JPH0587024A - Air intake device of engine - Google Patents

Air intake device of engine

Info

Publication number
JPH0587024A
JPH0587024A JP3247219A JP24721991A JPH0587024A JP H0587024 A JPH0587024 A JP H0587024A JP 3247219 A JP3247219 A JP 3247219A JP 24721991 A JP24721991 A JP 24721991A JP H0587024 A JPH0587024 A JP H0587024A
Authority
JP
Japan
Prior art keywords
intake
upstream
engine
curved portion
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3247219A
Other languages
Japanese (ja)
Other versions
JP3071260B2 (en
Inventor
Noriyuki Iwata
典之 岩田
Naoyuki Yamagata
直之 山形
Toshiharu Masuda
俊治 益田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP3247219A priority Critical patent/JP3071260B2/en
Priority to US07/949,226 priority patent/US5309886A/en
Priority to KR1019920017506A priority patent/KR950001329B1/en
Priority to DE4232456A priority patent/DE4232456C2/en
Publication of JPH0587024A publication Critical patent/JPH0587024A/en
Application granted granted Critical
Publication of JP3071260B2 publication Critical patent/JP3071260B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Lubrication Details And Ventilation Of Internal Combustion Engines (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

PURPOSE:To attempt compatibility between promotion of fuel carburetion/ atomization caused by fuel injection to high flow speed intake air, and improvement of filling efficiency caused by high level maintenance of average flow speed, and also achieve improvement of scavenging property or the like simultaneously, in the air intake device of a fuel injection type engine provided with an air intake passage having a curved part. CONSTITUTION:The air intake device of an engine is provided in such constitution that an injector 25 is arranged in an air intake passage 12 having a curved part 13, and also an appropriate quantity of additional gas G is supplied into the intake passage 12. The injection hole 26 of the injector 25 is opened to the curved part 13 of the intake passage 12, or to the immediately downstream position of the curved part 13, and also on the wall surface 13a on the outer circumference side of the curved part 13. On the other hand, the injection part 36 of aditional gas G is opened on the wall surface 13b on the inner circumference side of the curved part 13.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本願発明は、エンジンの吸気装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an engine intake device.

【0002】[0002]

【従来の技術】インジェクタ−を備えた燃料噴射式エン
ジンにおいては、燃料が吸気通路内に直接噴射供給され
ることからその気化・霧化性能の良否がエンジンの燃焼
性能延いては出力性能に多大な影響を及ぼす。従って、
従来より噴射燃料の気化・霧化促進のための思想が種々
提案されており、その一つに、インジェクタ−からの燃
料を吸気通路内でも最も吸気流速が速い部位に噴射して
吸気と燃料とのミキシングを促進させもってその気化・
霧化の向上を図るという思想がある。そして、このよう
な思想を具現化するための手段としては、例えば特開昭
62ー20624号公報に図面開示されるように、吸気
通路を湾曲状に形成するとともに、インジェクタ−の噴
孔を該湾曲部の外周側壁面上に開口させて該外周側壁面
寄りを流れる流速の速い吸気流中に燃料噴射を行うよう
にしたものが知られている。
2. Description of the Related Art In a fuel-injection engine equipped with an injector, fuel is directly injected and supplied into the intake passage, so that the vaporization / atomization performance of the engine greatly affects the combustion performance of the engine and the output performance. Affect. Therefore,
Conventionally, various ideas for promoting vaporization and atomization of injected fuel have been proposed. One of them is to inject the fuel from the injector to a portion of the intake passage where the intake flow velocity is the fastest and to obtain intake air and fuel. To promote the mixing of
There is an idea to improve atomization. As means for embodying such an idea, for example, as disclosed in Japanese Patent Laid-Open No. 20624/1987, the intake passage is formed in a curved shape, and the injection hole of the injector is formed. It is known that the curved portion is opened on the outer peripheral side wall surface so that fuel is injected into the intake air flow having a high flow velocity near the outer peripheral side wall surface.

【0003】尚、一般に湾曲通路内を流れる流体(例え
ば、吸気)の流速分布は図5に示すように、その外周寄
りに高流速域が偏るような分布状態となることが知られ
ているが、これは吸気流の慣性力に起因する二次流れの
影響によるものである。即ち、湾曲通路51内を流れる
吸気流Aはその慣性力により直線状に流れようとするた
め(換言すれば、湾曲通路51の外周壁51a側に向けて
流れようとするため)、該湾曲通路51をその断面方向
から見た場合、該湾曲通路51の中心軸を含む平面の両
側においてそれぞれ該平面に沿って内周壁51bから外
周壁51a側に流れたのち反転し、側周壁51c,51cに
沿って外周壁51a側から内周壁51b側に流れる二次流
れA′が生じる。このような二次流れが湾曲通路51内
に生じると、本来通路軸心に対して対称となるべき軸心
方向における流速分布が該二次流れによって変形せしめ
られ、結果的に図5に示すように外周壁51a寄りに高
流速域が偏ったような流速分布を呈することとなるもの
である。
Incidentally, it is generally known that the flow velocity distribution of the fluid (for example, intake air) flowing in the curved passage has a distribution state in which the high flow velocity region is biased toward the outer periphery thereof as shown in FIG. , This is due to the influence of the secondary flow due to the inertial force of the intake flow. That is, since the intake flow A flowing in the curved passage 51 tends to flow linearly due to its inertial force (in other words, it tends to flow toward the outer peripheral wall 51a side of the curved passage 51), the curved passage When 51 is viewed from the cross-sectional direction, it flows from the inner peripheral wall 51b to the outer peripheral wall 51a along the planes on both sides of the plane including the central axis of the curved passage 51, then reverses to form side peripheral walls 51c, 51c. A secondary flow A'flowing from the outer peripheral wall 51a side to the inner peripheral wall 51b side is generated along the line. When such a secondary flow occurs in the curved passage 51, the flow velocity distribution in the axial center direction which should be symmetrical with respect to the passage axial center is deformed by the secondary flow, and as a result, as shown in FIG. In addition, the flow velocity distribution is such that the high flow velocity region is biased toward the outer peripheral wall 51a.

【0004】[0004]

【発明が解決しようとする課題】ところで、このような
湾曲部をもつ吸気通路においては、上述のようにその外
周寄りに高流速域が偏るためこの部分に燃料を噴射すれ
ば該燃料のミキシングが促進され、その気化・霧化性能
が良好ならしめられる訳であるが、その一方でこの流速
分布の偏りによって吸気の充填効率が阻害されるという
問題がかねてより指摘されていた。即ち、上述のように
湾曲通路51内において高流速域が外周壁51a側に大
きく偏った場合には、吸気の最大流速は大きくなるもの
の、その平均流速は比較的小さくなる。このことは、該
湾曲通路51の有効断面積を十分に生かしきれていない
ということであり、この結果、湾曲通路51の有効断面
積の割りには吸気の充填効率が比較的低劣となるもので
ある。
By the way, in the intake passage having such a curved portion, as described above, the high flow velocity region is biased toward the outer periphery thereof, so that if the fuel is injected into this portion, the fuel is mixed. Although it is promoted and its vaporization / atomization performance is good, on the other hand, it has been pointed out for some time that the bias of the flow velocity distribution impedes the intake charging efficiency. That is, when the high flow velocity region in the curved passage 51 is largely deviated to the outer peripheral wall 51a side as described above, the maximum flow velocity of the intake air is increased, but the average flow velocity is relatively low. This means that the effective cross-sectional area of the curved passage 51 is not fully utilized, and as a result, the charging efficiency of the intake air becomes relatively low relative to the effective cross-sectional area of the curved passage 51. is there.

【0005】尚、吸気の平均流速を高めてその充填効率
の向上を図ろうとすれば吸気通路をできるだけ直線に近
いものとすれば良い訳であるが、このようにした場合
に、最大流速の低下によって燃料のミキシング性能が低
下するとともに、エンジン全高が増加しエンジンのコン
パクト性が阻害されるという問題があり、このため上記
の得失を比較考量して湾曲構造の吸気通路を採用してい
るのが現状である。従って、現状では湾曲した吸気通路
構造を採用する限り、充填効率の低下は不可避な事項で
あると考えられているが、エンジン性能をトータル的観
点から考察すれば、例え湾曲構造の吸気通路を備えたも
のと言えども充填効率の低下は到底看過し得ないもので
あり、その解決手段が待たれるところである。
In order to increase the average flow velocity of intake air and improve its charging efficiency, it is sufficient to make the intake passage as straight as possible. In such a case, however, the maximum flow velocity decreases. As a result, there is a problem that the mixing performance of fuel deteriorates and the overall height of the engine increases, which hinders the compactness of the engine.Therefore, the curved intake passage is adopted in consideration of the above advantages and disadvantages. The current situation. Therefore, under the present circumstances, it is considered that the reduction of the filling efficiency is an unavoidable matter as long as the curved intake passage structure is adopted, but when considering the engine performance from a total point of view, the intake passage having the curved structure is provided. However, the decrease in filling efficiency cannot be overlooked, and a solution to it is awaited.

【0006】そこで本願発明は、湾曲部をもつ吸気通路
を備えた燃料噴射式エンジンの吸気装置において、高流
速吸気への燃料噴射による燃料の気化・霧化促進と、平
均流速の高水準維持による充填効率の向上とを両立させ
るとともに、併せて掃気性能の向上等をも同時に達成せ
んとしてなされたものである。
In view of the above, the present invention is directed to promoting the vaporization and atomization of fuel by injecting fuel into high-velocity intake air and maintaining a high average velocity in an intake system for a fuel injection engine having an intake passage having a curved portion. It was achieved with the aim of achieving both improvement of filling efficiency and improvement of scavenging performance at the same time.

【0007】[0007]

【発明の技術的背景】本願発明者らは、かかる課題を解
決するための手段を研究する過程において、湾曲通路内
に吸気を流すという基本構成を採用する以上、二次流れ
の影響による流速分布の外周壁側への偏り現象は避けら
れないとの認識の下、湾曲通路に特有の流速分布の偏り
そのものを改善するための技術開発から視点を変えて、
流速分布の偏りによってもたらされる最大流速はこれを
ほとんど低下させることなく高水準に維持しつつ平均流
速を高めるための技術を開発することとした。そして、
ここで流速分布の偏りに起因する吸気動圧の偏り及び二
次流れの性状に着目した。
BACKGROUND OF THE INVENTION In the process of researching means for solving such a problem, the inventors of the present invention have adopted a basic structure in which intake air is flown in a curved passage. Recognizing that the biasing phenomenon toward the outer peripheral wall side is unavoidable, we changed the viewpoint from the technological development to improve the biased flow velocity distribution peculiar to curved passages.
It was decided to develop a technique to increase the average flow velocity while maintaining the maximum flow velocity caused by the deviation of the flow velocity distribution at a high level with almost no decrease. And
Here, we paid attention to the deviation of the intake dynamic pressure and the characteristics of the secondary flow due to the deviation of the flow velocity distribution.

【0008】即ち、図4の流速分布曲線L1に示すよう
に湾曲通路51内を流れる吸気は高流速域が外周壁51
a寄りに偏るような流速分布を呈するが、このことは吸
気動圧についてみれば、該湾曲通路51の外周壁51a
寄り部分は動圧が高く、内周壁51b寄り部分は動圧が
低いということに帰する。従って、このような動圧の低
い内周壁51b側に付加ガス噴出口52を形成し、ここ
からEGRガス等の吸気に対する付加ガスGを供給して
やれば、該付加ガスGは動圧が低い内周壁51bの近傍
位置へスムーズに吸引導入され、且つ導入された付加ガ
スGは湾曲通路51内を流れる吸気流によって下流側に
押し流されて、本来の吸気流速分布に付加される格好と
なり、図4に流速分布曲線L2で示すように本来の吸気
流速分布曲線の内周壁寄り部分に新たな高流速域を形成
することとなり、全体として流速分布曲線L2は外周壁
寄り部分と内周壁寄り部分の両方に高流速域をもつ“二
こぶラクダ"状曲線となる(流速分布曲線L2において、
破線矢印で示した部分が付加ガスにより付加された流速
である)。
That is, as shown by the flow velocity distribution curve L 1 in FIG. 4, the intake air flowing in the curved passage 51 has a high flow velocity region in the outer peripheral wall 51.
The flow velocity distribution is biased to the side of a, but this is because of the intake dynamic pressure, the outer peripheral wall 51a of the curved passage 51
It is attributed to the fact that the dynamic pressure is high in the side portion and the dynamic pressure is low in the inner peripheral wall 51b portion. Therefore, if the additional gas injection port 52 is formed on the side of the inner peripheral wall 51b having such a low dynamic pressure and the additional gas G for intake air such as EGR gas is supplied from this, the additional gas G has a low dynamic pressure. The additional gas G that is smoothly sucked and introduced into the vicinity of 51b is introduced to the downstream side by the intake flow flowing in the curved passage 51, and is added to the original intake flow velocity distribution. As shown by the flow velocity distribution curve L 2 , a new high flow velocity region is formed in the portion of the original intake flow velocity distribution curve closer to the inner peripheral wall, and the flow velocity distribution curve L 2 as a whole is divided into a portion closer to the outer peripheral wall and a portion closer to the inner peripheral wall. It becomes a "two-hump camel" -like curve having a high flow velocity region on both (in the flow velocity distribution curve L 2 ,
The part indicated by the broken line arrow is the flow velocity added by the additional gas).

【0009】このような“二こぶラクダ"状の流速分布
をもつ吸気と付加ガスとがさらに下流側に流れる場合、
湾曲通路51内に発生する二次流れによってこの付加ガ
スによって付加された流速部分が次第に内周壁51b側
から外周壁51a側に押し出されることで次第に流速分
布が平均化され、最終的に流速分布曲線L3で示すよう
に最大流速はほとんど低下しない状態で流速そのものが
平均化された略台形状の流速分布、即ち平均流速の高い
流速分布が得られるものである。
When the intake gas and the additional gas having such a "two-hump camel" -shaped flow velocity distribution flow further downstream,
The flow velocity portion added by the additional gas due to the secondary flow generated in the curved passage 51 is gradually pushed out from the inner peripheral wall 51b side to the outer peripheral wall 51a side, whereby the flow velocity distribution is gradually averaged and finally the flow velocity distribution curve. maximum flow rate as indicated by L 3 are those flow velocity distribution of the substantially trapezoidal velocity itself is averaged in a state where almost no decrease, i.e. high flow velocity distribution of the average flow velocity is obtained.

【0010】本願発明者らは、このような知見に基づ
き、湾曲通路の内周壁側に付加ガスを導入することで最
大流速と平均流速とをともに高水準に維持し、もって高
流速域への燃料噴射によるミキシング性能を向上と、高
い平均流速による吸気充填効率とを同時に達成するため
の技術思想に想到したものである。
Based on such knowledge, the inventors of the present invention maintain both the maximum flow velocity and the average flow velocity at a high level by introducing the additional gas to the inner peripheral wall side of the curved passage, and thus, to the high flow velocity region. The present invention is based on a technical idea for simultaneously improving the mixing performance by fuel injection and the intake charging efficiency by a high average flow velocity.

【0011】[0011]

【課題を解決するための手段】かかる背景技術に立脚
し、本願発明では上記課題を解決するための具体的手段
として、請求項1記載の発明では、湾曲部を有する吸気
通路にインジェクタ−を配置するとともに、該吸気通路
内に適宜の付加ガスを供給するようにしたエンジンの吸
気装置において、上記インジェクタ−の噴孔を上記吸気
通路の湾曲部あるいは該湾曲部の直下流位置のしかも該
湾曲部の外周側の壁面上に開口させる一方、上記付加ガ
スの噴出部を該湾曲部の内周側の壁面上に開口させたこ
とを特徴としている。
Based on such background art, as a concrete means for solving the above problems in the present invention, in the invention according to claim 1, an injector is arranged in an intake passage having a curved portion. In addition, in the intake device of the engine adapted to supply an appropriate additional gas into the intake passage, the injection hole of the injector is provided at the curved portion of the intake passage or at the curved portion immediately downstream of the curved portion. While being opened on the wall surface on the outer peripheral side of the above, the ejection portion of the additional gas is opened on the wall surface on the inner peripheral side of the curved portion.

【0012】請求項2記載の発明では、湾曲部を有する
吸気通路にインジェクタ−を配置するとともに、該イン
ジェクタ−より上流側にエンジンの運転状態に応じて上
記吸気通路を選択的に開閉する開閉弁を備えたエンジン
の吸気装置において、上記インジェクタ−の噴孔を上記
湾曲部の外周側の壁面上に開口させる一方、上記開閉弁
はこれをバタフライ弁で構成し且つその弁軸方向を上記
湾曲部の湾曲面方向に直交する方向に向けた状態で上記
湾曲部の上流端近傍に配置するとともに、その開弁時に
おいては上記湾曲部の外周側に位置する周縁部が内周側
に位置する周縁部よりも吸気下流側に位置するように開
弁作動方向を設定したことを特徴としている。
According to the second aspect of the present invention, the injector is arranged in the intake passage having the curved portion, and the on-off valve which selectively opens and closes the intake passage upstream of the injector according to the operating condition of the engine. In the intake system for an engine, the injection hole of the injector is opened on the wall surface on the outer peripheral side of the curved portion, while the on-off valve is a butterfly valve and the valve axis direction thereof is the curved portion. Is arranged in the vicinity of the upstream end of the bending portion in a direction orthogonal to the bending surface direction, and when the valve is opened, the peripheral portion located on the outer peripheral side of the bending portion is located on the inner peripheral side. It is characterized in that the valve opening operation direction is set so as to be located on the intake downstream side of the section.

【0013】請求項3記載の発明では、吸気通路にイン
ジェクタ−を配置するとともに、該吸気通路内に適宜の
付加ガスを供給するようにしたエンジンの吸気装置にお
いて、上記吸気通路を、その上流側に位置してエンジン
の上方から側方にかけて回り込むように湾曲する上流側
湾曲部と、該上流側湾曲部の下流端に連続して斜め下方
へ直線状に延びる直線部と、該直線部の下流端に連続し
且つ上記上流側湾曲部とは反対方向に湾曲して吸気ポ−
トに連通する下流側湾曲部とで構成する一方、上記イン
ジェクタ−の噴孔を、上記直線部の軸心延長上に開口さ
せるとともに、上記付加ガスの噴出部を上記上流側湾曲
部の内周側壁面上に開口させたことを特徴としている。
According to a third aspect of the present invention, in an engine intake device in which an injector is arranged in the intake passage and an appropriate additional gas is supplied into the intake passage, the intake passage has the upstream side thereof. Located at the upstream side of the engine and curved to wrap around from the upper side to the side of the engine, a straight line portion that linearly extends obliquely downward continuously to the downstream end of the upstream side bend portion, and a downstream side of the straight line portion. The intake port is continuous with the end and bends in the direction opposite to the upstream bending portion.
And a downstream side curved portion communicating with the upstream side curved portion, the injection hole of the injector is opened on an axial extension of the straight line portion, and the additional gas jetting portion is formed on the inner circumference of the upstream side curved portion. The feature is that it is opened on the side wall surface.

【0014】請求項4記載の発明では、吸気通路にイン
ジェクタ−を配置するとともに、該吸気通路内に適宜の
付加ガスを供給するようにしたエンジンの吸気装置にお
いて、上記吸気通路を、その上流側に位置してエンジン
の上方から側方にかけて回り込むように湾曲する上流側
湾曲部と、該上流側湾曲部の下流端に連続して直線状に
延びる直線部と、該直線部の下流端に連続し且つ上記上
流側湾曲部とは反対方向に湾曲して吸気ポ−トに連通す
る下流側湾曲部とで構成し、さらに上記インジェクタ−
の噴孔を、上記上流側湾曲部あるいは直線部のしかも上
記上流側湾曲部の外周側に対応する壁面上に開口させる
一方、上記付加ガスの噴出部を上記上流側湾曲部の内周
側に対応する壁面上に開口させたことを特徴としてい
る。
According to a fourth aspect of the present invention, in an engine intake device in which an injector is arranged in the intake passage and an appropriate additional gas is supplied into the intake passage, the intake passage has the upstream side thereof. Located at the upstream side of the engine and curved so as to wrap around from the upper side to the side of the engine, a straight line portion that linearly extends continuously to the downstream end of the upstream side bend portion, and a continuous portion to the downstream end of the straight line portion. And a downstream side curved portion which is curved in a direction opposite to the upstream side curved portion and communicates with the intake port, and further, the injector.
Of the additional gas is opened on the inner peripheral side of the upstream curved portion while the injection hole of the additional gas is opened on the wall surface of the upstream curved portion or the straight portion and corresponding to the outer peripheral side of the upstream curved portion. It is characterized by opening on the corresponding wall surface.

【0015】請求項5記載の発明では、湾曲部を有する
吸気通路にインジェクタ−を配置するとともに、該吸気
通路内に適宜の付加ガスを供給し得る如くし、さらに上
記該インジェクタ−より上流側にはエンジンの運転状態
に応じて上記吸気通路を選択的に開閉する開閉弁を配置
したエンジンの吸気装置において、上記インジェクタ−
の噴孔を上記吸気通路の湾曲部あるいは該湾曲部の直下
流位置のしかも該湾曲部の外周側の壁面上に開口させ、
また上記付加ガスの噴出部を該湾曲部の内周側の壁面上
に開口させる一方、上記開閉弁はこれをバタフライ弁で
構成し且つその弁軸方向を上記湾曲部の湾曲面方向に直
交する方向に向けた状態で上記湾曲部の上流端近傍に配
置設定するとともに、その開弁時においては上記湾曲部
の外周側に位置する周縁部が内周側に位置する周縁部よ
りも吸気下流側に位置するように開弁作動方向を設定し
たことを特徴としている。
According to the fifth aspect of the present invention, the injector is arranged in the intake passage having the curved portion, and an appropriate additional gas can be supplied into the intake passage, and further upstream of the injector. Is an engine intake device in which an opening / closing valve for selectively opening and closing the intake passage is arranged according to the operating state of the engine.
To open the injection hole on the curved portion of the intake passage or on the wall surface on the outer peripheral side of the curved portion immediately downstream of the curved portion,
Further, while the injection portion of the additional gas is opened on the wall surface on the inner peripheral side of the bending portion, the on-off valve is constituted by a butterfly valve and its valve axis direction is orthogonal to the bending surface direction of the bending portion. And is set in the vicinity of the upstream end of the curved portion in a state of being directed toward the direction, and when the valve is opened, the peripheral portion located on the outer peripheral side of the curved portion is on the intake downstream side of the peripheral portion located on the inner peripheral side. It is characterized in that the valve opening operation direction is set so as to be located at.

【0016】請求項6記載の発明では、吸気通路にイン
ジェクタ−を配置するとともに、該吸気通路内に適宜の
付加ガスを供給し得る如くし、さらにインジェクタ−よ
り上流側にエンジンの運転状態に応じて上記吸気通路を
選択的に開閉する開閉弁を備えたエンジンの吸気装置に
おいて、上記吸気通路を、その上流側に位置してエンジ
ンの上方から側方にかけて回り込むように湾曲する上流
側湾曲部と、該上流側湾曲部の下流端に連続して直線状
に延びる直線部と、該直線部の下流端に連続し且つ上記
上流側湾曲部とは反対方向に湾曲して吸気ポ−トに連通
する下流側湾曲部とで構成する一方、上記インジェクタ
−の噴孔を、上記直線部の軸心延長上に開口させるとと
もに、上記付加ガスの噴出部を上記上流側湾曲部の内周
側壁面上に開口させ、さらに上記開閉弁はこれをバタフ
ライ弁で構成し且つその弁軸方向を上記湾曲部の湾曲面
方向に直交する方向に向けた状態で上記湾曲部の上流端
近傍に配置設定するとともに、その開弁時においては上
記湾曲部の外周側に位置する周縁部が内周側に位置する
周縁部よりも吸気下流側に位置するように開弁作動方向
を設定したことを特徴としている。
According to the sixth aspect of the present invention, an injector is arranged in the intake passage so that an appropriate additional gas can be supplied into the intake passage, and further upstream of the injector depending on the operating condition of the engine. In an intake device for an engine having an opening / closing valve that selectively opens and closes the intake passage, an upstream bending portion that is located on the upstream side of the intake passage and bends so as to wrap around from the upper side to the side of the engine. A straight line portion continuously extending in a straight line at the downstream end of the upstream side curved portion and a straight line portion continuous with the downstream end of the straight line portion and curved in a direction opposite to the upstream side curved portion to communicate with the intake port. On the other hand, the injection hole of the injector is opened along the axial extension of the straight portion, and the injection portion of the additional gas is formed on the inner peripheral side wall surface of the upstream bending portion. Open to Further, the on-off valve is configured as a butterfly valve, and is arranged and set in the vicinity of the upstream end of the bending portion with the valve axis direction thereof being oriented in a direction orthogonal to the bending surface direction of the bending portion, and the opening and closing thereof is performed. It is characterized in that the valve opening direction is set so that the peripheral edge portion located on the outer peripheral side of the curved portion is located on the intake downstream side with respect to the peripheral edge portion located on the inner peripheral side during valve operation.

【0017】請求項7記載の発明では、請求項1,3.
4,5または6記載のエンジンの吸気装置において、上
記インジェクタ−の噴孔近傍にアシストエア通路を介し
てアシストエアを供給し得る如くするとともに、上記付
加ガスを供給する付加ガス通路を上記アシストエア通路
に近接して並設し、さらに該アシストエア通路と付加ガ
ス通路とを各気筒の吸気通路相互間に跨がるようにして
形成したことを特徴としている。
According to the invention described in claim 7, claims 1, 3.
In the intake system for an engine according to 4, 5 or 6, assist air can be supplied to the vicinity of the injection hole of the injector through an assist air passage, and the additional gas passage for supplying the additional gas is provided in the assist air passage. It is characterized in that they are arranged side by side in close proximity to the passages, and that the assist air passage and the additional gas passage are formed so as to straddle between the intake passages of each cylinder.

【0018】[0018]

【作用】本願各発明ではかかる構成とすることによって
それぞれ次のような作用が得られる。
With each of the inventions of the present application, the following effects can be obtained by adopting such a configuration.

【0019】 請求項1記載の発明では、エンジンの
運転に伴って吸気通路内を流れる吸気流は、該吸気通路
が湾曲部を有していることから、該湾曲部においては吸
気の慣性力による二次流れの影響を受けてその流速分布
は該湾曲部の外周側の壁面寄り部分に高流速域が偏った
流速分布を呈する。従って、このような高流速域にイン
ジェクタ−から燃料噴射が行なわれることにより、該吸
気と燃料とのミキシングが良好となり、該燃料の気化・
霧化が促進されるものである。また、このように燃料を
高流速域に噴射すると、該燃料は高流速の吸気流に乗っ
てその下流側にスムーズに運ばれることから、燃料が通
路壁面に付着するということも少なくなり、それだけ燃
料供給に対するエンジン出力の応答性が良好ならしめら
れることにもなる。
According to the first aspect of the present invention, the intake flow flowing through the intake passage due to the operation of the engine is caused by the inertial force of intake air at the curved portion because the intake passage has the curved portion. Due to the influence of the secondary flow, the flow velocity distribution exhibits a flow velocity distribution in which the high flow velocity region is biased toward the wall surface portion on the outer peripheral side of the curved portion. Therefore, by injecting the fuel from the injector in such a high flow velocity region, the mixing between the intake air and the fuel becomes good, and the vaporization and
Atomization is promoted. Further, when the fuel is injected into the high flow velocity region in this manner, the fuel is carried on the high-velocity intake air flow and is smoothly carried to the downstream side, so that the fuel is less likely to adhere to the passage wall surface. If the responsiveness of the engine output to the fuel supply is good, it is possible.

【0020】一方、湾曲部の内周側は比較的低流速であ
ることからその動圧が低くなっており、この動圧の低い
部位に設けた噴出部から付加ガスを供給することによ
り、該付加ガスは湾曲部内を流れる吸気流によってスム
ーズに吸引導入されるとともに、該吸気流に押し流され
た状態で該吸気流に付加され、該内周側の流速が高めら
れることとなる。そして、この内周側に導入され且つ吸
気流に付加された付加ガスが湾曲部内に発生する二次流
れによって外周側に押し出されることにより、該湾曲部
内における流速分布が平均化され、これにより該吸気通
路内における平均流速が高められることとなる。
On the other hand, since the inner peripheral side of the curved portion has a relatively low flow velocity, the dynamic pressure thereof is low, and by supplying the additional gas from the ejection portion provided at the portion where the dynamic pressure is low, The additional gas is smoothly sucked and introduced by the intake air flow flowing in the curved portion, and is added to the intake air flow while being pushed by the intake air flow, so that the flow velocity on the inner peripheral side is increased. Then, the additional gas introduced to the inner peripheral side and added to the intake air flow is extruded to the outer peripheral side by the secondary flow generated in the curved portion, so that the flow velocity distribution in the curved portion is averaged, thereby The average flow velocity in the intake passage is increased.

【0021】このように、吸気通路内における平均流速
が高められると(換言すれば、流速分布が変化せしめら
れると)、この影響がこれより上流側部分まで及んで該
上流側部分における平均流速も高められることとなる。
このような平均流速の向上により、吸気通路のより広い
範囲内において効率良く吸気導入が行なわれることとな
り(換言すれば、吸気通路の有効断面積の利用効率が向
上することから)、それだけ吸気の充填効率が高められ
るものである。
As described above, when the average flow velocity in the intake passage is increased (in other words, the flow velocity distribution is changed), this influence extends to the upstream side portion and the average flow velocity in the upstream side portion is also increased. It will be raised.
Due to such an improvement in the average flow velocity, the intake air is efficiently introduced in a wider range of the intake passage (in other words, the utilization efficiency of the effective sectional area of the intake passage is improved), and the intake air The filling efficiency can be improved.

【0022】さらに、付加ガスは湾曲部の内周寄りに導
入されることから、該湾曲部を断面方向からみた場合、
上述のように二次流れによる付加ガスの移動作用はある
ものの、その内周側においては付加ガス密度が高く、外
周側においてはこれが低くなっている。このため、付加
ガスが、例えばEGRガスあるいはブローバイガス等の
ように吸気温度よりも高温のガスである場合には、湾曲
部内における吸気と付加ガスとの混合気の温度分布は、
その内周側が高く、外周側は低くなる。従って、元々イ
ンジェクタ−からの噴射燃料は上述のように該インジェ
クタ−の配置構造からして湾曲部の内周壁面には付着し
にくくなっているものの、その一部はやはり内周壁面に
到達することも考えられるが、この場合、例え燃料が内
周壁面側に到達したとしてもこの部分における混合気温
度が比較的高く、且つ該内周壁面そのものも付加ガスに
よって暖められてその壁温が高くなっていることから、
燃料はここで素早く気化せしめられ、該内周壁面に付着
残留するというようなことはほとんどなくなるものであ
る。
Further, since the additional gas is introduced near the inner circumference of the curved portion, when the curved portion is viewed from the cross-sectional direction,
As described above, although there is the action of moving the additional gas by the secondary flow, the density of the additional gas is high on the inner peripheral side and low on the outer peripheral side. Therefore, when the additional gas is a gas having a temperature higher than the intake temperature such as EGR gas or blow-by gas, the temperature distribution of the mixture of the intake gas and the additional gas in the curved portion is
The inner circumference is high and the outer circumference is low. Therefore, although the fuel injected from the injector is originally hard to adhere to the inner peripheral wall surface of the curved portion due to the arrangement structure of the injector as described above, a part thereof still reaches the inner peripheral wall surface. However, in this case, even if the fuel reaches the inner peripheral wall surface side, the temperature of the air-fuel mixture in this part is relatively high, and the inner peripheral wall surface itself is warmed by the additional gas, so that the wall temperature is high. From that,
The fuel is quickly vaporized here, and it is almost impossible to adhere and remain on the inner peripheral wall surface.

【0023】 請求項2記載の発明では、湾曲部の外
周側にインジェクタ−の噴孔が開口されていることか
ら、該インジェクタ−からの燃料は該湾曲部内の最大流
速域に噴射されることとなり、この結果、該燃料と吸気
とのミキシングが良好ならしめられて該燃料の気化・霧
化が促進されるとともに、燃料の内周壁面への付着も可
及的に抑制される。この場合、バタフライ弁で構成され
る開閉弁が、その開弁時には湾曲部外周寄りの周縁部が
吸気下流側に位置するようにしてその開弁方向が設定さ
れていることから、該開閉弁より上流側の吸気は該開閉
弁部分を通過する時に該開閉弁によって案内されて湾曲
部外周側に偏って流れることとなる。このため、この開
閉弁による偏流作用が、二次流れに起因する流速分布の
偏りをさらに増長する結果となり、湾曲部内の吸気流の
最大流速がさらに高められ、インジェクタ−の噴孔を湾
曲部の外周寄りに配置したことによる燃料と吸気のミキ
シング作用がさらに促進されるものである。
According to the second aspect of the present invention, since the injection hole of the injector is opened on the outer peripheral side of the curved portion, the fuel from the injector is injected into the maximum flow velocity region in the curved portion. As a result, the mixing of the fuel and the intake air is made good, the vaporization and atomization of the fuel are promoted, and the adhesion of the fuel to the inner peripheral wall surface is suppressed as much as possible. In this case, since the opening / closing valve configured by the butterfly valve has its opening direction set such that the peripheral portion near the outer periphery of the curved portion is located on the intake downstream side when the opening / closing valve is opened, When the intake air on the upstream side passes through the opening / closing valve portion, it is guided by the opening / closing valve and is biased toward the outer peripheral side of the curved portion. For this reason, the biased flow action of the on-off valve further increases the bias of the flow velocity distribution due to the secondary flow, the maximum flow velocity of the intake air flow in the bending portion is further increased, and the injection hole of the injector is changed to the bending portion. By arranging it near the outer periphery, the mixing action of fuel and intake air is further promoted.

【0024】さらに、上記開閉弁がバタフライ弁で構成
されていることから、例えこの開閉弁を全閉とした状態
においても該開閉弁の外周縁と通路壁との間の微少隙間
を通って吸気が該開閉弁の下流側に漏れることとなる。
また、この開閉弁が湾曲部の上流端近傍に配置されてい
ることから、例えばこの開閉弁を従来一般のように湾曲
部の下流端近傍に配置する場合に比して、該開閉弁から
吸気ポ−ト間での距離が長くなり、それだけ該開閉弁か
ら吸気ポ−トまでの間におけるボリュームが増加するこ
ととなる。従って、開閉弁から漏れて該開閉弁と吸気弁
との間のボリューム内に溜る吸気量は、従来構造に比し
てより多量となり、この結果、排気工程の最終期におい
て吸気弁と排気弁との開弁がオーバラップした場合、該
ボリューム内に溜っていた多量の吸気が燃焼室側に流入
して上記排気弁近傍を掃気しながら排気ポ−トから排出
されることとなり、該ボリューム内の残留吸気量が多い
分だけ掃気作用が促進されるものである。
Further, since the on-off valve is a butterfly valve, even if the on-off valve is fully closed, the intake air passes through a minute gap between the outer peripheral edge of the on-off valve and the passage wall. Will leak to the downstream side of the on-off valve.
Further, since this on-off valve is arranged near the upstream end of the bending portion, compared with the case where this on-off valve is arranged near the downstream end of the bending portion as in the conventional case, the intake air from the on-off valve is increased. The distance between the ports becomes longer, and the volume between the on-off valve and the intake port increases accordingly. Therefore, the amount of intake air that leaks from the on-off valve and accumulates in the volume between the on-off valve and the intake valve becomes larger than that of the conventional structure, and as a result, the intake valve and the exhaust valve are exhausted in the final stage of the exhaust process. If the valve opening of the valve overlaps, a large amount of intake air that has accumulated in the volume will flow into the combustion chamber side and will be discharged from the exhaust port while scavenging the vicinity of the exhaust valve. The scavenging action is promoted only by the large amount of residual intake air.

【0025】 請求項3記載の発明では、吸気通路
を、上流側湾曲部と直線部と下流側湾曲部とで構成し、
該上流側湾曲部の外周寄り部分にインジェクタ−の噴孔
を配置するとともに、その内周寄り部分に付加ガスの噴
出部を開口させたものであることから、該上流側湾曲部
部分における吸気流に関しては、上記に記載したと同
様の作用が得られることは勿論であるが、これに加えて
さらに次のような作用も得られる。即ち、上記直線部は
上流側湾曲部の下流端に連続して斜め下方へ直線状に延
び、また下流側湾曲部はこの直線部の下流端に連続して
上記上流側湾曲部とは反対方向へ湾曲(換言すれば、燃
焼室の軸心方向へ向かうように湾曲)していることか
ら、上記上流側湾曲部から直線部を経て下流側湾曲部か
ら燃焼室内に導入される混合気流は、該燃焼室内におい
て上下方向に旋回するタンブル流を発生することとな
る。
In the invention according to claim 3, the intake passage is composed of the upstream side curved portion, the straight line portion, and the downstream side curved portion,
Since the injection hole of the injector is arranged at the outer peripheral portion of the upstream curved portion and the additional gas ejection portion is opened at the inner peripheral portion thereof, the intake flow in the upstream curved portion is increased. Regarding the above, it goes without saying that the same action as described above can be obtained, but in addition to this, the following action can also be obtained. That is, the straight line portion is continuous with the downstream end of the upstream side bend portion and linearly extends obliquely downward, and the downstream side bendable portion is continuous with the downstream end of the straight line portion in a direction opposite to the upstream side bend portion. Since it is curved to (in other words, curved so as to be directed in the axial direction of the combustion chamber), the mixed air flow introduced into the combustion chamber from the downstream bending portion via the straight portion from the upstream bending portion, A tumble flow that swirls in the vertical direction is generated in the combustion chamber.

【0026】この場合、上記上流側湾曲部と下流側湾曲
部の湾曲方向が逆であることから、該上流側湾曲部部分
おいてはその内周側に位置していた付加ガスは下流側湾
曲部部分においてはその外周側に位置することとなる。
従って、この付加ガスは、上記直線部から燃焼室に導入
される場合に吸気流の外周側に位置し且つその状態のま
ま該燃焼室内に導入されてタンブル流となることから、
該燃焼室内においては、該付加ガス層は燃焼室壁面ある
いはピストン頂面という比較的温度の低い部分に偏って
存在し、吸気は比較的濃厚状態の混合気として該付加ガ
ス層の内側(即ち、燃焼室の中心側)に偏って存在するこ
ととなる。
In this case, since the bending directions of the upstream bending portion and the downstream bending portion are opposite to each other, the additional gas located on the inner peripheral side of the upstream bending portion bends in the downstream bending portion. The part is located on the outer peripheral side.
Therefore, when the additional gas is introduced into the combustion chamber from the straight line portion, it is located on the outer peripheral side of the intake flow and is introduced into the combustion chamber in that state to form a tumble flow,
In the combustion chamber, the additional gas layer is unevenly distributed in a relatively low temperature portion such as the combustion chamber wall surface or the piston top surface, and the intake air is a relatively rich mixture inside the additional gas layer (that is, It will be biased toward the center of the combustion chamber).

【0027】この結果、燃焼室内における層状化が促進
され、希薄燃焼が実現されるとともに、特に付加ガスと
してEGRガスあるいはブローバイガス等の難燃ガスを
用いた場合には、温度が低く未燃成分の発生箇所となり
易い部分が難燃ガスによって覆われてこの部分への混合
気の進入が抑制されることから、未燃成分の発生そのも
のが可及的に抑制され、それだけ排気エミッションが良
好ならしめられることになる。
As a result, stratification in the combustion chamber is promoted, lean combustion is realized, and especially when a flame-retardant gas such as EGR gas or blow-by gas is used as the additional gas, the temperature is low and the unburned components are unburned. Since the part that is likely to be the place where is generated is covered by the flame-retardant gas and the intrusion of the air-fuel mixture into this part is suppressed, the generation of unburned component itself is suppressed as much as possible, and the exhaust emission is good. Will be

【0028】 請求項4記載の発明は、吸気通路を上
流側湾曲部と直線部と下流側湾曲部とで構成する一方、
インジェクタ−の噴孔を上流側湾曲部の外周側に開口さ
せるとともに、付加ガスの噴出部を該上流側湾曲部の内
周側に開口させたものであって、請求項1記載の発明と
請求項3記載の発明とを組み合わせた構成となってお
り、従って上記記載の作用と上記記載の作用とを同
時に達成することができるものである。
According to a fourth aspect of the present invention, the intake passage is composed of an upstream curved portion, a straight portion, and a downstream curved portion,
2. The invention according to claim 1, wherein the injection hole of the injector is opened on the outer peripheral side of the upstream curved portion, and the injection portion of the additional gas is opened on the inner peripheral side of the upstream curved portion. It has a configuration in which the invention described in Item 3 is combined, and therefore, the above-described operation and the above-described operation can be achieved at the same time.

【0029】 請求項5記載の発明は、吸気通路の湾
曲部の外周側にインジェクタ−の噴孔を、内周側に付加
ガスの噴出部をそれぞれ開口させるとともに、該湾曲部
の上流端近傍に開閉弁を配置したものであって、請求項
1記載の発明と請求項2記載の発明とを組み合わせた構
成となっており、従って上記記載作用と上記記載の
作用とを同時に達成することができるものである。
According to the fifth aspect of the present invention, the injection hole of the injector is opened on the outer peripheral side of the curved portion of the intake passage, and the injection portion of the additional gas is opened on the inner peripheral side thereof. An on-off valve is arranged, which has a configuration in which the invention described in claim 1 and the invention described in claim 2 are combined, so that the above-described operation and the above-described operation can be achieved at the same time. It is a thing.

【0030】 請求項6記載の発明は、吸気通路を上
流側湾曲部と直線部と下流側湾曲部で構成するととも
に、該上流側湾曲部の外周側にインジェクタ−の噴孔
を、内周側に付加ガスの噴出部をそれぞれ開口させ、さ
らに上記上流側湾曲部の上流端近傍に開閉弁を配置した
ものであって、請求項2記載の発明と請求項3記載の発
明とを組み合わせた構成となっており、従って上記記
載の作用と上記記載の作用とを同時に達成することが
できるものである。
According to a sixth aspect of the present invention, the intake passage is composed of the upstream curved portion, the straight portion, and the downstream curved portion, and the injector injection hole is formed on the outer peripheral side of the upstream curved portion. And a switching valve disposed near the upstream end of the upstream curved portion, the combination of the invention according to claim 2 and the invention according to claim 3. Therefore, it is possible to achieve the above-mentioned action and the above-mentioned action at the same time.

【0031】 請求項7記載の発明は、請求項1,3,
4,5または6記載の発明において、付加ガスを供給す
る付加ガス通路の他に、アシストエアを供給するアシス
トエア通路を設けるとともに、これら各通路を各気筒の
吸気通路間に跨がるようにして形成したものであるとこ
ろから、上記,,,または記載の作用が得られ
ることは勿論であるが、それに加えて、該付加ガス通路
とアシストエア通路とで各吸気通路間が一体的に連結さ
れることからこれらの剛性が高められるものである。
The invention according to claim 7 is the invention according to claim 1, 3,
In the invention described in 4, 5, or 6, in addition to an additional gas passage for supplying an additional gas, an assist air passage for supplying assist air is provided, and each of these passages is arranged so as to straddle the intake passage of each cylinder. It is needless to say that the above-mentioned ,,, or the above-mentioned effects can be obtained from the fact that it is formed by the above-mentioned structure, but in addition to that, the intake passages are integrally connected by the additional gas passage and the assist air passage. Therefore, the rigidity of these is increased.

【0032】[0032]

【発明の効果】従って、本願各発明のエンジンの吸気装
置によればそれぞれ次のような効果が得られる。
Therefore, according to the engine intake system of each invention of the present application, the following effects are obtained.

【0033】(a) 請求項1記載のエンジンの吸気装置に
よれば、吸気通路の湾曲部の外周側にインジェクタ−の
噴孔を開口させて燃料を最大流速域に向けて噴射供給す
ることで燃料と吸気のミキシングを良好ならしめて燃料
の気化・霧化をより一層促進させることができるとも
に、燃料の内周壁面への付着を防止して燃料供給に対す
るエンジン出力の応答性を向上させることができるもの
である。
(A) According to the engine intake device of the first aspect, the injection hole of the injector is opened on the outer peripheral side of the curved portion of the intake passage to inject and supply the fuel toward the maximum flow velocity range. The mixing of fuel and intake air can be improved to further promote the vaporization and atomization of the fuel, and the adhesion of the fuel to the inner wall surface can be prevented to improve the responsiveness of the engine output to the fuel supply. It is possible.

【0034】さらに、湾曲部の内周側への付加ガスの導
入によって吸気通路内の平均流速を高めているため、そ
れだけ該吸気通路の有効断面積の利用効率が向上し、結
果的に充填効率の向上が図れるものである。即ち、湾曲
構造の吸気通路を備えたものでありながら、最大流速を
高く維持することによる燃料の気化・霧化の促進と、平
均流速を高く維持することによる充填効率の向上とを同
時に達成することができるものである。
Furthermore, since the average flow velocity in the intake passage is increased by introducing the additional gas to the inner peripheral side of the curved portion, the utilization efficiency of the effective cross-sectional area of the intake passage is improved accordingly, resulting in the filling efficiency. Can be improved. That is, although the intake passage having a curved structure is provided, promotion of vaporization and atomization of fuel by maintaining a high maximum flow velocity and improvement of filling efficiency by maintaining a high average flow velocity are achieved at the same time. Is something that can be done.

【0035】(b) 請求項2記載のエンジンの吸気装置に
よれば、湾曲部の上流端近傍に配置した開閉弁による吸
気の偏流作用によって、湾曲部をもつ吸気通路に特有の
吸気の流速分布の偏りをさらに増長させて最大流速をよ
り一層高めることから、燃料の気化・霧化が上記(a)記
載の場合よりもさらに向上せしめられるものである。
(B) According to the engine intake device of the second aspect, the flow velocity distribution of the intake air peculiar to the intake passage having the curved portion is caused by the uneven flow of the intake air by the opening / closing valve arranged near the upstream end of the curved portion. By further increasing the bias of (1) and further increasing the maximum flow velocity, the vaporization and atomization of fuel can be further improved as compared with the case described in (a) above.

【0036】さらに、上記開閉弁を湾曲部の上流端近傍
に配置して該開閉弁と吸気ポ−トとの間におけるボリュ
ームを増加させるとともに、このボリューム内に開閉弁
の周縁から漏れる吸気をより多量に溜め、吸気弁と排気
弁の開弁時期のオーバラップ時により多量の吸気によっ
て排気ポ−ト周辺を掃気するようにしていることから、
その掃気性能が高く、それだけ吸気充填量の増加が図れ
るものである。
Further, the on-off valve is arranged near the upstream end of the bending portion to increase the volume between the on-off valve and the intake port, and to prevent the intake air leaking from the periphery of the on-off valve into this volume. Since a large amount of air is stored and the intake port and the exhaust valve overlap when the opening timings of the intake valve and the exhaust valve overlap, the surroundings of the exhaust port are scavenged by a large amount of intake air.
The scavenging performance is high, and the intake charge amount can be increased accordingly.

【0037】(c) 請求項3記載のエンジンの吸気装置に
よれば、上記(a)記載の効果が得られる他に、吸気通路
を上流側湾曲部と直線部と下流側湾曲部とで構成して燃
焼室内にタンブル流を発生させるとともに、このタンブ
ル流の外周側に付加ガスを、内周側に混合気をそれぞれ
層状に存在させて混合気の層状化を図っていることか
ら、希薄燃焼が可能となり、それだけ燃費性能の向上が
図れるものである。
(C) According to the engine intake device of the third aspect, in addition to the effect of the above (a), the intake passage is composed of the upstream curved portion, the straight portion, and the downstream curved portion. As a result, a tumble flow is generated in the combustion chamber, and an additional gas is present on the outer peripheral side of this tumble flow and a mixture is present in layers on the inner peripheral side to stratify the mixture. It is possible to improve fuel efficiency.

【0038】また、付加ガスを比較的温度の低い燃焼室
の外周部、即ち未燃成分の発生箇所に存在させることで
該部分への混合気の進入そのものを阻止していることか
ら、未燃成分の発生が可及的に少ならしめられ、それだ
けエンジンの排気エミッションの改善が図れるという効
果もある。
Further, since the additional gas is allowed to exist at the outer peripheral portion of the combustion chamber having a relatively low temperature, that is, at the place where the unburned component is generated, the mixture itself is prevented from entering the portion. It also has the effect of reducing the amount of components produced as much as possible and improving the exhaust emission of the engine.

【0039】(d) 請求項4記載のエンジンの吸気装置に
よれば、上記(a)及び(c)に記載したと同様の効果が同時
に達成されるものである。
(D) According to the engine intake device of the fourth aspect, the same effects as those described in the above (a) and (c) can be achieved at the same time.

【0040】(e) 請求項5記載のエンジンの吸気装置に
よれば、上記(a)及び(b)記載の効果が同時に達成される
ものである。
(E) According to the engine intake device of the fifth aspect, the effects described in (a) and (b) above can be achieved at the same time.

【0041】(f) 請求項6記載のエンジンの吸気装置に
よれば、上記(b)及び(c)記載の効果が同時に達成される
ものである。
(F) According to the engine intake device of the sixth aspect, the effects of the above (b) and (c) can be achieved at the same time.

【0042】(g) 請求項7記載のエンジンの吸気装置に
よれば、上記(a),(c),(d),(e)または(f)記載の効果に加
えて、各気筒に対応する各吸気通路を付加ガス通路とア
シストエア通路とによって一体的に連結していることか
ら、これら各吸気通路相互間の剛性が向上し、延いては
エンジン全体としての剛性を高めて、例えばエンジン振
動に基づく騒音発生を低減できるという効果が得られる
ものである。
(G) According to the engine intake device of claim 7, in addition to the effect described in (a), (c), (d), (e) or (f), it corresponds to each cylinder. Since the respective intake passages are integrally connected by the additional gas passage and the assist air passage, the rigidity between the respective intake passages is improved, and by extension, the rigidity of the engine as a whole is increased. It is possible to obtain an effect that noise generation due to vibration can be reduced.

【0043】[0043]

【実施例】以下、添付図面に示す実施例に基づいて本願
発明のエンジンの吸気装置を具体的に説明すると図1及
び図2には本願発明の実施例にかかる吸気を備えた自動
車用6気筒V型エンジンの一方のバンク部分が示されて
おり、同図において符号1はシリンダブロック、2はシ
リンダヘッド、3および4は左右一対のカムシャフト2
3,24を支承するカムキャリア、5はヘッドカバー、
6はピストン、7は燃焼室である。このエンジンは、吸
気2弁・排気2弁式エンジンであって、上記燃焼室7に
臨む上記シリンダヘッド2の下面には吸気ポ−ト8,8
と排気ポ−ト9,9がそれぞれ形成され、さらにこの各
吸気ポ−ト8,8にはそれぞれ吸気弁20,20が、また
各排気ポ−ト9,9にはそれぞれ排気弁21,21が配置
されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An intake system for an engine according to the present invention will be described below in detail with reference to the embodiments shown in the accompanying drawings. FIG. 1 and FIG. One bank portion of a V-type engine is shown. In the figure, reference numeral 1 is a cylinder block, 2 is a cylinder head, and 3 and 4 are a pair of left and right camshafts 2.
A cam carrier that supports 3, 24, 5 is a head cover,
6 is a piston and 7 is a combustion chamber. This engine is an intake two-valve / exhaust two-valve engine, and intake ports 8 and 8 are provided on the lower surface of the cylinder head 2 facing the combustion chamber 7.
And exhaust ports 9 and 9, respectively, and further, intake valves 20 and 20 are respectively provided to the intake ports 8 and 8, and exhaust valves 21 and 21 are provided to the exhaust ports 9 and 9, respectively. Are arranged.

【0044】さらに、このエンジンにおいては、上記一
対の吸気ポ−ト8,8を、それぞれ独立したプライマリ
ー通路11とセカンダリー通路12を介して上記ヘッド
カバー5の上方位置に配置したサージタンク17に接続
させており、この二つの通路11,12で一つの気筒に
対応する吸気通路10を構成している。また、この二つ
の通路11,12のうち、プライマリー通路11はエン
ジンの全運転領域において吸気導入を行うが、セカンダ
リー通路12はエンジン負荷が所定以上の高負荷領域に
おいてのみ吸気導入を行う。そして、このプライマリー
通路11とセカンダリー通路12は、該セカンダリー通
路12の最上流位置(即ち、上記サージタンク17の出
口部17a)に後述の開閉弁18が設けられていること、
及び該セカンダリー通路12の中間位置に付加ガスとし
てのブローバイガスの噴出部36が形成されていること
を除いて同様構成をもつものであるため、ここでは図1
〜図3を参照してセカンダリー通路12の通路構成のみ
を詳述し、プライマリー通路11の通路構成については
その説明を省略する。
Further, in this engine, the pair of intake ports 8 and 8 are connected to the surge tank 17 arranged above the head cover 5 via the independent primary passage 11 and secondary passage 12. The two passages 11 and 12 constitute the intake passage 10 corresponding to one cylinder. Further, of the two passages 11 and 12, the primary passage 11 introduces intake air in the entire operating region of the engine, while the secondary passage 12 introduces intake air only in a high load region where the engine load is equal to or higher than a predetermined value. The primary passage 11 and the secondary passage 12 are provided with an on-off valve 18 described later at the most upstream position of the secondary passage 12 (that is, the outlet portion 17a of the surge tank 17).
1 has the same configuration as that of FIG. 1 except that a blow-by gas ejection portion 36 as additional gas is formed at an intermediate position of the secondary passage 12.
3 to 4, only the passage structure of the secondary passage 12 will be described in detail, and the description of the passage structure of the primary passage 11 will be omitted.

【0045】上記セカンダリー通路12は、上記吸気ポ
−ト8に連続して上記シリンダヘッド2内を上方に向か
いながら次第にエンジン側方に向けて湾曲する下流側湾
曲部15と、該下流側湾曲部15の上流側に連続してシ
リンダヘッド2を斜め上方に向けて直線状に延び且つそ
の上流端が該シリンダヘッド2の側面に開口する直線部
14と、該直線部14の上流端と上記サージタンク17
の出口部17aとの跨って着脱自在に配置されるととも
にエンジン上端部をその側方から巻き込むように上記下
流側湾曲部15とは逆方向に湾曲する上流側湾曲部13
とで構成されている。そして、このセカンダリー通路1
2の最上流位置である上記サージタンク17の出口部1
7aには、バタフライ弁で構成される開閉弁18が、そ
の弁軸19を上記上流側湾曲部13の湾曲面に直交する
方向に向け、且つ該上流側湾曲部13の外周壁13a寄
りに位置する周縁部18aを上記弁軸19よりも下流側
に位置せしめた状態で配置されている。
The secondary passage 12 is connected to the intake port 8 so as to be directed upward in the cylinder head 2 and is gradually curved toward the side of the engine. 15, a straight line portion 14 extending linearly in a diagonally upward direction on the upstream side of the cylinder head 2 and having an upstream end opening to a side surface of the cylinder head 2, an upstream end of the straight line portion 14 and the surge. Tank 17
The upstream bending portion 13 which is detachably arranged across the outlet portion 17a of the engine and bends in the opposite direction to the downstream bending portion 15 so that the upper end of the engine is wound from the side thereof.
It consists of and. And this secondary passage 1
The outlet section 1 of the surge tank 17 which is the uppermost stream position of No. 2
An opening / closing valve 18 constituted by a butterfly valve is located at 7a and has its valve shaft 19 oriented in a direction orthogonal to the curved surface of the upstream bending portion 13 and located near the outer peripheral wall 13a of the upstream bending portion 13. The peripheral edge portion 18a is positioned downstream of the valve shaft 19 and is disposed.

【0046】尚、上記上流側湾曲部13は、図2に示す
ように、上記プライマリー通路11側の上流側湾曲部2
2(図2及び図3参照)と並設状態で一体的に形成される
とともに、各気筒の吸気通路10,10との間において
は上下一対のフランジ41,42によって相互に連結さ
れて一つの吸気マニホールド30を構成している。
As shown in FIG. 2, the upstream bending portion 13 has the upstream bending portion 2 on the primary passage 11 side.
2 (see FIGS. 2 and 3) and is integrally formed in parallel with each other, and is connected to each other by a pair of upper and lower flanges 41, 42 between the intake passages 10, 10 of each cylinder. The intake manifold 30 is configured.

【0047】さらに、上記上流側湾曲部13の下流端近
傍のしかも外周壁13a寄り部位には、図1及び図3に
示すように、該上流側湾曲部13内への燃料導入を行う
噴孔26が、上記直線部14を通して上記吸気ポ−ト8
に指向するようにして形成されるとともに、該噴孔26
の上流端側にはインジェクタ−25が配置されている。
尚、このような噴孔26は上記プライマリー通路11の
上流側湾曲部22にも同様にして形成されており、該イ
ンジェクタ−25から噴射される燃料はこの二つの噴孔
26,26を通して上記プライマリー通路11側とセカ
ンダリー通路12側の双方に同時に供給されるようにな
っている。
Further, as shown in FIGS. 1 and 3, in the vicinity of the downstream end of the upstream curved portion 13 and near the outer peripheral wall 13a, injection holes for introducing fuel into the upstream curved portion 13 are provided. 26, the intake port 8 through the straight portion 14.
Is formed so as to be directed to
An injector 25 is disposed on the upstream end side of the.
The injection hole 26 is also formed in the upstream curved portion 22 of the primary passage 11 in the same manner, and the fuel injected from the injector 25 passes through the two injection holes 26, 26 and is discharged to the primary side. It is designed to be supplied to both the passage 11 side and the secondary passage 12 side at the same time.

【0048】一方、上記吸気マニホールド30は、図1
及び図2に示すように、上記上流側湾曲部13の内周壁
13bの外側位置に、その内部にブローバイガス通路3
5とアシストエア通路37とを並設した横設部31を、
各気筒の吸気通路10,10,10を横方向に跨がらせた
状態で一体形成している。そして、このブローバイガス
通路35は、上記上流側湾曲部13の内周壁13bを貫
通して形成した噴出部36を介して上記噴孔26よりも
上流側の内周壁13b上に開口せしめられており、排気
通路16側から導入されるブローバイガスG(特許請求
の範囲中の付加ガスに該当する)はこのブローバイガス
通路35によって各気筒側に分流されるとともに、それ
ぞれ噴出部36,36,・・から対応する気筒のセカンダ
リー通路12内にそれぞれ導入されるようになってい
る。さらに、上記アシストエア通路37は、上記吸気マ
ニホールド30内に形成された連通路38を介して上記
噴孔26の最上流部分に連通せしめられており、該アシ
ストエア通路37に供給されたアシストエアは各気筒側
にそれぞれ分流された後、連通路38から噴孔26の最
上流部分に供給されるようになっている。
On the other hand, the intake manifold 30 is shown in FIG.
And, as shown in FIG. 2, the blow-by gas passage 3 is formed inside the inner peripheral wall 13b of the upstream side curved portion 13 at a position outside thereof.
5 and the assist air passage 37 are provided side by side
The intake passages 10, 10, 10 of the respective cylinders are integrally formed in a state of straddling in the lateral direction. The blow-by gas passage 35 is opened on the inner peripheral wall 13b on the upstream side of the injection hole 26 through the ejection portion 36 formed by penetrating the inner peripheral wall 13b of the upstream side curved portion 13. The blow-by gas G (corresponding to the additional gas in the claims) introduced from the exhaust passage 16 side is branched to each cylinder side by the blow-by gas passage 35, and the jet portions 36, 36 ,. Are introduced into the secondary passages 12 of the corresponding cylinders. Further, the assist air passage 37 is communicated with the most upstream portion of the injection hole 26 through a communication passage 38 formed in the intake manifold 30, and the assist air supplied to the assist air passage 37 is communicated. Is divided into the respective cylinders and then supplied from the communication passage 38 to the most upstream portion of the injection hole 26.

【0049】続いて、このように構成された吸気装置の
作動及び効果等について、主としてセカンダリー通路1
2側の流れを例にとって説明する。エンジンが運転され
ると、先ずその低負荷域においては開閉弁18が閉弁保
持されるため、吸気はプライマリー通路11側からのみ
燃焼室7に導入され、該燃焼室7内にはスワール流が発
生する。またこの場合、インジェクタ−25からはプラ
イマリー通路11とセカンダリー通路12の両方にそれ
ぞれ燃料が分流供給されることから、プライマリー通路
11側からは吸気と燃料との混合気が、またセカンダリ
ー通路12側からは燃料のみが、それぞれ導入される。
さらに、これとは別に、アシストエア通路37に供給さ
れたアシストエアが連通路38を通ってインジェクタ−
25の噴口周辺に供給され、燃料と吸気のミキシングの
促進及び燃料の気化・霧化が図られる。また、ブローバ
イガス通路35に供給されたブローバイガスは噴出部3
6からセカンダリー通路12の上流側湾曲部13部分に
導入されている(従って、厳密には、このセカンダリー
通路12からは燃焼室7に対してブローバイガスと燃料
との混合気が導入されることになる)。
Next, with respect to the operation and effects of the intake system thus constructed, mainly the secondary passage 1 will be described.
The flow on the second side will be described as an example. When the engine is operated, first, the open / close valve 18 is kept closed in the low load region, so the intake air is introduced into the combustion chamber 7 only from the primary passage 11 side, and the swirl flow is generated in the combustion chamber 7. Occur. Further, in this case, the fuel is diverted from the injector 25 to both the primary passage 11 and the secondary passage 12, so that the mixture of intake air and fuel is discharged from the primary passage 11 side, and the fuel is mixed from the secondary passage 12 side. Only fuel is introduced respectively.
Further, separately from this, the assist air supplied to the assist air passage 37 passes through the communication passage 38 and is injected into the injector.
It is supplied to the vicinity of the 25 nozzles to promote the mixing of fuel and intake air and to vaporize and atomize the fuel. Further, the blow-by gas supplied to the blow-by gas passage 35 is blown out by the ejection portion 3
6 is introduced into the upstream curved portion 13 of the secondary passage 12 (accordingly, strictly speaking, the mixture of blow-by gas and fuel is introduced into the combustion chamber 7 from the secondary passage 12). Become).

【0050】一方、エンジン負荷が上昇して高負荷運転
域に達すると、上記開閉弁18が開弁することから、燃
焼室7にはプライマリー通路11とセカンダリー通路1
2の双方から吸気と燃料の混合気がそれぞれ導入され
る。また、これとは別に、上記セカンダリー通路12の
上流側湾曲部13部分には噴出部36からブローバイガ
スが導入される。
On the other hand, when the engine load increases and reaches the high load operation range, the opening / closing valve 18 is opened, so that the primary passage 11 and the secondary passage 1 are provided in the combustion chamber 7.
A mixture of intake air and fuel is introduced from both of the two. Separately from this, blow-by gas is introduced into the upstream curved portion 13 of the secondary passage 12 from the ejection portion 36.

【0051】ここで、この場合におけるセカンダリー通
路12内での吸気とブローバイガスの流れ、及び燃料の
ミキシング作用等についてそれぞれ説明する。先ず、吸
気の流れであるが、吸気はサージタンク17から開閉弁
18を通ってセカンダリー通路12側に流入した後、該
セカンダリー通路12内をその上流側湾曲部13から直
線部14を経て下流側湾曲部15に至り、最終的に吸気
ポ−ト8から燃焼室7内に吸入される。この場合、上記
上流側湾曲部13が大きく湾曲していることから、吸気
流の慣性力に起因する二次流れにより該上流側湾曲部1
3内における流速分布は図4における流速分布曲線L1
で示すように外周壁13a側に最大流速が偏った状態と
なる。そして、この流速分布の偏りは、開閉弁18の開
弁時において最も顕著となる。即ち、該開閉弁18はそ
の湾曲部外周寄りの外周縁18aが吸気下流側に位置す
るようにして開弁作動することから、上記サージタンク
17からの吸気はこの開閉弁18を通過する際に該開閉
弁18によって湾曲部外周寄りに偏流する作用を受ける
ためである。従って、この場合には最も高い最大流速が
達成される。
Here, the flow of intake air and blow-by gas in the secondary passage 12 and the mixing action of fuel in this case will be described. First, regarding the flow of intake air, the intake air flows from the surge tank 17 through the opening / closing valve 18 to the secondary passage 12 side, and then flows through the secondary passage 12 from the upstream curved portion 13 to the straight portion 14 to the downstream side. It reaches the curved portion 15 and is finally sucked into the combustion chamber 7 from the intake port 8. In this case, since the upstream bending portion 13 is largely bent, the upstream bending portion 1 is caused by the secondary flow due to the inertial force of the intake air flow.
The velocity distribution in 3 is the velocity distribution curve L 1 in FIG.
As shown by, the maximum flow velocity is biased toward the outer peripheral wall 13a. The deviation of the flow velocity distribution becomes most remarkable when the opening / closing valve 18 is opened. That is, since the opening / closing valve 18 is opened so that the outer peripheral edge 18a near the outer periphery of the curved portion is located on the intake downstream side, the intake air from the surge tank 17 passes through the opening / closing valve 18. This is because the on-off valve 18 acts to bias the flow toward the outer circumference of the curved portion. Therefore, in this case the highest maximum flow rate is achieved.

【0052】そして、従来構造であれば、このような偏
った流速分布は吸気が上流側湾曲部13内を流通する間
はそのまま持続されるが、この実施例においては該上流
側湾曲部13の通路途中においてその内周壁面13b上
に噴出部36を形成してここからブローバイガスを上流
側湾曲部13内に導入させるようにしていることから、
上記流速分布は吸気の流下に伴って次第に変化する。
With the conventional structure, such a biased flow velocity distribution is maintained as it is while the intake air is flowing through the upstream bending portion 13, but in this embodiment, the upstream bending portion 13 has the same flow velocity distribution. Since the jet portion 36 is formed on the inner peripheral wall surface 13b in the middle of the passage and the blow-by gas is introduced into the upstream bending portion 13 from here,
The flow velocity distribution gradually changes as the intake air flows down.

【0053】即ち、噴出部36より上流側においては図
4の流速分布曲線L1で示すような流速分布をもち、従
って上流側湾曲部13の内周壁面13b近傍はその吸気
流Aによる動圧が低くなっており、ブローバイガスGは
ここからスムーズに上流側湾曲部13内に導入される。
この内周壁面13bの近傍に導入されたブローバイガス
Gは、これがそのまま該上流側湾曲部13内の吸気流に
よって下流側に押し流されることにより吸気流Aに付加
された格好となり、結果的に噴出部36の直下流側にお
いては、図4の流速分布曲線L2で示すように、外周壁
面13a寄り位置と内周壁面13b寄り位置の両方にそれ
ぞれ高流速域をもった“二こぶラクダ"状の流速分布と
なる。
That is, on the upstream side of the jet portion 36, there is a flow velocity distribution as shown by the flow velocity distribution curve L 1 in FIG. 4, and therefore, in the vicinity of the inner peripheral wall surface 13b of the upstream side curved portion 13, the dynamic pressure due to the intake flow A is generated. Is low, and the blow-by gas G is smoothly introduced into the upstream side curved portion 13 from here.
The blow-by gas G introduced in the vicinity of the inner peripheral wall surface 13b is pushed to the downstream side by the intake air flow in the upstream side curved portion 13 as it is, and becomes a form added to the intake air flow A, resulting in ejection. Immediately downstream of the portion 36, as shown by the flow velocity distribution curve L 2 in FIG. 4, a "two-hump camel" shape having high flow velocity regions at both the outer wall surface 13a and inner wall surface 13b positions. The flow velocity distribution becomes.

【0054】しかし、このような“二こぶラクダ"状の
流速分布はそのままいつまでも持続されるものではな
く、吸気の流下とともに二次流れの影響を受けて内周壁
面13b寄りの高流速域が次第に外周壁面13a側に押し
出され、図4の流速分布曲線L3で示すように外周壁面
13a寄りと内周壁面13b寄りとにおいてさほど大きな
流速差のない略台形状の流速分布を呈することとなる。
従って、このような流速分布となった状態においては、
外周壁面13a寄り位置における最大流速にはほとんど
変化がない一方、上流側湾曲部13内における平均流速
は大幅に上昇することとなる。このように平均流速が上
昇するということは、上流側湾曲部13のうち、吸気導
入に有効に寄与し得る断面積が増加する(換言すれば、
有効断面積の利用効率が高まる)ことであり、それだけ
多量に且つ高速で吸気導入を行うことができ、結果的に
吸気の充填効率の向上、延いては出力性能の向上につな
がるものである。尚、このようにブローバイガスの噴出
部36の下流側における流速分布が改善されると、この
影響はそれより下流側のみに止どまらず、該噴出部36
よりも上流側にも及んでその部分の流速分布も改善され
ることは勿論である。
However, such a "two-hump camel" -shaped flow velocity distribution does not last forever, and the high flow velocity region near the inner peripheral wall surface 13b is gradually affected by the secondary flow as the intake air flows down. It is extruded to the outer peripheral wall surface 13a side, and exhibits a substantially trapezoidal flow velocity distribution with no significant difference in flow velocity between the outer peripheral wall surface 13a and the inner peripheral wall surface 13b, as shown by the flow velocity distribution curve L 3 in FIG.
Therefore, under such a flow velocity distribution,
The maximum flow velocity at the position close to the outer peripheral wall surface 13a hardly changes, while the average flow velocity in the upstream curved portion 13 increases significantly. The increase of the average flow velocity in this manner increases the cross-sectional area of the upstream side curved portion 13 that can effectively contribute to the intake air introduction (in other words,
The utilization efficiency of the effective cross-sectional area is increased), so that a large amount of intake air can be introduced at a high speed, and as a result, the charging efficiency of intake air is improved, which in turn leads to improved output performance. Incidentally, when the flow velocity distribution on the downstream side of the blow-by gas ejection portion 36 is improved in this way, this effect does not stop only on the downstream side, and the ejection portion 36
It goes without saying that the flow velocity distribution in that portion is also improved by extending to the upstream side.

【0055】尚、ブローバイガスの付加によって達成さ
れる内周壁面13b寄りの高流速域は、吸気の流下に従
って次第に外周壁面13a側に移動することから、ブロ
ーバイガスの噴出部36の形成位置からある程度下流寄
り位置において図4の流速分布曲線L3で示すような最
も高い平均流速が得られるような流速分布となり、それ
よりさらに下流に下るに従って再び流速分布の外周壁面
13a側への偏りが顕著となって、最終的には最大流速
のみが突出した流速分布となり充填効率という点からは
望ましくない状態となる。このため、この実施例におい
ては、図4の流速分布曲線L3の如き流速分布が得られ
る位置の近傍に上流側湾曲部13の下流端位置を設定す
るとともに、この部分に上記インジェクタ−25の噴孔
26を開口させるようにしている。
The high flow velocity region near the inner peripheral wall surface 13b, which is achieved by the addition of blow-by gas, gradually moves toward the outer peripheral wall surface 13a as the intake air flows down, so that the blow-by gas ejection portion 36 is formed to some extent. The flow velocity distribution is such that the highest average flow velocity as shown by the flow velocity distribution curve L 3 in FIG. 4 is obtained at a position near the downstream side, and as it goes further downstream, the bias of the flow velocity distribution toward the outer peripheral wall surface 13a side becomes noticeable again. Then, finally, only the maximum flow velocity has a prominent flow velocity distribution, which is not desirable in terms of filling efficiency. Therefore, in this embodiment, the downstream end position of the upstream curved portion 13 is set in the vicinity of a position where a flow velocity distribution such as the flow velocity distribution curve L 3 of FIG. 4 is obtained, and the injector 25 is provided at this position. The injection hole 26 is opened.

【0056】一方、インジェクタ−25からの噴射燃料
は、これが上記流速分布曲線L3の如き流速分布が得ら
れる位置のしかも外周壁面13a寄りに開口した噴孔2
6から直線部14の軸心方向に向けて供給されることか
ら、該燃料は流速の最も大きい部分の吸気に乗り、該吸
気とのミキシングが促進されることから該燃料の気化・
霧化状態が可及的に良好ならしめられ、延いてはエンジ
ンの燃焼性能の改善に寄与できるものである。
On the other hand, the fuel injected from the injector 25 has a nozzle hole 2 which is opened at a position where a flow velocity distribution such as the above-mentioned flow velocity distribution curve L 3 can be obtained and near the outer peripheral wall surface 13a.
Since the fuel is supplied from 6 toward the axial direction of the linear portion 14, the fuel rides on the intake air of the portion having the largest flow velocity, and mixing with the intake air is promoted.
The atomized state can be made as good as possible, which can contribute to the improvement of the combustion performance of the engine.

【0057】また、ブローバイガスの流れをみると、該
ブローバイガスは上流側湾曲部13内への導入とともに
次第に二次流れによって外周壁面13a側に移動せしめ
られるが、これはブローバイガスが全体的に外周壁面1
3a側に移動するというのではなく、次第に吸気と混合
しながら移動するということである。従って、セカンダ
リー通路12内の流れ全体からみれば、上流側湾曲部1
3の内周壁面13b寄りに導入されたブローバイガスG
のセカンダリー通路12内における密度分布は、その下
流端(即ち、吸気ポ−ト8)に至るまで依然として内周壁
面13b寄り側が高く、外周壁面13a寄り側が低くなっ
ている。このため、上流側湾曲部13の下流端近傍から
直線部14にかけての吸気温度(厳密には、吸気とブロ
ーバイガスとの混合気温度)は、該上流側湾曲部13の
内周壁面13b寄り部分が高くなっており、また壁温に
ついても同様である。
Looking at the flow of the blow-by gas, the blow-by gas is gradually moved to the outer peripheral wall surface 13a side by the secondary flow as it is introduced into the upstream side curved portion 13. Outer wall 1
It does not mean that it moves to the 3a side, but that it gradually moves while mixing with intake air. Therefore, when viewed from the entire flow in the secondary passage 12, the upstream bending portion 1
Blow-by gas G introduced to the inner peripheral wall surface 13b of No. 3
The density distribution in the secondary passage 12 is still high on the inner wall surface 13b side and low on the outer wall surface 13a side up to its downstream end (that is, the intake port 8). Therefore, the intake air temperature from the vicinity of the downstream end of the upstream curved portion 13 to the straight portion 14 (strictly speaking, the temperature of the air-fuel mixture of intake air and blow-by gas) is a portion near the inner wall surface 13b of the upstream curved portion 13. Is higher, and so is the wall temperature.

【0058】従って、噴孔26から上流側湾曲部13内
に噴射された燃料は、高流速の吸気流に乗って燃焼室7
側に運ばれこと、及び上記内周壁面13a側においては
その温度(壁温及び雰囲気温度の双方)が高くこの部分に
おける燃料の気化・霧化性が良好であることから、該内
周壁面13b側の壁面(直線部14及び下流側湾曲部15
の壁面も含む)への燃料付着が可及的に防止され、延い
ては燃料制御に対するエンジン出力の応答性が改善され
るものである。
Therefore, the fuel injected from the injection hole 26 into the upstream curved portion 13 rides on the intake flow of high velocity and flows into the combustion chamber 7.
And the temperature (both the wall temperature and the ambient temperature) is high on the side of the inner peripheral wall surface 13a and the vaporization and atomization properties of the fuel in this portion are good, so that the inner peripheral wall surface 13b Side wall surface (straight portion 14 and downstream curved portion 15
(Including the wall surface of the fuel cell) is prevented as much as possible, and the response of the engine output to fuel control is improved.

【0059】さらに、セカンダリー通路12内において
は、上述のように上流側湾曲部13の外周壁面13a寄
り部分を主として吸気が、内周壁面13b寄りを主とし
てブローバイガスが流れるが、この場合、この実施例の
ように直線部14がかなり大きな傾斜をもって吸気ポ−
ト8側に指向するとともに、これに続く下流側湾曲部1
5を燃焼室7の軸心方向へ向けて湾曲させると、吸気ポ
−ト8から燃焼室7内に吸入される混合気は該燃焼室7
内において上下方向に旋回するいわゆるタンブル流を生
成する。ところで、この実施例のものにおいては、上述
のように上流側湾曲部13の内周壁面13b寄りに主と
して存在したブローバイガスGはそのまま該内周壁面1
3b側に位置する直線部14の壁面及び下流側湾曲部1
5の壁面に沿って燃焼室7内に流入することから、該燃
焼室7内においてはブローバイガスGが該燃焼室7の内
壁あるいはピストン6の頂面に近い側に層状に存在し、
吸気と燃料の混合気Bはこのブローバイガス層の内部に
包み込まれた状態で存在することとなる。即ち、燃焼室
7内における層状化が達成されるものである。
Further, in the secondary passage 12, as described above, mainly intake air flows in the portion near the outer peripheral wall surface 13a of the upstream side curved portion 13, and blowby gas mainly flows in the inner peripheral wall surface 13b side. As shown in the example, the straight portion 14 has a considerably large inclination and the intake port
And the downstream side curved portion 1 following this.
When 5 is curved in the axial direction of the combustion chamber 7, the air-fuel mixture sucked from the intake port 8 into the combustion chamber 7 is
A so-called tumble flow that swirls in the vertical direction is generated inside. By the way, in this embodiment, the blow-by gas G mainly existing near the inner peripheral wall surface 13b of the upstream side curved portion 13 as described above remains as it is.
The wall surface of the straight portion 14 located on the 3b side and the downstream bending portion 1
Since it flows into the combustion chamber 7 along the wall surface of 5, the blow-by gas G exists in layers inside the combustion chamber 7 near the inner wall of the combustion chamber 7 or the top surface of the piston 6.
The air-fuel mixture B of the intake air and the fuel exists in a state of being enclosed inside the blow-by gas layer. That is, stratification in the combustion chamber 7 is achieved.

【0060】従って、混合気の層状化による希薄燃焼の
実現により燃比性能が向上せしめられることは勿論であ
るが、さらにこれに加えて排気エミッション及びノッキ
ング性能の改善も同時に図られるものである。即ち、こ
のように燃焼室7の外周部、即ち、比較的温度が低くて
燃焼不良により未燃成分が発生し易い部位がブローバイ
ガスという不燃ガスによって占有されることから該部分
への混合気の流入がなく、従って当然この部分において
の燃焼ということもなく、結果的に未燃成分の発生その
ものが可及的に抑制され、排気エミッションの改善につ
ながるものである。また、このように燃焼室7の外周部
がブローバイガスによって占有されるということは、ノ
ッキング発生の遠因となるエンドガスゾーンそのものが
消滅することから、ノッキング発生が可及的に防止さ
れ、延いては高圧縮比化による出力性能の改善も期待で
きるものである。
Therefore, it is needless to say that the fuel ratio performance is improved by realizing lean combustion by stratifying the air-fuel mixture, but in addition to this, the exhaust emission and knocking performance are also improved at the same time. That is, since the non-combustible gas called blow-by gas occupies the outer peripheral portion of the combustion chamber 7, that is, the portion where unburned components are likely to be generated due to poor combustion due to the relatively low temperature, the air-fuel mixture to this portion There is no inflow, and therefore, naturally, no combustion occurs in this portion, and as a result, generation of unburned components themselves is suppressed as much as possible, which leads to improvement of exhaust emission. Further, the fact that the outer peripheral portion of the combustion chamber 7 is occupied by the blow-by gas in this manner eliminates the end gas zone itself, which is a cause of knocking, which is a cause of knocking. Is expected to improve output performance by increasing the compression ratio.

【0061】さらに、エンジンの低負荷領域においては
上記開閉弁18は閉弁保持されるが、この開閉弁18が
バタフライ弁で構成されていることから、例えこれが全
閉状態にあったとしてもその周縁部と通路壁との間には
微少隙間が形成される。従って、開閉弁18の閉弁状態
時においては、この隙間から吸気ポ−ト8側に少量ずつ
吸気が漏れ出ることとなる。一方、この開閉弁18は、
従来一般には吸気ポ−ト8に近い位置に配置されるが、
この実施例においてはこれを上流側湾曲部13の上流端
近傍に配置しているため、該開閉弁18と吸気弁20と
の間のボリュームは従来構造に比してかなり大きくなっ
ており、従って上記開閉弁18の隙間から漏れてこのボ
リューム内に溜る吸気量も大幅に増加する。このよう
に、上記ボリューム内に多量の吸気が溜っていると、排
気行程の最終期において吸気弁20と排気弁21の開弁
がオーバラップした時には吸気ポ−ト8から燃焼室7内
に多量の吸気が流入し、この流入吸気により排気ポ−ト
9周辺が効率良く掃気されることとなる。
Further, in the low load region of the engine, the on-off valve 18 is kept closed, but since the on-off valve 18 is composed of a butterfly valve, even if it is in a fully closed state, A minute gap is formed between the peripheral edge and the passage wall. Therefore, when the open / close valve 18 is closed, the intake air leaks little by little from this gap to the intake port 8 side. On the other hand, this on-off valve 18
Conventionally, it is generally arranged at a position close to the intake port 8,
In this embodiment, since it is arranged in the vicinity of the upstream end of the upstream side curved portion 13, the volume between the on-off valve 18 and the intake valve 20 is considerably larger than that of the conventional structure. The amount of intake air that leaks from the gap of the on-off valve 18 and accumulates in this volume also increases significantly. As described above, when a large amount of intake air is accumulated in the volume, a large amount of intake air is introduced from the intake port 8 into the combustion chamber 7 when the intake valve 20 and the exhaust valve 21 are opened in the final stage of the exhaust stroke. Intake air flows in, and the inflow intake air effectively scavenges the vicinity of the exhaust port 9.

【0062】また、ブローバイガス通路35とアシスト
エア通路37とが横設部31内に近接状態で並設されて
いることから、該アシストエア通路37内のアシストエ
アはブローバイガスの熱によって暖められたのちインジ
ェクタ−25の噴口近傍に供給されることから、該アシ
ストエアによる燃料の気化・霧化の促進作用がより一層
高められることとなる。また、このブローバイガス通路
35とアシストエア通路37を形成した横設部31が、
吸気マニホールド30の各吸気通路10,10,・・間を
シリンダ配列方向に跨った状態で形成されていることに
より、該吸気マニホールド30はその上下両端がそれぞ
れフランジ41,42によって連結されるのに加えて、
該横設部31によってその中間部も連結されることか
ら、その剛性が向上せしめられるものである。そして、
この吸気マニホールド30の剛性アップにより、エンジ
ン全体としての剛性が高められ、且つエンジン振動によ
る騒音発生も可及的に低減されるものである。
Further, since the blow-by gas passage 35 and the assist air passage 37 are juxtaposed in the laterally-arranging portion 31 in a close state, the assist air in the assist air passage 37 is warmed by the heat of the blow-by gas. After that, since the fuel is supplied to the vicinity of the injection port of the injector 25, the action of promoting the vaporization and atomization of the fuel by the assist air is further enhanced. In addition, the horizontal installation portion 31 forming the blow-by gas passage 35 and the assist air passage 37 is
Since the intake manifold 30 is formed so as to straddle the intake passages 10, 10, ... In the cylinder arrangement direction, the intake manifold 30 is connected at its upper and lower ends by flanges 41, 42, respectively. in addition,
Since the intermediate portion is also connected by the laterally-provided portion 31, its rigidity is improved. And
By increasing the rigidity of the intake manifold 30, the rigidity of the engine as a whole is increased, and noise generation due to engine vibration is reduced as much as possible.

【0063】尚、上記実施例においては、付加ガスとし
てブローバイガスを導入するようにしているが、本願発
明はこれに限定されるものではなく、例えばこのブロー
バイガスに変えて付加ガスとしてEGRガスを採用する
こともできるものである。
In the above embodiment, the blow-by gas is introduced as the additional gas, but the present invention is not limited to this. For example, the blow-by gas may be replaced with the EGR gas as the additional gas. It can also be adopted.

【0064】また、この実施例においては、付加ガスの
噴出部36をセカンダリー通路12側に形成している
が、本願発明はこれに限定されるものではなく、例えば
これをプライマリー通路11側に形成することもできる
ものである。
Further, in this embodiment, the spouting portion 36 of the additional gas is formed on the side of the secondary passage 12, but the present invention is not limited to this. For example, it is formed on the side of the primary passage 11. It can also be done.

【図面の簡単な説明】[Brief description of drawings]

【図1】本願発明の実施例にかかる吸気装置を備えたエ
ンジンの要部断面図である。
FIG. 1 is a sectional view of an essential part of an engine including an intake device according to an embodiment of the present invention.

【図2】図1のII-II矢視図である。FIG. 2 is a view taken along the line II-II in FIG.

【図3】図1のIII-III縦断面図である。3 is a vertical sectional view taken along the line III-III in FIG.

【図4】吸気通路内における吸気の流速分布説明図であ
る。
FIG. 4 is an explanatory diagram of a flow velocity distribution of intake air in an intake passage.

【図5】吸気通路内における吸気の流速分布説明図であ
る。
FIG. 5 is an explanatory diagram of a flow velocity distribution of intake air in an intake passage.

【符号の説明】[Explanation of symbols]

1はシリンダブロック、2はシリンダヘッド、3はカム
キャリア、4はカムキャリア、5はヘッドカバー、6は
ピストン、7は燃焼室、8は吸気ポ−ト、9は排気ポ−
ト、10は吸気通路、11はプライマリー通路、12は
セカンダリー通路、13は上流側湾曲部、14は直線
部、15は下流側湾曲部、16は排気通路、17はサー
ジタンク、18は開閉弁、19は弁軸、20は吸気弁、
21は排気弁、23はカムシャフト、24はカムシャフ
ト、25はインジェクタ−、26は噴孔、30は吸気マ
ニホールド、31は横設部、35はブローバイガス通
路、36は噴出部、37はアシストエア通路である。
1 is a cylinder block, 2 is a cylinder head, 3 is a cam carrier, 4 is a cam carrier, 5 is a head cover, 6 is a piston, 7 is a combustion chamber, 8 is an intake port, and 9 is an exhaust port.
10 is an intake passage, 11 is a primary passage, 12 is a secondary passage, 13 is an upstream curved portion, 14 is a straight portion, 15 is a downstream curved portion, 16 is an exhaust passage, 17 is a surge tank, 18 is an opening / closing valve. , 19 is a valve shaft, 20 is an intake valve,
Reference numeral 21 is an exhaust valve, 23 is a cam shaft, 24 is a cam shaft, 25 is an injector, 26 is an injection hole, 30 is an intake manifold, 31 is a laterally installed portion, 35 is a blow-by gas passage, 36 is an ejection portion, and 37 is an assist. It is an air passage.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 F02M 29/00 C 8923−3G 69/04 P 9248−3G G 9248−3G ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical display area F02M 29/00 C 8923-3G 69/04 P 9248-3G G 9248-3G

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 湾曲部を有する吸気通路にインジェクタ
−を配置するとともに、該吸気通路内に適宜の付加ガス
を供給するようにしたエンジンの吸気装置において、上
記インジェクタ−の噴孔を上記吸気通路の湾曲部あるい
は該湾曲部の直下流位置のしかも該湾曲部の外周側の壁
面上に開口させる一方、上記付加ガスの噴出部はこれを
上記湾曲部の内周側の壁面上に開口させたことを特徴と
するエンジンの吸気装置。
1. In an intake system of an engine, wherein an injector is arranged in an intake passage having a curved portion and an appropriate additional gas is supplied into the intake passage, an injection hole of the injector is provided in the intake passage. Of the additional gas is opened on the wall surface of the curved portion or the position immediately downstream of the curved portion and on the outer peripheral side of the curved portion, while the injection portion of the additional gas is opened on the inner wall surface of the curved portion. An engine intake device characterized by the above.
【請求項2】 湾曲部を有する吸気通路にインジェクタ
−を配置するとともに、該インジェクタ−より上流側に
エンジンの運転状態に応じて上記吸気通路を選択的に開
閉する開閉弁を備えたエンジンの吸気装置において、上
記インジェクタ−の噴孔を上記湾曲部の外周側の壁面上
に開口させる一方、上記開閉弁はこれをバタフライ弁で
構成し且つその弁軸方向を上記湾曲部の湾曲面方向に直
交する方向に向けた状態で上記湾曲部の上流端近傍に配
置するとともに、その開弁時においては上記湾曲部の外
周側に位置する周縁部が内周側に位置する周縁部よりも
吸気下流側に位置するように開弁作動方向を設定したこ
とを特徴とするエンジンの吸気装置。
2. An intake air of an engine, wherein an injector is arranged in an intake passage having a curved portion, and an on-off valve which selectively opens and closes the intake passage according to an operating state of the engine is provided upstream of the injector. In the device, the injection hole of the injector is opened on the wall surface on the outer peripheral side of the curved portion, while the on-off valve is constituted by a butterfly valve and its valve axis direction is orthogonal to the curved surface direction of the curved portion. Is arranged in the vicinity of the upstream end of the bending portion in a state of being directed toward the intake side, and when the valve is opened, the peripheral portion located on the outer peripheral side of the bending portion is on the intake downstream side of the peripheral portion located on the inner peripheral side. An intake device for an engine, wherein a valve opening operation direction is set to be located at.
【請求項3】 吸気通路にインジェクタ−を配置すると
ともに、該吸気通路内に適宜の付加ガスを供給するよう
にしたエンジンの吸気装置において、上記吸気通路を、
その上流側に位置してエンジンの上方から側方にかけて
回り込むように湾曲する上流側湾曲部と、該上流側湾曲
部の下流端に連続して斜め下方へ直線状に延びる直線部
と、該直線部の下流端に連続し且つ上記上流側湾曲部と
は反対方向に湾曲して吸気ポ−トに連通する下流側湾曲
部とで構成する一方、上記インジェクタ−の噴孔を、上
記直線部の軸心延長上に開口させるとともに、上記付加
ガスの噴出部を上記上流側湾曲部の内周側壁面上に開口
させたことを特徴とするエンジンの吸気装置。
3. An intake device for an engine, wherein an injector is arranged in the intake passage and an appropriate additional gas is supplied into the intake passage,
An upstream side curved portion located upstream of the engine and curved so as to wrap around from the upper side to the side of the engine; and a straight line portion that linearly extends obliquely downward continuously to the downstream end of the upstream side curved portion, and the straight line. A downstream side curved portion which is continuous to the downstream end of the portion and which is curved in the opposite direction to the upstream side curved portion and communicates with the intake port, while the injector injection hole of the injector is An intake device for an engine, characterized in that the additional gas is ejected onto an inner peripheral side wall surface of the upstream curved portion while the axial extension is opened.
【請求項4】 吸気通路にインジェクタ−を配置すると
ともに、該吸気通路内に適宜の付加ガスを供給するよう
にしたエンジンの吸気装置において、上記吸気通路を、
その上流側に位置してエンジンの上方から側方にかけて
回り込むように湾曲する上流側湾曲部と、該上流側湾曲
部の下流端に連続して直線状に延びる直線部と、該直線
部の下流端に連続し且つ上記上流側湾曲部とは反対方向
に湾曲して吸気ポ−トに連通する下流側湾曲部とで構成
し、さらに上記インジェクタ−の噴孔を、上記上流側湾
曲部あるいは直線部のしかも上記上流側湾曲部の外周側
に対応する壁面上に開口させる一方、上記付加ガスの噴
出部を上記上流側湾曲部の内周側に対応する壁面上に開
口させたことを特徴とするエンジンの吸気装置。
4. An intake system for an engine, wherein an injector is arranged in the intake passage and an appropriate additional gas is supplied into the intake passage, the intake passage comprising:
An upstream curving portion located upstream of the engine and curving so as to wrap around from the upper side to the lateral side of the engine, a linear portion continuously linearly extending from a downstream end of the upstream curving portion, and a downstream portion of the linear portion. And a downstream side curved portion which is continuous to the end and which is curved in a direction opposite to the upstream side curved portion and communicates with the intake port. Further, the injection hole of the injector is provided with the upstream side curved portion or the straight line. The opening of the additional gas is opened on the wall surface corresponding to the outer peripheral side of the upstream curved portion, and the ejection portion of the additional gas is opened on the wall surface corresponding to the inner peripheral side of the upstream curved portion. The intake system of the engine.
【請求項5】 湾曲部を有する吸気通路にインジェクタ
−を配置するとともに、該吸気通路内に適宜の付加ガス
を供給し得る如くし、さらに上記該インジェクタ−より
上流側にはエンジンの運転状態に応じて上記吸気通路を
選択的に開閉する開閉弁を配置したエンジンの吸気装置
において、上記インジェクタ−の噴孔を上記吸気通路の
湾曲部あるいは該湾曲部の直下流位置のしかも該湾曲部
の外周側の壁面上に開口させ、また上記付加ガスの噴出
部を該湾曲部の内周側の壁面上に開口させる一方、上記
開閉弁はこれをバタフライ弁で構成し且つその弁軸方向
を上記湾曲部の湾曲面方向に直交する方向に向けた状態
で上記湾曲部の上流端近傍に配置設定するとともに、そ
の開弁時においては上記湾曲部の外周側に位置する周縁
部が内周側に位置する周縁部よりも吸気下流側に位置す
るように開弁作動方向を設定したことを特徴とするエン
ジンの吸気装置。
5. An injector is arranged in an intake passage having a curved portion so that an appropriate additional gas can be supplied into the intake passage, and an engine operating state is provided upstream of the injector. In an intake system for an engine in which an opening / closing valve for selectively opening / closing the intake passage is arranged, the injection hole of the injector is provided at a curved portion of the intake passage or at a position immediately downstream of the curved portion and at the outer periphery of the curved portion. On the inner side wall surface of the curved portion, and the opening / closing valve is constituted by a butterfly valve and the valve axis direction thereof is the curved portion. The bending portion is arranged and set in the vicinity of the upstream end of the bending portion in a direction orthogonal to the bending surface direction, and when the valve is opened, the peripheral portion located on the outer peripheral side of the bending portion is located on the inner peripheral side. You An intake system for an engine, wherein a valve opening operation direction is set so as to be located on a downstream side of intake air with respect to a peripheral portion thereof.
【請求項6】 吸気通路にインジェクタ−を配置すると
ともに、該吸気通路内に適宜の付加ガスを供給し得る如
くし、さらにインジェクタ−より上流側にエンジンの運
転状態に応じて上記吸気通路を選択的に開閉する開閉弁
を備えたエンジンの吸気装置において、上記吸気通路
を、その上流側に位置してエンジンの上方から側方にか
けて回り込むように湾曲する上流側湾曲部と、該上流側
湾曲部の下流端に連続して直線状に延びる直線部と、該
直線部の下流端に連続し且つ上記上流側湾曲部とは反対
方向に湾曲して吸気ポ−トに連通する下流側湾曲部とで
構成する一方、上記インジェクタ−の噴孔を、上記直線
部の軸心延長上に開口させるとともに、上記付加ガスの
噴出部を上記上流側湾曲部の内周側壁面上に開口させ、
さらに上記開閉弁はこれをバタフライ弁で構成し且つそ
の弁軸方向を上記湾曲部の湾曲面方向に直交する方向に
向けた状態で上記湾曲部の上流端近傍に配置設定すると
ともに、その開弁時においては上記湾曲部の外周側に位
置する周縁部が内周側に位置する周縁部よりも吸気下流
側に位置するように開弁作動方向を設定したことを特徴
とするエンジンの吸気装置。
6. An injector is arranged in the intake passage so that an appropriate additional gas can be supplied into the intake passage, and the intake passage is selected upstream of the injector according to the operating condition of the engine. In an intake system for an engine having an opening / closing valve that opens and closes dynamically, an upstream bending portion that is located upstream of the intake passage and bends so as to wrap around from the upper side to the side of the engine, and the upstream bending portion. A straight line portion continuously extending to the downstream end of the straight line portion, and a downstream side curved portion which is continuous to the downstream end of the straight line portion and which curves in a direction opposite to the upstream side curved portion and communicates with the intake port. On the other hand, while the injection hole of the injector is opened on the axial extension of the straight portion, the injection portion of the additional gas is opened on the inner peripheral side wall surface of the upstream curved portion.
Further, the on-off valve is configured by a butterfly valve and is arranged and set in the vicinity of the upstream end of the bending portion with the valve axis direction thereof being directed in a direction orthogonal to the bending surface direction of the bending portion, and the valve opening thereof is performed. An intake device for an engine, wherein the valve opening operation direction is set so that a peripheral edge portion located on the outer peripheral side of the curved portion is located on the intake downstream side with respect to a peripheral edge portion located on the inner peripheral side at the time.
【請求項7】 請求項1,3.4,5または6記載のエン
ジンの吸気装置において、上記インジェクタ−の噴孔近
傍にアシストエア通路を介してアシストエアを供給し得
る如くするとともに、上記付加ガスを供給する付加ガス
通路を上記アシストエア通路に近接して並設し、さらに
該アシストエア通路と付加ガス通路とを各気筒の吸気通
路相互間に跨がるようにして形成したことを特徴とする
エンジンの吸気装置。
7. The intake system for an engine according to claim 1, 3.4, 5 or 6, wherein assist air can be supplied to the vicinity of the injection hole of the injector through an assist air passage, and the addition is possible. An additional gas passage for supplying gas is arranged in parallel near the assist air passage, and the assist air passage and the additional gas passage are formed so as to straddle the intake passages of each cylinder. And the intake system of the engine.
JP3247219A 1991-09-26 1991-09-26 Engine intake system Expired - Fee Related JP3071260B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP3247219A JP3071260B2 (en) 1991-09-26 1991-09-26 Engine intake system
US07/949,226 US5309886A (en) 1991-09-26 1992-09-23 Supercharged internal combustion engine
KR1019920017506A KR950001329B1 (en) 1991-09-26 1992-09-25 Supercharged internal combustion engine
DE4232456A DE4232456C2 (en) 1991-09-26 1992-09-28 Internal combustion engine with internal combustion and supercharging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3247219A JP3071260B2 (en) 1991-09-26 1991-09-26 Engine intake system

Publications (2)

Publication Number Publication Date
JPH0587024A true JPH0587024A (en) 1993-04-06
JP3071260B2 JP3071260B2 (en) 2000-07-31

Family

ID=17160224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3247219A Expired - Fee Related JP3071260B2 (en) 1991-09-26 1991-09-26 Engine intake system

Country Status (1)

Country Link
JP (1) JP3071260B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006242074A (en) * 2005-03-02 2006-09-14 Toyota Motor Corp Premix combustion compression ignition internal combustion engine
JP2007297049A (en) * 2007-06-18 2007-11-15 Honda Motor Co Ltd Fuel injection device in back bone type motorcycle
JP2008261340A (en) * 2008-06-02 2008-10-30 Honda Motor Co Ltd Fuel injection device for backbone type motorcycle
JP2010084639A (en) * 2008-09-30 2010-04-15 Toyota Boshoku Corp Intake manifold for internal combustion engine
JP2010222976A (en) * 2009-03-19 2010-10-07 Mitsubishi Motors Corp Exhaust gas recirculation device
JP2010222975A (en) * 2009-03-19 2010-10-07 Mitsubishi Motors Corp Exhaust gas recirculation device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0520871B1 (en) 2004-03-30 2021-04-20 Yamaha Hatsudoki Kabushiki Kaisha saddle-type motor vehicle

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006242074A (en) * 2005-03-02 2006-09-14 Toyota Motor Corp Premix combustion compression ignition internal combustion engine
JP4552696B2 (en) * 2005-03-02 2010-09-29 トヨタ自動車株式会社 Premixed combustion compression ignition internal combustion engine
JP2007297049A (en) * 2007-06-18 2007-11-15 Honda Motor Co Ltd Fuel injection device in back bone type motorcycle
JP4673870B2 (en) * 2007-06-18 2011-04-20 本田技研工業株式会社 Fuel injection device for backbone type motorcycle
JP2008261340A (en) * 2008-06-02 2008-10-30 Honda Motor Co Ltd Fuel injection device for backbone type motorcycle
JP2010084639A (en) * 2008-09-30 2010-04-15 Toyota Boshoku Corp Intake manifold for internal combustion engine
JP2010222976A (en) * 2009-03-19 2010-10-07 Mitsubishi Motors Corp Exhaust gas recirculation device
JP2010222975A (en) * 2009-03-19 2010-10-07 Mitsubishi Motors Corp Exhaust gas recirculation device

Also Published As

Publication number Publication date
JP3071260B2 (en) 2000-07-31

Similar Documents

Publication Publication Date Title
US5852994A (en) Induction control system for multi-valve engine
US20030116107A1 (en) Two-stroke internal combustion engine with crankcase scavenging
JPH09217628A (en) Two cycle engine
JPS6041211B2 (en) multi-cylinder internal combustion engine
JPH0821342A (en) Fuel injection type engine
US7273032B2 (en) Engine induction system
US20100037853A1 (en) Intake system for an internal combustion engine
JPH0587024A (en) Air intake device of engine
JPH0745817B2 (en) Direct injection multi-cylinder diesel engine
JP3591141B2 (en) In-cylinder direct injection spark ignition internal combustion engine
JP3893750B2 (en) Direct cylinder injection spark ignition engine
JPH08135455A (en) Intake control device for engine
US4449505A (en) Internal combustion engine
JP2008075538A (en) Fuel injection device
JPH11107760A (en) Intake system for direct-injection engine
JPH05223040A (en) Intake device for engine
CA1208088A (en) Internal combustion engine
JPH04311621A (en) Intake device of direct injection type diesel engine
JPH0693941A (en) Fuel feeding device for internal combustion engine
JP2759334B2 (en) Intake port structure of fuel injection engine
JPH0648093Y2 (en) Blow-by gas recirculation system for engines
KR100633403B1 (en) Injecting apparatus to reduce wall wetting
JP3318355B2 (en) Intake system for direct injection diesel engine
KR100515254B1 (en) Internal injection engine
JP2010133360A (en) Intake device of internal combustion engine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees