JPH0587130B2 - - Google Patents

Info

Publication number
JPH0587130B2
JPH0587130B2 JP62076384A JP7638487A JPH0587130B2 JP H0587130 B2 JPH0587130 B2 JP H0587130B2 JP 62076384 A JP62076384 A JP 62076384A JP 7638487 A JP7638487 A JP 7638487A JP H0587130 B2 JPH0587130 B2 JP H0587130B2
Authority
JP
Japan
Prior art keywords
substrate
gas
plasma
reaction chamber
plasma vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62076384A
Other languages
Japanese (ja)
Other versions
JPS63244731A (en
Inventor
Mitsuaki Yano
Kenji Nakatani
Hiroshi Okaniwa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP62076384A priority Critical patent/JPS63244731A/en
Priority to US07/166,689 priority patent/US4920917A/en
Priority to DE3808974A priority patent/DE3808974A1/en
Priority to FR8803589A priority patent/FR2613535B1/en
Publication of JPS63244731A publication Critical patent/JPS63244731A/en
Publication of JPH0587130B2 publication Critical patent/JPH0587130B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 <技術分野> 本発明は化学的気相分解(CVD)によるプラ
ズマ雰囲気中で薄膜を形成するプラズマ気相成長
装置に関し、特に非晶質シリコン太陽電池の製造
に好適なプラズマ気相成長装置に関する。
[Detailed Description of the Invention] <Technical Field> The present invention relates to a plasma vapor phase growth apparatus for forming a thin film in a plasma atmosphere by chemical vapor phase decomposition (CVD), and is particularly suitable for manufacturing amorphous silicon solar cells. The present invention relates to a plasma vapor phase growth apparatus.

<従来技術> 化学的気相分解によるプラズマ雰囲気中で基板
上に薄膜半導体層等を成膜して半導体デバイス等
を製造するプラズマ気相成長装置は、例えばシラ
ン(SiH4)ガスを放電分解して非晶質シリコン
太陽電池を製造する方法として広く実用化された
公知の技術である。この方法では組成やドーピン
グ不純物の量が異なる複数の層を形成する場合
は、単一の反応室を用いて各層の成膜ごとに反応
ガスを切り替えるか、複数の専用反応室をを連結
して反応室ごとに反応ガスを変えて成膜し、順次
基板を移送させる方法が行なわれている。これは
単一の反応質内ではプラズマ雰囲気中のガス組成
は空間的にほぼ均一であり、反応室内に組成の異
なつたガス雰囲気を適当に分布させることができ
ないためである。
<Prior art> Plasma vapor phase epitaxy equipment, which manufactures semiconductor devices by forming thin film semiconductor layers on substrates in a plasma atmosphere using chemical vapor phase decomposition, uses, for example, discharge decomposition of silane (SiH 4 ) gas. This is a well-known technique that has been widely put into practical use as a method for manufacturing amorphous silicon solar cells. When forming multiple layers with different compositions and amounts of doping impurities using this method, you can use a single reaction chamber and switch the reaction gas for each layer, or connect multiple dedicated reaction chambers. A method is used in which films are formed using different reaction gases in each reaction chamber, and the substrates are sequentially transferred. This is because within a single reactant, the gas composition in the plasma atmosphere is substantially uniform spatially, and gas atmospheres with different compositions cannot be appropriately distributed within the reaction chamber.

しかし、何らかの方法で単一反応室内のガス組
成に所望の空間的分布をもたせることが可能なら
ば、単一の反応室内で定常的に放電するプラズマ
雰囲気中のガス組成の異なる領域を基板を移送す
るだけで組成やドーピング量の異なつた複数層を
一気に形成することが可能となり、製造工程及び
装置の簡略化が実現される。
However, if it is possible to somehow create a desired spatial distribution of the gas composition within a single reaction chamber, then the substrate can be transferred through regions with different gas compositions in a plasma atmosphere that is constantly discharged within a single reaction chamber. By simply doing this, it becomes possible to form multiple layers with different compositions and doping amounts at once, which simplifies the manufacturing process and equipment.

また、CVDによるプラズマ雰囲気中で基板上
に薄膜半導体層を形成する手法の一つであるロー
ル・ツー・ロール方式においても、単一反応室内
の反応ガスの組成に所望の空間分布をもたせるこ
とができないために、従来、次のような欠点が存
在した。即ち、ロール・ツー・ロール方式では定
常放電プラズマ中で可撓性の帯状基板を連続搬送
して成膜するために、各反応室には同一組成の反
応ガスを連続的に供給する必要があつて一走行で
組成やドーピングの異なる複数層を形成するため
にはその数だけの専用反応室が不可欠であつた。
Furthermore, in the roll-to-roll method, which is one of the methods for forming a thin film semiconductor layer on a substrate in a plasma atmosphere using CVD, it is possible to create a desired spatial distribution in the composition of the reactant gas within a single reaction chamber. As a result, the following drawbacks have existed in the past. In other words, in the roll-to-roll method, a flexible strip substrate is continuously conveyed in a steady discharge plasma to form a film, so it is necessary to continuously supply a reaction gas of the same composition to each reaction chamber. In order to form multiple layers with different compositions and dopings in one run, it was necessary to have as many dedicated reaction chambers as there were.

更に、複数の反応室をもつロール・ツー・ロー
ル方式においては、各反応室は完全に分離・独立
している訳ではなく、基板の通路で連結されてい
る。このため、隣接した反応室間で該基板通路を
経由して各反応室の反応ガスの相互混合をさける
ことができない。この相互混合が作成しようとす
る薄膜半導体デバイスの特性を劣化させる場合に
は反応空間の基板通路に一方向性のガスの流れを
形成したり、特開昭58−216475号公報、特開昭59
−34668号公報等に開示の如く、反応室間に専用
の緩衝室を設けて抽気又は差動排気して必要な程
度迄ガス分離を行なつていた。しかし、かかる従
来方法ではひとたびこれらガス分離機構を越えて
侵入した隣接反応室の反応ガスは反応室全域に拡
散して反応室内で均一となり、隣接層との界面の
膜厚方向の組成分布や不純物分布のプロフアイル
の制御性、例えばゆるやかな傾斜接合にするか、
シヤープな階段接合にするかと云つた制御性にと
ぼしかつた。
Furthermore, in a roll-to-roll system having a plurality of reaction chambers, the reaction chambers are not completely separated and independent, but are connected by passages in the substrate. Therefore, it is impossible to avoid mutual mixing of the reaction gases in the reaction chambers between adjacent reaction chambers via the substrate passage. If this mutual mixing deteriorates the characteristics of the thin film semiconductor device to be fabricated, a unidirectional gas flow may be formed in the substrate passage in the reaction space.
As disclosed in Publication No. 34668, etc., a dedicated buffer chamber was provided between the reaction chambers, and gas was separated to the extent necessary by extraction or differential exhaust. However, in such conventional methods, once the reaction gas from the adjacent reaction chamber enters beyond these gas separation mechanisms, it diffuses throughout the reaction chamber and becomes uniform within the reaction chamber, resulting in the composition distribution in the film thickness direction at the interface with the adjacent layer and impurities. Controllability of the distribution profile, for example, whether to use a gently sloped junction,
The controllability was such that it was possible to create a sharp staircase joint.

<目的> 本発明はかかる現状に鑑みなされたもので、前
述のCVDのプラズマ気相成長装置に関し単一反
応室内での反応ガスの空間分布を制御することに
より、上記従来技術の欠点を解消して同一反応室
内で成膜した単一層内でも組成や不純物分布に所
望のデプスプロフアイルをもたせることを可能と
したプラズマ気相成長装置、特にロール・ツー・
ロール方式においては隣接半導体層との界面急峻
性を制御できるプラズマ気相成長装置を提供する
ことを目的とする。
<Purpose> The present invention was made in view of the current situation, and it solves the drawbacks of the above-mentioned conventional techniques by controlling the spatial distribution of reactant gas within a single reaction chamber in the above-mentioned CVD plasma vapor phase growth apparatus. Plasma vapor phase epitaxy equipment, especially roll-to-layer plasma vapor deposition equipment, makes it possible to achieve a desired depth profile in composition and impurity distribution even within a single layer deposited in the same reaction chamber.
In the roll method, an object of the present invention is to provide a plasma vapor phase growth apparatus that can control the steepness of the interface with an adjacent semiconductor layer.

<構成> すなわち本発明は、前述の対向する放電電極間
の化学的気相分解によるプラズマ雰囲気中を通し
て基板を搬送しつつ、該基板上に薄膜を形成する
ようになしたプラズマ気相成長装置において、反
応ガスを遮断する仕切板を基板搬送方向に所定間
隔で放電電極面に垂直方向に配設して、少なくと
もプラズマ雰囲気を基板通路等の限られた隙間を
除いて基板搬送方向にガス拡散のない複数の区域
に区画し、膜厚方向に所定の組成分布を有する薄
膜を形成することを特徴とするプラズマ気相成長
装置である。
<Structure> That is, the present invention provides a plasma vapor deposition apparatus that forms a thin film on a substrate while transporting the substrate through a plasma atmosphere caused by chemical vapor phase decomposition between opposing discharge electrodes. , partition plates for blocking reaction gas are arranged perpendicularly to the discharge electrode surface at predetermined intervals in the substrate transport direction, and at least the plasma atmosphere is prevented from gas diffusion in the substrate transport direction except for limited gaps such as substrate passages. This plasma vapor phase epitaxy apparatus is characterized in that it forms a thin film having a predetermined composition distribution in the film thickness direction.

上記本発明は、放電電極間に垂直にガスを遮断
する仕切板を設けてプラズマ雰囲気を区画しても
プラズマ放電は影響されず安定製膜ができること
を見出すと共に、ガスを遮断できる仕切板により
区画されたプラズマ雰囲気の各区域間の反応ガス
の流路を基板表面近傍等に限定することにより、
ガス導入口と排気口の基板搬送方向の位置により
基板搬送方向のガス組成分布を制御できることを
見出しなされたものである。
The present invention has found that even if the plasma atmosphere is partitioned by providing a partition plate that blocks gas vertically between the discharge electrodes, plasma discharge is not affected and stable film formation can be performed. By limiting the flow path of the reactive gas between each zone of the plasma atmosphere to the vicinity of the substrate surface,
It has been discovered that the gas composition distribution in the substrate transport direction can be controlled by the positions of the gas inlet and exhaust port in the substrate transport direction.

なお、この理由は前記仕切板により区画された
プラズマ雰囲気の各区域間の基板搬送方向のガス
の相互拡散が限定され、各区域のガス組成は略独
立したものとなるためと思われる。
The reason for this is believed to be that mutual diffusion of gas in the substrate transport direction between the zones of the plasma atmosphere divided by the partition plates is limited, and the gas compositions of each zone become substantially independent.

従つて、本発明の仕切板はガスを遮断できるも
のであれば良く、その材は特に限定されないが、
中でもプラズマ損傷のないものが好ましく、ステ
ンレス等が使用される。なお、仕切板は反応室と
共に接地するのが一般であるが、浮遊もしくは適
当なバイアス電圧を印加させても良い。そしてそ
の形状は、基板搬送方向のガスの拡散が無視でき
るものであれば良く、通常は基板搬送路及び放電
電極面との間に微小な間隙を有するのみで、その
他の部分は完全に遮断し、前記間隙以外ではガス
移動のない形状が選定される。このようにすると
間隙部でガス流速が大となり、ガイ拡散の防止が
より完全となる点で好ましい。しかし、反応室内
の部材の配置によりガス流路が限定される場合に
は該ガス流路を遮断するように仕切板は設置すれ
ば良いことは云うまでもない。なお、仕切板は少
なくとも基板前面との間にガス流路となるスリツ
トを有する必要がある。
Therefore, the partition plate of the present invention may be any material as long as it can block gas, and its material is not particularly limited.
Among these, materials without plasma damage are preferred, and stainless steel or the like is used. Although the partition plate is generally grounded together with the reaction chamber, it may be floating or a suitable bias voltage may be applied thereto. The shape is sufficient as long as the diffusion of gas in the substrate transport direction can be ignored, and usually there is only a small gap between the substrate transport path and the discharge electrode surface, and the other parts are completely blocked. , a shape is selected that does not allow gas movement outside the gap. This is preferable because the gas flow rate increases in the gap and Guy diffusion is more completely prevented. However, if the gas flow path is limited due to the arrangement of members within the reaction chamber, it goes without saying that a partition plate may be installed to block the gas flow path. Note that the partition plate needs to have at least a slit between it and the front surface of the substrate to serve as a gas flow path.

又仕切板の数及びその間隙は、形成する膜の膜
厚方向のプロフアイルに応じて選定される。この
選定は実験による。
Further, the number of partition plates and the gap between them are selected depending on the profile of the film to be formed in the film thickness direction. This selection is based on experimentation.

一方反応ガスの導入口、排気口の配置も、同様
に形成する膜厚方向のプロフアイルに応じて実験
により選定される。例えば2層膜を形成する場合
には夫々の反応ガスの導入口を反応室の両端に、
共通の排気口をその中間に順次配置すれば良く、
又一層膜でその膜内の組成を変化させたい場合は
夫々の反応ガスの導入口を反応室の基板搬送方向
の両端部に配置し、その一端に共通の排気口を設
けること等により適当な勾配の組成分布を得るこ
とができる。
On the other hand, the arrangement of the reactant gas inlet and outlet is similarly selected through experiments depending on the profile in the thickness direction of the film to be formed. For example, when forming a two-layer film, the inlets for each reaction gas should be placed at both ends of the reaction chamber.
All you have to do is place the common exhaust ports in the middle,
If it is desired to change the composition within the film, the inlet for each reaction gas may be placed at both ends of the reaction chamber in the substrate transport direction, and a common exhaust port may be provided at one end. A gradient compositional distribution can be obtained.

以上の本発明は単独の反応室で多層膜を形成す
るのに適用できる他、特開昭58−216475号公報等
の如く複数の反応室を連結したものにおいて、そ
の一層のプロフアイルを制御するのにも適用でき
る。
The present invention described above is applicable not only to forming a multilayer film in a single reaction chamber, but also to controlling the profile of a single layer in a structure in which a plurality of reaction chambers are connected, such as in JP-A-58-216475. It can also be applied to

又本発明は、可撓性の長尺基板を連続的にロー
ル・ツー・ロール方式で搬送しつつ膜形成するも
のにおいて、単独反応室での多層膜形成等の如く
大巾な装置の簡略化を可能としたり、従来不可能
であつた多層膜中の一層のプロフアイル制御がで
きる連続膜形成装置を可能とする等特にその効果
は大である。
In addition, the present invention is for forming a film while continuously conveying a flexible long substrate in a roll-to-roll manner, and it is possible to greatly simplify the equipment used to form a multilayer film in a single reaction chamber. The effects are especially great, such as enabling a continuous film forming apparatus that can control the profile of one layer in a multilayer film, which was previously impossible.

以下、本発明の詳細を非晶質シリコン太陽電池
の連続製造装置を例に説明する。
Hereinafter, the details of the present invention will be explained using an example of a continuous manufacturing apparatus for amorphous silicon solar cells.

<実施例> 第1図は上記実施例の非晶質シリコン太陽電池
の連続製造装置の構成図である。
<Example> FIG. 1 is a block diagram of a continuous manufacturing apparatus for amorphous silicon solar cells according to the above example.

その基本構成は前述の特開昭58−216475号公
報、特開昭59−34668号公報開示のものと同じで、
p型、i型及びn型の各非晶質シリコン層を形成
するCVDプラズマ放電の各反応室1,2,3及
び巻出室18並びに巻取室19をガス隔離のため
の緩衝室13で連結し、巻出しロール20から巻
取りロール21へ基板17をロール・ツー・ロー
ル方式で移送しつつ、p,i,nの3層を連続形
成する構成となつている。なお、図の4〜9は放
電電極で、図の10は各放電電極に高周波電力を
供給する高周波電源である。
Its basic configuration is the same as that disclosed in the aforementioned Japanese Patent Application Laid-Open No. 58-216475 and Japanese Patent Application Laid-Open No. 59-34668,
The reaction chambers 1, 2, 3 of the CVD plasma discharge forming p-type, i-type, and n-type amorphous silicon layers, the unwinding chamber 18, and the winding chamber 19 are provided with a buffer chamber 13 for gas isolation. The structure is such that the three layers p, i, and n are continuously formed while the substrate 17 is connected and transferred from the unwinding roll 20 to the winding roll 21 in a roll-to-roll manner. Note that 4 to 9 in the figure are discharge electrodes, and 10 in the figure is a high frequency power source that supplies high frequency power to each discharge electrode.

ところで、i型非晶質シリコンを形成する反応
室2は本発明に従い以下の構成となつている。対
向する放電電極6,7の中間のプラズマ雰囲気を
基板搬送方向に必要な通路を除いて区画する仕切
板11を電極面に垂直かつ第2図の通り隙間14
を除いて反応室の全断面を遮断するように基板の
搬送方向に所定間隔になるように5枚設置した。
従つて該仕切板11によりプラズマ空間は、電極
面内で複数の区域に区分され、反応室2の基板搬
送方向下流端に設けたガス導入口15から供給さ
れた反応ガスはその上流端部の排気ポート16に
達するためには必ず該仕切板11で設定された隙
間14を通つて流れる。
Incidentally, the reaction chamber 2 for forming i-type amorphous silicon has the following configuration according to the present invention. A partition plate 11 that partitions the plasma atmosphere between the opposing discharge electrodes 6 and 7, excluding a necessary passage in the substrate transport direction, is installed perpendicular to the electrode surface and with a gap 14 as shown in FIG.
Five substrates were installed at predetermined intervals in the direction of transport of the substrate so as to block the entire cross section of the reaction chamber except for the substrate.
Therefore, the plasma space is divided into a plurality of regions within the electrode plane by the partition plate 11, and the reaction gas supplied from the gas inlet 15 provided at the downstream end of the reaction chamber 2 in the substrate transport direction is directed to the upstream end. In order to reach the exhaust port 16, the air always flows through the gap 14 set in the partition plate 11.

なお、前述の通り仕切板11は隙間14を形成
するように対向する放電電極の双方に対して若干
の距離を離して設置されている。この隙間14は
1つには反応ガスの通路として、また、パワー電
極に対して電気絶縁のため、そしてアース電極に
対しては基板17の通路を目的としており、本実
施例では3mmとした。ガス仕切板11の材料は電
気的に導体、不導体のいずれであつても本発明の
目的を達するが、プラズマ雰囲気中に不純物を放
出しないことが必要である。本例ではステンレス
合金で作成し、電気的にはアースに接地した。
Note that, as described above, the partition plate 11 is installed at a certain distance from both of the opposing discharge electrodes so as to form the gap 14. This gap 14 is intended to serve as a passage for the reactant gas, for electrical insulation from the power electrode, and as a passage for the substrate 17 from the ground electrode, and is 3 mm in this embodiment. Although the object of the present invention can be achieved whether the material of the gas partition plate 11 is electrically conductive or nonconductive, it is necessary that impurities are not released into the plasma atmosphere. In this example, it was made of stainless steel and electrically grounded.

かかる複数反応室型ロール・ツー・ロール方式
のCVDプラズマ気相成長装置で、SiH4ガスを原
料にロール状に巻き上げた薄帯状長尺基板上に
p,i,n形非晶質シリコン膜を順次積層して太
陽電池を形成した。
In this multiple reaction chamber type roll-to-roll type CVD plasma vapor phase growth apparatus, p-, i-, and n-type amorphous silicon films are formed on a thin strip-shaped long substrate made of SiH 4 gas as a raw material. A solar cell was formed by sequentially stacking layers.

基板17として厚さ100μmのポリエチレンテ
レフタレートのフイルム上に3000Åのアルミニウ
ム金属と50Åのステンレス合金を積層して用い、
具体的には前述の特開昭59−34668号公報等と同
じ方法でp,i,n形の非晶質シリコン層を一走
行で連続成膜した。すなわちpおよびn形の非晶
質シリコン層はそれぞれSiH4ガスにジボラン
(B2H6)またはホスフイン(PH3)をドープして
形成され、その厚さは200〜300Åである。i形非
晶質シリコン層は約5000Åの厚さで、反応ガスは
不純物ガスをドープしていないSiH4ガスを用い
た。
As the substrate 17, aluminum metal of 3000 Å and stainless steel alloy of 50 Å were laminated on a polyethylene terephthalate film with a thickness of 100 μm, and
Specifically, p-, i-, and n-type amorphous silicon layers were continuously formed in one run using the same method as in the above-mentioned Japanese Patent Laid-Open No. 59-34668. That is, the p-type and n-type amorphous silicon layers are each formed by doping SiH 4 gas with diborane (B 2 H 6 ) or phosphine (PH 3 ), and have a thickness of 200 to 300 Å. The i-type amorphous silicon layer had a thickness of about 5000 Å, and the reaction gas used was SiH 4 gas not doped with any impurity gas.

ところで本例のロール・ツー・ロール方式で
は、通常、隣接するp,n形非晶質シリコンを形
成する反応室1,3からi層を形成する反応室2
へB2H6及びPH3ガスが緩衝室13を経由して微
量混入する。
By the way, in the roll-to-roll method of this example, normally, reaction chambers 1 and 3, which form adjacent p-type and n-type amorphous silicon, and reaction chamber 2, which forms the i-layer,
A trace amount of B 2 H 6 and PH 3 gas is mixed in through the buffer chamber 13 .

ところで反応室2は前述の構成としてあるの
で、i形非晶質シリコンを形成する反応室2にお
いて反応ガスはn層用の反応室3寄りのガス導入
口15から導入されp層用の反応室1寄りの排気
口16の方向に流れる。このようにして成膜した
p,i,n積層型の非晶質シリコン膜について、
ボロン(B)原子のデプスプロフアイルを二次イ
オン質量分布法(SIMS)で測定した結果を第3
図に実線Aで示す。比較のために、他の条件は同
じに、仕切板11を設置しない従来装置の場合に
より形成した同じp,i,n積層型の非晶質シリ
コン膜の分析結果を破線Bで同図に示した。
By the way, since the reaction chamber 2 has the above-mentioned configuration, the reaction gas is introduced from the gas inlet 15 near the reaction chamber 3 for the n-layer into the reaction chamber 2 for forming i-type amorphous silicon, and the reaction gas is introduced into the reaction chamber for the p-layer. It flows in the direction of the exhaust port 16 closer to the first one. Regarding the p, i, n laminated type amorphous silicon film formed in this way,
The depth profile of boron (B) atoms was measured using secondary ion mass distribution method (SIMS).
It is shown by a solid line A in the figure. For comparison, the broken line B shows the analysis results of the same p, i, n laminated type amorphous silicon film formed using a conventional device without the partition plate 11 under the same other conditions. Ta.

仕切板11を設けない従来装置の場合には隣接
反応室1,3から混入したB2H6ガスがi層用の
反応室2全体に均一に拡散する結果、i層中のB
原子の膜厚方向の濃度プロフアイルはフラツトに
なつている。一方、仕切板11を設置した実施例
の場合はp層とi層との界面におけるB原子の組
成プロフアイルは切れが急峻になつており、ま
た、i層中のプロフアイルは一体の勾配の傾斜を
もつていることがわかる。この結果は、仕切板1
1によつてi反応室2のプラズマ空間を区分する
ことにより、同一反応室内であつてもn層用の反
応室3寄りの部分からp層用の反応室1寄りの部
分に亘つてプラズマ雰囲気中の反応ガスの組成が
一定の空間分布を有することを示している。即ち
本発明より1つ反応室内の反応ガスに必要な空間
分布が実現できることを意味しており、本発明が
従来不可能であつて膜組成制御を可能とする優れ
た効果のあることを示している。
In the case of the conventional device without the partition plate 11, the B 2 H 6 gas mixed in from the adjacent reaction chambers 1 and 3 is uniformly diffused throughout the reaction chamber 2 for the i-layer, and as a result, the B in the i-layer is
The concentration profile of atoms in the film thickness direction is flat. On the other hand, in the case of the embodiment in which the partition plate 11 is installed, the composition profile of B atoms at the interface between the p layer and the i layer has a steep cut, and the profile in the i layer has a uniform gradient. It can be seen that it has a slope. This result is the partition plate 1
By dividing the plasma space of the i-reaction chamber 2 by 1, even within the same reaction chamber, the plasma atmosphere can be maintained from the part near the reaction chamber 3 for the n-layer to the part near the reaction chamber 1 for the p-layer. It shows that the composition of the reactant gas in the sample has a certain spatial distribution. In other words, this means that the present invention can realize the necessary spatial distribution of the reaction gas in the reaction chamber, and shows that the present invention has an excellent effect of enabling film composition control, which was previously impossible. There is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例の非晶質シリコン太陽電池の製
造装置の構成説明図、第2図は第1図A−A′線
での側断面図、第3図は実施結果を示すグラフで
ある。 1,2,3……反応室、11……仕切板、13
……緩衝室、14……隙間、17……基板。
FIG. 1 is an explanatory diagram of the configuration of an apparatus for manufacturing an amorphous silicon solar cell according to an example, FIG. 2 is a side sectional view taken along line A-A' in FIG. 1, and FIG. 3 is a graph showing the results of the implementation. . 1, 2, 3...Reaction chamber, 11...Partition plate, 13
...Buffer chamber, 14...Gap, 17...Substrate.

Claims (1)

【特許請求の範囲】 1 対向する放電電極間の化学的気相分解による
プラズマ雰囲気中を通して基板を搬送しつつ、該
基板上に薄膜を形成するようになしたプラズマ気
相成長装置において、反応ガスを遮断する仕切板
を基板搬送方向に所定間隔で放電電極面に垂直方
向に配設して、少なくともプラズマ雰囲気を基板
通路等の限られた隙間を除いて基板搬送方向にガ
ス拡散のない複数の区域に区画し、膜厚方向に所
定の組成分布を有する薄膜を形成することを特徴
とするプラズマ気相成長装置。 2 仕切板は前記隙間を除いて反応室の全断面を
遮断するように設けられている特許請求の範囲第
1項記載のプラズマ気相成長装置。 3 反応室の基板搬送方向の一端に反応ガスの排
気口が設けられ、その他端に反応ガスの導入口が
設けられている特許請求の範囲第1項若しくは第
2項記載のプラズマ気相成長装置。 4 前記基板が可撓性の長尺の基板であり、ロー
ル・ツー・ロール方式で搬送される特許請求の範
囲第1項〜第3項記載のいずれかのプラズマ気相
成長装置。 5 形成する薄膜が非晶質シリコン薄膜である特
許請求の範囲第1項〜第4項記載のいずれかのプ
ラズマ気相成長装置。
[Scope of Claims] 1. In a plasma vapor deposition apparatus that forms a thin film on a substrate while transporting the substrate through a plasma atmosphere generated by chemical vapor decomposition between opposing discharge electrodes, a reactive gas By disposing partition plates perpendicular to the discharge electrode surface at predetermined intervals in the substrate transport direction, at least the plasma atmosphere can be divided into multiple spaces in the substrate transport direction without gas diffusion, except for limited gaps such as substrate passages. A plasma vapor phase epitaxy apparatus characterized in that it forms a thin film divided into regions and having a predetermined composition distribution in the film thickness direction. 2. The plasma vapor phase growth apparatus according to claim 1, wherein the partition plate is provided to block the entire cross section of the reaction chamber except for the gap. 3. The plasma vapor deposition apparatus according to claim 1 or 2, wherein a reaction gas exhaust port is provided at one end of the reaction chamber in the substrate transport direction, and a reaction gas inlet port is provided at the other end. . 4. The plasma vapor deposition apparatus according to any one of claims 1 to 3, wherein the substrate is a flexible elongated substrate and is transported by a roll-to-roll method. 5. The plasma vapor phase epitaxy apparatus according to any one of claims 1 to 4, wherein the thin film to be formed is an amorphous silicon thin film.
JP62076384A 1987-03-18 1987-03-31 Plasma vapor growth device Granted JPS63244731A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP62076384A JPS63244731A (en) 1987-03-31 1987-03-31 Plasma vapor growth device
US07/166,689 US4920917A (en) 1987-03-18 1988-03-11 Reactor for depositing a layer on a moving substrate
DE3808974A DE3808974A1 (en) 1987-03-18 1988-03-17 ARRANGEMENT FOR DEPOSITING A MATERIAL LAYER ON A MOVING CARRIER
FR8803589A FR2613535B1 (en) 1987-03-18 1988-03-18 REACTOR FOR LAYING A LAYER ON A MOBILE SUBSTRATE FOR THE MANUFACTURE OF A SEMICONDUCTOR DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62076384A JPS63244731A (en) 1987-03-31 1987-03-31 Plasma vapor growth device

Publications (2)

Publication Number Publication Date
JPS63244731A JPS63244731A (en) 1988-10-12
JPH0587130B2 true JPH0587130B2 (en) 1993-12-15

Family

ID=13603840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62076384A Granted JPS63244731A (en) 1987-03-18 1987-03-31 Plasma vapor growth device

Country Status (1)

Country Link
JP (1) JPS63244731A (en)

Also Published As

Publication number Publication date
JPS63244731A (en) 1988-10-12

Similar Documents

Publication Publication Date Title
US4920917A (en) Reactor for depositing a layer on a moving substrate
US5968274A (en) Continuous forming method for functional deposited films and deposition apparatus
EP0041773B1 (en) Solar cell production
US4519339A (en) Continuous amorphous solar cell production system
KR100269929B1 (en) Method for manufacturing thin film, and deposition apparatus
JPS6243554B2 (en)
US4462333A (en) Process gas introduction, confinement and evacuation system for glow discharge deposition apparatus
IE830541L (en) Photovoltaic devices.
US4537795A (en) Method for introducing sweep gases into a glow discharge deposition apparatus
JPH0468390B2 (en)
WO2002058121A1 (en) Method and device for plasma cvd
US4520757A (en) Process gas introduction, confinement and evacuation system for glow discharge deposition apparatus
EP0119103A2 (en) Process gas introduction and channeling system
EP2256782B1 (en) Plasma deposition source and method for depositing thin films
US4742012A (en) Method of making graded junction containing amorphous semiconductor device
EP3811395B1 (en) Plasma source and method of operating the same
JPH0587130B2 (en)
JPS5972722A (en) Substrate shield for preventing irregular film from deposit-ing
US20060219170A1 (en) Pore cathode for the mass production of photovoltaic devices having increased conversion efficiency
US20040250763A1 (en) Fountain cathode for large area plasma deposition
JPH0719912B2 (en) Thin film semiconductor manufacturing equipment
JP2771363B2 (en) Continuous production equipment for functional deposited films
EP0106521B1 (en) Baffle system for glow discharge deposition apparatus
JPH0227775A (en) Manufacture of solar cell
JP3403039B2 (en) Apparatus and method for manufacturing thin film semiconductor by plasma CVD method

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees