simply replenish the insufficient brazing material to the fitting interface from the upper end opening of the clearance C. It is difficult to ensure a sufficient replenishment effect down to the lower region. In such a case, in addition to the upper end opening of the clearance, it is preferable to load the replenishing brazing filler metal at one or more locations in the height direction of the clearance. In FIG. 2, 22, 22, . . . indicate examples. The replenishing brazing filler metals 22, 22, . . . are filled into the grooves by forming circumferential grooves 31, 31, . Just do it. The groove 31,
For example, the size of the openings 31, .
2,... may be filled by thermal spraying or filled as a paste brazing material. In addition,
The distance between adjacent grooves is, for example, 200 to 300 mm.
may be used as If such circumferential grooves 31, 31, ... are formed on the inner layer cylinder 30 that becomes the heat transfer layer 3, the uniformity of conductive heat transfer will be impaired and the heat diffusion effect will be inhibited. However, there is no such concern at all; on the contrary, reliable soldering is guaranteed by sufficient supply of brazing material to each part of the fitting interface, and as a result, the shell 1 is reduced by heat transfer through the heat transfer layer 3. See the improvement in the uneven heat mitigation and temperature equalization effect. After completing the soldering of the fitting interface by the above heat treatment, the excess lengths E1 and E2 at both ends are cut and removed, predetermined machining is applied, and this is joined to a separately prepared axle 4 to form a predetermined hearth. Assembled into rolls. [Example] An in-furnace test was conducted using the following rolls A and B as test rolls. [] Test rolls The configurations of the bodies of rolls A and B are as follows. However, in both cases, the outer diameter of the shell is 400 mm and the axial length is 950 mm. Roll A (invention example) Shell: 0.4C-20Ni-25Cr-Fe (equivalent to SCH22) Wall thickness 25 mm Heat transfer layer: Oxygen-free copper, layer thickness 25 mm Brazing metal layer: Nickel wax (7Cr-3B-5Si-3Fe-
0.1C−Ni, BNi−2 equivalent), layer thickness approximately 0.5
mm Roll B (conventional example) Single-layer material made of the same heat-resistant steel as the shell of Roll A above. For each of the rolls A and B, as shown in Fig. 3 [ ] [ ], a thermocouple is placed at a distance L = 450 mm from the axial center position of the body and the center position from the inner circumferential surface side. Meter mounting holes were formed, and thermocouple thermometers A and B were inserted and fixed into each hole. The depth of the mounting hole was set to 1/2 of the shell wall thickness. [] Furnace test Test rolls A and B were placed in a heating furnace (atmosphere gas: 98% N 2 - 2% H 2 ), and the cold plate material S was supported on the surface of the body in contact with the cold plate material S. The temperature difference (ΔT) between A and B of shell 1 caused by the cooling effect of was measured. However, cold plate material S is preheated to 350℃.
The temperature was raised to 100% and placed on the surface of the shell. Further, in the test, the ambient temperature was 550°C, and the cold plate material S was placed in a state where the roll temperature was increased to 350°C. The width of the cold plate material S is 400 mm, so the distance l from the edge of the cold plate material S to the thermocouple thermometer B is approximately 250 mm.
It is. The measurement results are shown in Table 1.

【表】 上記のように、耐熱鋼単層構造のシエルを有す
る従来型ロールBでは、冷板材の接触領域面と非
接触領域面との間の温度差(ΔT)が、雰囲気温
度550℃で135℃と著しく大きいのに対し、伝熱層
積層構造を有する発明例のロールでは、伝熱層を
介した熱拡散効果により、その温度差はほぼ半分
近くまで減少している。 〔発明の効果〕 シエルの内側面にろう材層を介して伝熱層が積
層接合されている本発明のハースロールは、シエ
ル表面の被加熱鋼材接触領域面と非接触領域面と
の間の熱拡散が伝熱層を介して速やかに行われる
ので、シエル表面に生じる温度差は従来のハース
ロールにおけるそれに比べて著しく小さい。従つ
て、シエルの表面のしわやクラツクの発生が抑制
防止され、シエル表面は長期に亘つて平滑美麗な
表面状態を維持する。これにより、シエル表面に
担持されて移送される被加熱鋼材の表面品質が向
上安定化し、またハースロールの耐用寿命の向
上、ロールメンテナンスの軽減、および操炉効率
の向上等の効果が得られる。
[Table] As shown above, in conventional roll B with a heat-resistant steel single-layer shell, the temperature difference (ΔT) between the contact area surface and non-contact area surface of the cold plate material is In contrast, in the roll of the invention example having a heat transfer layer laminated structure, the temperature difference was reduced to almost half due to the heat diffusion effect via the heat transfer layer. [Effects of the Invention] The hearth roll of the present invention, in which a heat transfer layer is laminated and bonded to the inner surface of the shell via a brazing material layer, has a heat transfer layer formed on the inner surface of the shell between the heated steel contact area surface and the non-contact area surface. Since heat diffusion occurs rapidly through the heat transfer layer, the temperature difference generated on the shell surface is significantly smaller than that in conventional hearth rolls. Therefore, the occurrence of wrinkles and cracks on the surface of the shell is suppressed and prevented, and the surface of the shell maintains a smooth and beautiful surface condition for a long period of time. This improves and stabilizes the surface quality of the heated steel material supported on the shell surface and transferred, and also provides effects such as improving the useful life of the hearth roll, reducing roll maintenance, and improving furnace operation efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のハースロールの胴部の積層構
造を模式的に示す軸方向断面図、第2図は本発明
のハースロールの製造法の断面説明図、第3図
〔〕〔〕は実施例関係の炉中試験要領説明図、
第4図は従来例を示す軸方向断面図である。 1:シエル、2:ろう材層、3:伝熱層、1
0:内層筒体(耐熱鋼円筒体)、20:ろう材溶
射層、21,22:補給用ろう材、30:内層筒
体(高熱伝導金属円筒体)、31:円周溝条、
C:クリアランス、S:被加熱鋼材。
FIG. 1 is an axial cross-sectional view schematically showing the laminated structure of the body of the hearth roll of the present invention, FIG. 2 is a cross-sectional explanatory diagram of the manufacturing method of the hearth roll of the present invention, and FIG. An explanatory diagram of in-furnace test procedures related to examples,
FIG. 4 is an axial sectional view showing a conventional example. 1: Shell, 2: Brazing metal layer, 3: Heat transfer layer, 1
0: Inner layer cylinder (heat-resistant steel cylinder), 20: Brazing filler metal spray layer, 21, 22: Replenishment brazing filler metal, 30: Inner layer cylinder (high heat conductive metal cylinder), 31: Circumferential groove,
C: Clearance, S: Steel material to be heated.

Claims (1)

【特許請求の範囲】 1 耐熱鋼からなるシエルの内側周面に、ろう材
層を介して高熱伝導金属からなる伝熱層が積層接
合されていることを特徴とする鋼材熱処理炉用ハ
ースロール。 2 ろう材がニツケルろうであり、高熱伝導金属
が銅であることを特徴とする請求項1に記載の鋼
材熱処理炉用ハースロール。 3 高熱伝導金属板を円筒形状に成形しその突合
せ面をTIG溶接により接合してなる中空円筒体
(以下、「内層筒体」)の外側周面にろう材層を溶
射形成し、これを別途用意した耐熱鋼からなる中
空筒体(以下、「外層筒体」)に内嵌して直立姿勢
となし、外層筒体と内層筒体の嵌合界面のクリア
ランスに対する補給用ろう材を、クリアランスの
上端開口部に装填したうえ、真空炉中、ろう材を
加熱溶融させて嵌合界面を接合せしめることを特
徴とする請求項1に記載の鋼材熱処理炉用ハース
ロールの製造方法。 4 内層筒体の高さ方向の1個所ないし複数個所
に外側周面を周回する溝条を形設し、その外側周
面にろう材層を容射形成すると共に、溝条の凹部
空間内にろう材を装填したうえ、外層筒体に内嵌
することを特徴とする請求項3に記載の鋼材熱処
理炉用ハースロールの製造方法。 5 ろう材がニツケルろうであり、高熱伝導金属
板が銅板であることを特徴とるす請求項3または
請求項4に記載の鋼材熱処理炉用ハースロールの
製造方法。
[Claims] 1. A hearth roll for a steel heat treatment furnace, characterized in that a heat transfer layer made of a high heat conductive metal is laminated and bonded to the inner peripheral surface of a shell made of heat-resistant steel via a brazing filler metal layer. 2. The hearth roll for a steel heat treatment furnace according to claim 1, wherein the brazing material is nickel wax and the high heat conductive metal is copper. 3. A brazing metal layer is thermally sprayed on the outer circumferential surface of a hollow cylinder (hereinafter referred to as the "inner layer cylinder") made by forming high heat conductive metal plates into a cylindrical shape and joining the abutting surfaces by TIG welding, and separately The prepared hollow cylinder made of heat-resistant steel (hereinafter referred to as the "outer cylinder") is fitted into the upright position, and the replenishing brazing filler metal is applied to the clearance at the fitting interface between the outer cylinder and the inner cylinder. 2. The method of manufacturing a hearth roll for a steel heat treatment furnace according to claim 1, wherein the brazing material is loaded into the upper end opening and then heated and melted in a vacuum furnace to join the fitting interface. 4. A groove is formed around the outer peripheral surface at one or more places in the height direction of the inner layer cylinder, and a brazing metal layer is injected onto the outer peripheral surface, and a groove is formed in the recessed space of the groove. 4. The method of manufacturing a hearth roll for a steel heat treatment furnace according to claim 3, further comprising loading the brazing material and fitting the roll into the outer layer cylinder. 5. The method for manufacturing a hearth roll for a steel heat treatment furnace according to claim 3 or 4, wherein the brazing material is nickel wax and the high heat conductive metal plate is a copper plate.
JP213290A 1990-01-08 1990-01-08 Hearth roll for heat treating furnace for steel and its manufacture Granted JPH03207820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP213290A JPH03207820A (en) 1990-01-08 1990-01-08 Hearth roll for heat treating furnace for steel and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP213290A JPH03207820A (en) 1990-01-08 1990-01-08 Hearth roll for heat treating furnace for steel and its manufacture

Publications (2)

Publication Number Publication Date
JPH03207820A JPH03207820A (en) 1991-09-11
JPH0587568B2 true JPH0587568B2 (en) 1993-12-17

Family

ID=11520812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP213290A Granted JPH03207820A (en) 1990-01-08 1990-01-08 Hearth roll for heat treating furnace for steel and its manufacture

Country Status (1)

Country Link
JP (1) JPH03207820A (en)

Also Published As

Publication number Publication date
JPH03207820A (en) 1991-09-11

Similar Documents

Publication Publication Date Title
US7807273B2 (en) Alloy-coated boiler part and method of welding self-fluxing alloy-coated boiler part
JPH11170034A (en) Joining metallic members and method for joining its member
CN101878086B (en) Method for manufacturing a coiler drum and a coiler drum
JP3380081B2 (en) Valve seat
US4049184A (en) Method of manufacturing polymetallic pipes
JPH0224623B2 (en)
JPH0587568B2 (en)
JP5686582B2 (en) Axle case manufacturing method
JPS6046889A (en) Production of multi-layered roll
JPS6268665A (en) Roller for continuous casting
JP4248058B2 (en) Abrasion resistant metal tube and method of manufacturing the same
JPH11320073A (en) Production of two-layered nickel-base alloy clad steel sheet by casting method
JP2000343210A (en) Double structure tube and its production
JPWO2019130505A1 (en) Roll manufacturing method and roll
JPH0318405A (en) Production of laminated sleeve for rolling equipment
JP2001355416A (en) Bonding method of valve seat for internal combustion engine
US4815652A (en) Method for forming composite metal articles
JPS6268666A (en) Roller for which heat resistance is required such as roller for continuous casting
JPH0773724B2 (en) Composite roll manufacturing method
RU2106230C1 (en) Method for manufacture of soldered telescopic construction
JPH08103856A (en) Roll for continuous casting and production thereof
RU2088671C1 (en) Blast furnace tuyere and method for making welded seam of tueyre
JPH07251250A (en) Roll for continuous casting and manufacture thereof
JPS58145365A (en) Production of aluminum cylinder
JPS63248572A (en) Build-up welding method for surface of copper member