JPH0587326B2 - - Google Patents

Info

Publication number
JPH0587326B2
JPH0587326B2 JP59081918A JP8191884A JPH0587326B2 JP H0587326 B2 JPH0587326 B2 JP H0587326B2 JP 59081918 A JP59081918 A JP 59081918A JP 8191884 A JP8191884 A JP 8191884A JP H0587326 B2 JPH0587326 B2 JP H0587326B2
Authority
JP
Japan
Prior art keywords
rolling
stand
deviation
equation
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP59081918A
Other languages
Japanese (ja)
Other versions
JPS60227909A (en
Inventor
Fumio Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59081918A priority Critical patent/JPS60227909A/en
Publication of JPS60227909A publication Critical patent/JPS60227909A/en
Publication of JPH0587326B2 publication Critical patent/JPH0587326B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/16Control of thickness, width, diameter or other transverse dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/24Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/02Transverse dimensions
    • B21B2261/04Thickness, gauge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2271/00Mill stand parameters
    • B21B2271/02Roll gap, screw-down position, draft position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2275/00Mill drive parameters
    • B21B2275/02Speed
    • B21B2275/04Roll speed

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 この発明は、多段連続圧延機の圧延条件設定制
御に係り、特に前段スタンドの圧延結果にもとづ
き圧下位置、圧延速度の設定値を修正する連続圧
延機の圧延条件設定修正方法に関するものであ
る。 〔従来技術〕 通常、圧延機を運転する場合には被圧延材の圧
延条件によつてあらかじめ諸設定値を予測し、そ
の設定値を圧延前に圧延機に設定している。しか
しながらこれらの設定値は常に最適であるとは限
らない。そこで、この設定値を圧延中に得た圧延
結果により修正する制御方式として、特公昭51−
2061号があつた。 前記従来の特公昭51−2061号は、公知の下記圧
延荷重式(1)式、ゲージメータ式(2)式を用いること
により、下記のように圧下位置修正量を算出する
ものである。すなわち、 Pi=ki(Ti,hi-1,hi,Ni)・B・√′i
i-1i)・Qi(hi-1,hi)…(1) hi=Si+Pi/Mi+Spi …(2) ただし、上式中添字iはスタンド番号を表わ
し、Pは圧延荷重、kは変形抵抗、Tは圧延材温
度(以下温度という)、hは板厚、Nは圧延速度、
Bは板幅、R′は偏平ロール半径、Qは圧下力関
数、Sは圧下位置、Mはミル定数、Spはオフセツ
ト量である。 上記公知例における第2スタンドにおいて、
入・出側板厚偏差が圧延荷重偏差に及ぼす影響は
事実上小さいとして、(1)式のkのみに関する偏分
式を用いて、第2スタンドの実測圧延荷重と予測
圧延荷重の偏差ΔP2より、第2スタンド変形抵抗
偏差Δk2を Δk2=k2/P2ΔP2 …(3) と算出し、第3スタンド以降の変形抵抗偏差を Δki=Δk2=k2/P2ΔP2 …(4) と仮定することにより、圧延荷重偏差を ΔPi=Pi/kik2/P2ΔP2 …(5) と予測し、圧下位置修正量を、(2)式のPに関する
偏分式を用いて ΔSi=ΔPi/Mi=−Pik2/MikiP2ΔP2 …(6) として算出するものである。すなわち、本発明の
実施例を示した第1図において、第2スタンドの
圧延荷重検出装置4によりPm 2のみを検出してΔP2
=Pm 2−P2から圧下位置Siを算出するものである。
従来の連続圧延機の圧延条件設定修正方式は以上
のようになされていたので第2スタンドにおける
入・出側板厚偏差が第2スタンド圧延荷重偏差に
及ぼす影響は普通鋼でも100〜200ton/mmであり、
変形抵抗偏差が圧延荷重偏差に及ぼす影響約
100ton(Kg/mm2)と同等以上であるにもかかわら
ず、この従来法は第2スタンドの入・出側板厚偏
差が圧延荷重偏差に及ぼす影響を無視しているた
め、前記(3)式で得られるΔk2に倍、半分の誤差を
生じ、この結果(6)式によつて正確な圧下位置修正
量が算出できないという欠点があつた。 〔発明の概要〕 この発明は上記のような従来のものの欠点を除
去するためになされたもので、第1、第2スタン
ドの2つのスタンドの圧延結果を用いて、第2ス
タンドの入・出側板厚偏差、および圧延荷重偏差
を演算によつて求め、もつて第3スタンド以降の
圧延荷重偏差を正確に予測し高精度の圧下位置修
正量及び圧延速度修正量を決定し適応制御を施し
た連続圧延機の圧延条件設定修正方法を提供する
ことを目的とする。 〔発明の実施例〕 以下この発明の一実施例を図について説明す
る。最初に理解を助けるために、圧下位置修正量
の導出過程について説明する。なお、以下におけ
る各物理量は前記(1),(2)式で説明したものと同一
であり、Δ(・)は実測値または真値と予測値と
の偏差、nは最終スタンドを表わす。 板厚偏差の算出 上述の(2)式において、Spi,Miは考慮する被圧
延材に対して一定であるから、(2)式の偏分式は次
式で表わされる。 Δhi=ΔSi+ΔPi/Mi …(7) したがつて、第1,第2スタンドにおける圧延
荷重、圧下位置の実測値と予測値の偏差ΔP1
ΔP2,ΔS1,ΔS2により第2スタンドの入出側板
厚偏差Δh1,Δh2は次式で算出できる。 Δh1=ΔSi+ΔPi/Mi、ただしi=1,2 …(8) なお、Δh1は第1スタンド出側板厚偏差、Δh2
は第3スタンド入側板厚偏差でもある。 温度偏差の算出 (1)式において、偏平ロール半径R′iは板厚と圧
延荷重の関数で表わされるので、前記(1)式の各物
理量に関する偏分式は(9)式で表わされる。 ΔPi=−QTiΔTi+QHiΔhi-1 −QhiΔhi+QNiΔNi …(9) ただし、QT,QH,Qh,QNは夫々、温度偏差、
入側板厚偏差、出側板厚偏差、圧延速度偏差が圧
延荷重偏差に及ぼす影響係数である。なお、前記
の影響係数は正の値で表わしている。 したがつて、第2スタンドにおける圧延荷重、
圧延速度の実測値と予測値の偏差ΔP2,ΔN2、お
よび(8)式で算出されたΔh1,Δh2を用いて、前記
(9)式より第2スタンド温度偏差ΔT2は次式で算出
できる。 ΔT2=−ΔP2+QH2Δh1−Qh2Δh2+QN2ΔN2/QT2 圧延荷重偏差の予測 前記(10)式で得られた第2スタンド温度偏差ΔT2
が、各スタンドの温度に比例して下流スタンドに
波及すると考えられるから、各スタンドの温度偏
差ΔTiは(11)式で予測できる。 ΔTi=Ti/ΔT2ΔT2、ただしi=3〜n …(11) また、第3スタンド以降の出側板厚偏差を零と
するように圧下位置修正量を決定することが目的
であるため、板厚偏差に関して(12)式が成立す
る。 Δhi=0、ただしi=3〜n …(12) しかしながら第3スタンドの入側板厚偏差Δh2
は存在し、前記(8)式における第2スタンドの出側
板厚偏差によつて与えられる。 したがつて、第3スタンド以降の圧延荷重偏差
ΔPiは、前記(9)式に(11),(12)式を代入するこ
とによつて(13)式で予測できる。 ΔP3=QT3T3/T2ΔT2+QN3ΔN3+QH3Δh2 …(13−1) ΔPi=−QTiTi/T2ΔT2+QNiΔNi ただしi=4〜n …(13−2) ただし、ΔNi(i=3〜n)は、被圧延材が第
3スタンドにかみ込む前のいずれかのタイミング
で実測された実測圧延速度と予測圧延速度の偏差
である。 圧下位置修正量の決定 次に第3スタンド以降の圧下位置をΔhi(i=3
〜n)となるように修正する。この場合には(7)式
より(14)式が得られる。 ΔSi=−ΔPi/Mi、ただしi=3〜n…(14) したがつて、被圧延材が第2スタンドにかみ込
んだ時、(8)式により第2スタンドの入・出側板厚
偏差Δh1,Δh2を算出し、(10)式により第2スタン
ドの温度偏差ΔT2を算出し、(11)式により第3
スタンド以降の温度偏差ΔTi(i=3〜nを算出
し、(13)式により第3スタンド以降の圧延荷重
偏差ΔPi(i=3〜n)を算出し、もつて(14)
式より圧下位置修正量ΔSi(i=3〜n)が決定
できる。なお、第2スタンド入側板厚偏差Δh1
被圧延材が第1スタンドにかみ込んだ時に算出で
きることは言うまでもない。 また、(14)式に、(10)式を考慮して(13)式を
代入すれば、次式が得られるので、被圧延材が第
2スタンドにかみ込んだ時、圧下位置修正量ΔSi
(i=3〜n)を次式により決定しても良い。 ΔSi=−Ai・ΔP2+Bi・Δh1−(Ci+C′i)・Δh2
Di・ΔN2−Ei・ΔNi、ただしi=3〜n…(15)
[Technical Field of the Invention] The present invention relates to rolling condition setting control for a multi-high continuous rolling mill, and in particular to a rolling condition setting correction method for a continuous rolling mill that corrects the set values of the rolling position and rolling speed based on the rolling results of the previous stage stand. It is related to. [Prior Art] Normally, when operating a rolling mill, various set values are predicted in advance based on the rolling conditions of the material to be rolled, and the set values are set in the rolling mill before rolling. However, these setting values are not always optimal. Therefore, as a control method that corrects this set value according to the rolling results obtained during rolling, the
Issue 2061 has arrived. The conventional Japanese Patent Publication No. 51-2061 calculates the rolling position correction amount as follows by using the following well-known rolling load formula (1) and gauge meter formula (2). That is, P i =k i (T i , h i-1 , h i , N i )・B・√′ i
( i-1i )・Q i (h i-1 , h i )…(1) h i =S i +P i /M i +S pi …(2) However, the subscript i in the above formula indicates the stand number. where P is rolling load, k is deformation resistance, T is rolling material temperature (hereinafter referred to as temperature), h is plate thickness, N is rolling speed,
B is the plate width, R' is the flat roll radius, Q is the rolling force function, S is the rolling position, M is the mill constant, and S p is the offset amount. In the second stand in the above known example,
Assuming that the influence of the entry/exit plate thickness deviation on the rolling load deviation is practically small, using the partial equation regarding only k in equation (1), the deviation ΔP 2 between the measured rolling load and the predicted rolling load of the second stand is calculated as follows: , the deformation resistance deviation Δk 2 of the second stand is calculated as Δk 2 =k 2 /P 2 ΔP 2 ...(3), and the deformation resistance deviation of the third and subsequent stands is Δk i =Δk 2 =k 2 /P 2 ΔP 2 ...(4), the rolling load deviation is predicted as ΔP i =P i /k i k 2 /P 2 ΔP 2 ...(5), and the rolling position correction amount is calculated as follows regarding P in equation (2). It is calculated as ΔS i =ΔP i /M i =−P i k 2 /M i k i P 2 ΔP 2 (6) using a partial differential equation. That is, in FIG. 1 showing the embodiment of the present invention, only P m 2 is detected by the rolling load detection device 4 of the second stand, and ΔP 2
The rolling position S i is calculated from =P m 2 -P 2 .
Since the rolling condition setting correction method of conventional continuous rolling mills was done as described above, the influence of the thickness deviation at the entrance and exit sides of the second stand on the rolling load deviation of the second stand is 100 to 200 ton/mm even for ordinary steel. can be,
Approximate influence of deformation resistance deviation on rolling load deviation
Although it is equivalent to or higher than 100 tons (Kg/mm 2 ), this conventional method ignores the influence of the thickness deviation on the rolling load deviation at the entrance and exit sides of the second stand, so the equation (3) above An error of double or half occurs in Δk 2 obtained by , and as a result, there is a drawback that an accurate reduction position correction amount cannot be calculated by equation (6). [Summary of the Invention] This invention was made to eliminate the drawbacks of the conventional products as described above. The side plate thickness deviation and rolling load deviation were calculated, and the rolling load deviation from the third stand onwards was accurately predicted, and highly accurate reduction position correction amounts and rolling speed correction amounts were determined and adaptive control was performed. The purpose of this invention is to provide a method for modifying rolling condition settings for a continuous rolling mill. [Embodiment of the Invention] An embodiment of the invention will be described below with reference to the drawings. First, in order to facilitate understanding, the process of deriving the reduction position correction amount will be explained. Note that each physical quantity below is the same as that explained in equations (1) and (2) above, Δ(·) represents the deviation between the actual measured value or true value and the predicted value, and n represents the final stand. Calculation of Plate Thickness Deviation In the above equation (2), S pi and M i are constant for the considered rolled material, so the partial equation of equation (2) is expressed by the following equation. Δh i =ΔS i +ΔP i /M i (7) Therefore, the deviation between the measured value and the predicted value of the rolling load and rolling position in the first and second stands ΔP 1 ,
From ΔP 2 , ΔS 1 , and ΔS 2 , the thickness deviations Δh 1 and Δh 2 on the entrance and exit sides of the second stand can be calculated using the following formula. Δh 1 = ΔS i + ΔP i /M i , where i=1, 2...(8) Note that Δh 1 is the thickness deviation on the exit side of the first stand, and Δh 2
is also the plate thickness deviation on the entrance side of the third stand. Calculation of Temperature Deviation In Equation (1), the flat roll radius R′ i is expressed as a function of the plate thickness and rolling load, so the partial equation regarding each physical quantity in Equation (1) is expressed as Equation (9). ΔP i = −Q Ti ΔT i +Q Hi Δh i-1 −Q hi Δh i +Q Ni ΔN i …(9) However, Q T , Q H , Q h , Q N are the temperature deviation,
These are the influence coefficients that the entry side plate thickness deviation, exit side plate thickness deviation, and rolling speed deviation have on the rolling load deviation. Note that the above-mentioned influence coefficient is expressed as a positive value. Therefore, the rolling load at the second stand,
Using the deviations ΔP 2 and ΔN 2 between the measured rolling speed and the predicted rolling speed, and Δh 1 and Δh 2 calculated by equation (8),
From equation (9), the second stand temperature deviation ΔT 2 can be calculated using the following equation. ΔT 2 = −ΔP 2 +Q H2 Δh 1 −Q h2 Δh 2 +Q N2 ΔN 2 /Q Prediction of T2 rolling load deviation Second stand temperature deviation ΔT 2 obtained from the above equation (10)
is thought to spread to downstream stations in proportion to the temperature of each stand, so the temperature deviation ΔT i of each stand can be predicted using equation (11). ΔT i =T i /ΔT 2 ΔT 2 , where i=3 to n...(11) Also, the purpose is to determine the amount of reduction position correction so that the exit side plate thickness deviation after the third stand is zero. Therefore, equation (12) holds regarding the plate thickness deviation. Δh i = 0, however, i = 3 to n … (12) However, the entrance side plate thickness deviation of the third stand Δh 2
exists, and is given by the thickness deviation of the exit side of the second stand in equation (8) above. Therefore, the rolling load deviation ΔP i after the third stand can be predicted by equation (13) by substituting equations (11) and (12) into equation (9). ΔP 3 =Q T3 T 3 /T 2 ΔT 2 +Q N3 ΔN 3 +Q H3 Δh 2 … (13-1) ΔP i = −Q Ti T i /T 2 ΔT 2 +Q Ni ΔN i where i=4~n… (13-2) However, ΔN i (i=3 to n) is the deviation between the actual rolling speed measured at any timing before the material to be rolled is bitten by the third stand and the predicted rolling speed. Determining the amount of correction of the rolling position Next, set the rolling position from the third stand onwards by Δh i (i=3
-n). In this case, equation (14) is obtained from equation (7). ΔS i =−ΔP i /M i , where i=3~n...(14) Therefore, when the material to be rolled is bitten into the second stand, the entry and exit side plates of the second stand are determined by equation (8). The thickness deviations Δh 1 and Δh 2 are calculated, the temperature deviation ΔT 2 of the second stand is calculated using equation (10), and the temperature deviation ΔT 2 of the second stand is calculated using equation (11).
Calculate the temperature deviation ΔT i (i = 3 to n) after the stand, calculate the rolling load deviation ΔP i (i = 3 to n) after the third stand using equation (13), and then (14)
The reduction position correction amount ΔS i (i=3 to n) can be determined from the formula. It goes without saying that the plate thickness deviation Δh 1 on the entrance side of the second stand can be calculated when the material to be rolled is bitten into the first stand. In addition, by substituting equation (13) into equation (14), taking equation (10) into consideration, the following equation is obtained. i
(i=3 to n) may be determined by the following equation. ΔS i =−A i・ΔP 2 +B i・Δh 1 −(C i +C′ i )・Δh 2 +
D i・ΔN 2 −E i・ΔN i , where i=3~n...(15)

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば少なくとも第
1、第2スタンドの2つのスタンドの圧延結果を
用いて、第2スタンドの入・出側板厚偏差、およ
び圧延荷重偏差を演算によつて求め、これらの偏
差に基づいて圧下位置、圧延速度を自動修正する
ようにしたので精度の高い修正が行なえ、被圧延
材の先端から成品目標板厚が得られ、各スタンド
間のマスフローバランスが保たれ、操業が安定化
する効果がある。
As described above, according to the present invention, using the rolling results of at least two stands, the first and second stands, the entrance/exit plate thickness deviation and rolling load deviation of the second stand are calculated, Since the rolling position and rolling speed are automatically corrected based on these deviations, highly accurate corrections can be made, the target product thickness can be obtained from the tip of the rolled material, and the mass flow balance between each stand can be maintained. This has the effect of stabilizing operations.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す多段連続圧
延機の制御系のシステム構成図である。 1……設定制御装置、2……初期設定制御機能
部、3……設定修正制御機能部、4……圧延荷重
検出装置、5……圧下位置検出装置、6……圧延
速度検出装置、7……圧下位置制御装置、8……
圧延速度制御装置。
FIG. 1 is a system configuration diagram of a control system of a multi-stage continuous rolling mill showing an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Setting control device, 2... Initial setting control function part, 3... Setting correction control function part, 4... Rolling load detection device, 5... Rolling position detection device, 6... Rolling speed detection device, 7 ...Down position control device, 8...
Rolling speed control device.

Claims (1)

【特許請求の範囲】[Claims] 1 連続圧延機に被圧延材がかみ込む以前に、各
圧延スタンドの圧下位置と圧延速度とを予測して
それぞれ予測値として設定し、前記被圧延材が第
1圧延スタンドにかみ込んだ時に該第1圧延スタ
ンドの圧延荷重と圧下位置とを実測し、この実測
値と対応する前記予測値との偏差により第2圧延
スタンドの入側板厚偏差を算出し、次いで被圧延
材が第2圧延スタンドにかみ込んだ時に該第2圧
延スタンドの圧延荷重と圧下位置と該第2圧延ス
タンド以降の圧延速度を実測し、前記実測値と対
応する前記予測値とにより第2圧延スタンドの出
側板厚偏差と圧延荷重偏差と該第2圧延スタンド
以降の圧延速度偏差とを算出し、算出された第2
圧延スタンドの入・出側板厚偏差と圧延荷重偏差
と圧延速度偏差とに基づいて前記予め設定した第
3圧延スタンド以降の圧下位置および第1、第2
圧延スタンドの圧延速度を修正することを特徴と
する連続圧延機の圧延条件設定修正方法。
1. Before the material to be rolled is bitten by the continuous rolling mill, the rolling position and rolling speed of each rolling stand are predicted and set as predicted values, and when the material to be rolled is bitten by the first rolling stand, the rolling speed is predicted. The rolling load and rolling position of the first rolling stand are actually measured, and the entrance plate thickness deviation of the second rolling stand is calculated from the deviation between the measured value and the corresponding predicted value, and then the material to be rolled is transferred to the second rolling stand. The rolling load and rolling position of the second rolling stand and the rolling speed from the second rolling stand onward are actually measured, and the thickness deviation on the exit side of the second rolling stand is calculated based on the measured values and the corresponding predicted values. , the rolling load deviation, and the rolling speed deviation after the second rolling stand, and the calculated second
The rolling positions after the third rolling stand, and the first and second
A method for modifying rolling condition settings for a continuous rolling mill, comprising modifying the rolling speed of a rolling stand.
JP59081918A 1984-04-25 1984-04-25 Rolling condition setting and correcting system of continuous rolling mill Granted JPS60227909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59081918A JPS60227909A (en) 1984-04-25 1984-04-25 Rolling condition setting and correcting system of continuous rolling mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59081918A JPS60227909A (en) 1984-04-25 1984-04-25 Rolling condition setting and correcting system of continuous rolling mill

Publications (2)

Publication Number Publication Date
JPS60227909A JPS60227909A (en) 1985-11-13
JPH0587326B2 true JPH0587326B2 (en) 1993-12-16

Family

ID=13759831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59081918A Granted JPS60227909A (en) 1984-04-25 1984-04-25 Rolling condition setting and correcting system of continuous rolling mill

Country Status (1)

Country Link
JP (1) JPS60227909A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5786844B2 (en) * 2012-12-13 2015-09-30 Jfeスチール株式会社 Control method and control device for tandem rolling mill

Also Published As

Publication number Publication date
JPS60227909A (en) 1985-11-13

Similar Documents

Publication Publication Date Title
US3938360A (en) Shape control method and system for a rolling mill
JPH0587326B2 (en)
JPH0569021A (en) Method and device for controlling rolling mill
JPS649086B2 (en)
JPS6224809A (en) Method for controlling sheet width in hot rolling
JPS59185524A (en) Controlling method of tension leveler
JP3048867B2 (en) Target Thickness Correction Method in Automatic Thickness Control of Continuous Rolling Mill
JP3237559B2 (en) Thickness control method of hot continuous rolling mill
JPS63188415A (en) Meandering controller for rolling mill
JPS6372416A (en) Thickness compensation method for bited end part of rolled stock
JPH0227046B2 (en)
JPH0687011A (en) Method for rolling thick plate
JPH03193206A (en) Plate crown control device for tandem mill
JPH01258807A (en) Controlling method for plate width in tandem mill
JPS6241804B2 (en)
JP3107339B2 (en) Continuous annealing method for strip
JPH0472603B2 (en)
JPS5994513A (en) Method and equipment for controlling automatically sheet width
JP2882932B2 (en) Strip crown control method in cross rolling mill
JPS61255712A (en) Control device for sheet width
JPH0818061B2 (en) Method for preventing narrowing of rolled steel sheet in hot continuous rolling
JPS6047008B2 (en) Rolling mill strip width control device
JPS62197211A (en) Plate thickness control method utilizing mill rigidity detection value
JP2000218313A (en) Plate thickness control method and device for continuous hot rolling mill
JPS641211B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees