JP2006242074A - Premix combustion compression ignition internal combustion engine - Google Patents

Premix combustion compression ignition internal combustion engine Download PDF

Info

Publication number
JP2006242074A
JP2006242074A JP2005057815A JP2005057815A JP2006242074A JP 2006242074 A JP2006242074 A JP 2006242074A JP 2005057815 A JP2005057815 A JP 2005057815A JP 2005057815 A JP2005057815 A JP 2005057815A JP 2006242074 A JP2006242074 A JP 2006242074A
Authority
JP
Japan
Prior art keywords
internal combustion
injection valve
combustion engine
egr
premixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005057815A
Other languages
Japanese (ja)
Other versions
JP4552696B2 (en
Inventor
Yasushi Kitano
康司 北野
Seitaro Misawa
誠太郎 三澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005057815A priority Critical patent/JP4552696B2/en
Publication of JP2006242074A publication Critical patent/JP2006242074A/en
Application granted granted Critical
Publication of JP4552696B2 publication Critical patent/JP4552696B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/17Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the intake system
    • F02M26/20Feeding recirculated exhaust gases directly into the combustion chambers or into the intake runners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/42Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories having two or more EGR passages; EGR systems specially adapted for engines having two or more cylinders
    • F02M26/44Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories having two or more EGR passages; EGR systems specially adapted for engines having two or more cylinders in which a main EGR passage is branched into multiple passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent adhesion of injected fuel on an inner wall surface of an intake port and an intake branch pipe in a premix combustion compression ignition internal combustion engine performing fuel injection for forming air fuel premixture by an injection valve provided on an intake port and an intake branch pipe. <P>SOLUTION: The premix combustion compression ignition internal combustion engine includes the premix combustion injection valve 3 for injecting fuel on the intake branch pipe 7 or the intake port 7b of the compression ignition internal combustion engine, injects fuel from the premix combustion injection valve 3 at timing earlier than timing close to compression stroke top dead center, and forms air fuel premixture in a cylinder and performs premix combustion. The premix combustion injection valve 3 is provided with an atomization means atomizing injected fuel, and a high temperature EGR device introducing EGR gas generated during premix combustion to an EGR gas introduction port near an injection valve installation section of the intake branch pipe 7 and the intake port 7b on which the premix combustion injection valve is provided. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、予混合燃焼を行う圧縮着火内燃機関に関する。   The present invention relates to a compression ignition internal combustion engine that performs premixed combustion.

圧縮着火内燃機関において、NOxの抑制とスモークの抑制を目的として予混合燃焼を行う場合、該圧縮着火内燃機関の運転状態が高負荷運転状態となって機関負荷および機関回転速度が上昇するに従い、過早着火が生じる可能性が高くなる。そこで、該圧縮着火内燃機関の運転状態に基づいて、低・中負荷時は予混合燃焼を行い、高負荷時は通常燃焼(拡散燃焼)を行う技術が公開されている(例えば、特許文献1を参照。)。この技術においては、予混合燃焼から通常燃焼への切替は、一サイクル中に予混合燃焼と通常燃焼の双方を行う多段噴射を経由して行われる。これにより、燃焼切替の円滑化を図ろうとするものである。   In a compression ignition internal combustion engine, when premixed combustion is performed for the purpose of suppressing NOx and smoke, as the operation state of the compression ignition internal combustion engine becomes a high load operation state and the engine load and the engine speed increase, The possibility of premature ignition increases. Therefore, a technique for performing premixed combustion at low and medium loads and performing normal combustion (diffusion combustion) at high loads based on the operating state of the compression ignition internal combustion engine is disclosed (for example, Patent Document 1). See). In this technique, switching from premixed combustion to normal combustion is performed via multistage injection in which both premixed combustion and normal combustion are performed during one cycle. As a result, it is intended to facilitate combustion switching.

また、予混合燃焼を行う圧縮着火内燃機関であって、その吸気ポートに予混合気を形成するための予混合燃焼用噴射弁を備える技術が公開されている。(例えば、特許文献2、3を参照。)。これにより、より早い時期に予混合燃焼用噴射弁から燃料を噴射して気筒内に予混合気を形成することで、吸気と噴射燃料との混合をより促進し、エミッションの改善を図ろうとするものである。
特開平11−324764号公報 特開2004−197593号公報 特開2004−197599号公報 実開昭64−34434号公報 実開平5−92469号公報 特開平9−96256号公報 特開2002−327653号公報
In addition, a compression ignition internal combustion engine that performs premixed combustion, and a technique that includes a premixed combustion injection valve for forming a premixed air in its intake port is disclosed. (For example, see Patent Documents 2 and 3.) As a result, fuel is injected from the premixed combustion injection valve at an earlier stage to form a premixed gas in the cylinder, thereby further promoting the mixing of the intake air and the injected fuel and improving emissions. Is.
JP-A-11-324964 JP 2004-197593 A JP 2004-197599 A Japanese Utility Model Publication No. 64-34434 Japanese Utility Model Publication No. 5-92469 JP-A-9-96256 JP 2002-327653 A

予混合燃焼を行う圧縮着火内燃機関において、予混合気を形成するための燃料噴射を吸気ポートや吸気枝管に設けられた噴射弁で行うことで、燃料噴射から自着火までの期間を可及的に長くし、吸気とより混合された均一な予混合気を形成して、エミッションの改善が図られる。   In a compression ignition internal combustion engine that performs premixed combustion, fuel injection for forming premixed fuel is performed by an injection valve provided in an intake port or an intake branch pipe, thereby enabling a period from fuel injection to self-ignition. And a uniform premixed gas that is more mixed with the intake air is formed to improve the emission.

しかし、上記の圧縮着火内燃機関において、使用される機関燃料、例えば軽油等が噴射されても、その燃料の蒸発性の低さから、吸気ポートや吸気枝管内に良好に予混合気を形成せずに、それらの内壁面に付着する場合がある。そして、この付着した燃料が、後に気筒内に進入し、気筒内の空燃比が低下することでスモークが発生したり、また気筒内壁面から潤滑オイルに燃料が混入することで潤滑オイルが希釈されたりする虞がある。   However, in the above-mentioned compression ignition internal combustion engine, even if the engine fuel to be used, such as light oil, is injected, the premixed gas is formed well in the intake port or the intake branch pipe due to the low evaporability of the fuel. Without being attached to the inner wall surface. Then, the adhering fuel enters the cylinder later, and smoke is generated when the air-fuel ratio in the cylinder is lowered, or the lubricating oil is diluted by mixing the fuel into the lubricating oil from the inner wall surface of the cylinder. There is a risk that.

本発明では、上記した問題に鑑み、予混合気を形成するための燃料噴射を吸気ポートや吸気枝管に設けられた噴射弁で行う予混合燃焼圧縮着火内燃機関において、噴射燃料が吸気ポートや吸気枝管の内壁面に付着するのを回避することを目的とする。   In the present invention, in view of the above problems, in a premixed combustion compression ignition internal combustion engine in which fuel injection for forming a premixed gas is performed by an injection valve provided in an intake port or an intake branch pipe, It aims at avoiding adhering to the inner wall surface of an intake branch pipe.

本発明は、上記した課題を解決するために、吸気ポートまたは吸気枝管に設けられた噴射弁からの燃料噴射において、噴射燃料を微粒化するとともに、予混合燃焼によって生じたEGRガスを該噴射弁からの噴射燃料に吹き付けることで、予混合気を形成する噴射燃
料の蒸発を促進させる。これにより、吸気ポートまたは吸気枝管の内壁面に燃料が付着するのを回避することが可能となる。
In order to solve the above-described problems, the present invention makes it possible to atomize injected fuel and to inject EGR gas generated by premixed combustion in fuel injection from an injection valve provided in an intake port or an intake branch pipe. By spraying the injected fuel from the valve, evaporation of the injected fuel forming the premixed gas is promoted. Thereby, it is possible to avoid the fuel from adhering to the inner wall surface of the intake port or the intake branch pipe.

詳細には、本発明は、圧縮着火内燃機関の吸気枝管または吸気ポートに燃料噴射を行うための予混合燃焼用噴射弁を有し、該予混合燃焼用噴射弁から圧縮行程上死点近傍の時期より早い時期に燃料噴射を行い気筒内に予混合気を形成して予混合燃焼を行う予混合燃焼圧縮着火内燃機関であって、前記予混合燃焼用噴射弁には、噴射燃料を微粒化する微粒化手段が備えられ、予混合燃焼で生じるEGRガスを、前記予混合燃焼用噴射弁が設けられた前記吸気枝管または前記吸気ポートの噴射弁設置部位近傍のEGRガス導入口に導く高温EGR装置を、更に備えることを特徴とする予混合燃焼圧縮着火内燃機関である。   More specifically, the present invention has a premixed combustion injection valve for injecting fuel into an intake branch pipe or intake port of a compression ignition internal combustion engine, and near the top dead center of the compression stroke from the premixed combustion injection valve. A premixed combustion compression ignition internal combustion engine in which fuel injection is performed earlier than this time to form a premixed gas in a cylinder and premixed combustion is performed, and the premixed combustion injection valve contains finely injected fuel. The EGR gas generated by the premixed combustion is led to the intake branch pipe provided with the premixed combustion injection valve or the EGR gas inlet near the injection valve installation site of the intake port. A premixed combustion compression ignition internal combustion engine further comprising a high temperature EGR device.

上述の圧縮着火内燃機関において予混合燃焼を行う場合、予混合燃焼用噴射弁からの燃料噴射を圧縮行程上死点近傍の時期より早い時期に行うことで、吸気と燃料がより混合された予混合気を形成する。これによって、NOxやスモークの抑制を図る。尚、本発明における予混合燃焼においては、予混合燃料を一回の燃料噴射で噴射する場合に限られず、気筒の内壁面に燃料が付着するのを回避する等の理由で複数回の燃料噴射によって予混合燃料を噴射する場合も含まれる。   When premixed combustion is performed in the compression ignition internal combustion engine described above, fuel injection from the premixed combustion injection valve is performed at a time earlier than the time near the top dead center of the compression stroke. A mixture is formed. As a result, NOx and smoke are suppressed. Note that the premixed combustion in the present invention is not limited to the case where the premixed fuel is injected by a single fuel injection, but a plurality of times of fuel injection for reasons such as avoiding the fuel from adhering to the inner wall surface of the cylinder. This includes the case where the premixed fuel is injected.

ここで、予混合燃焼用噴射弁には微粒化手段が備えられ、噴射燃料が微粒化されるようになっている。この燃料の微粒化は、予混合気形成のための噴射燃料が速やかに蒸発することを主な目的としている。そして、微粒化手段による噴射燃料の微粒化は、前記予混合燃焼用噴射弁の噴口径が所定大きさより小さいこと、該予混合燃焼用噴射弁における噴射圧が所定噴射圧より大きいこと、または該予混合燃焼用噴射弁から噴射された燃料を衝突させる衝突子が設けられることのうち少なくともいずれかによって、達成することができる。上記所定大きさおよび所定噴射圧とは、噴射燃料の粒径が蒸発促進のために適した粒径となるための噴口の大きさおよび噴射圧である。噴口の大きさは小さくなるほど、噴射圧は大きくなるほど、噴射燃料の微粒化は促進される。衝突子とは、噴射燃料が衝突されることで燃料の粒径を小さくしていく装置である。また、これらを組み合わせて噴射燃料の微粒化を行ってもよい。更に、噴射燃料の温度を上昇させることで、その微粒化を行ってもよい。   Here, the premixed combustion injection valve is provided with atomization means so that the injected fuel is atomized. The main atomization of the fuel is to quickly evaporate the injected fuel for forming the premixed gas. Further, the atomization of the injected fuel by the atomizing means is caused by the fact that the nozzle diameter of the premixed combustion injection valve is smaller than a predetermined size, the injection pressure in the premixed combustion injection valve is larger than the predetermined injection pressure, or This can be achieved by providing at least one of collision members for colliding the fuel injected from the premixed combustion injection valve. The predetermined size and the predetermined injection pressure are the size of the injection hole and the injection pressure so that the particle size of the injected fuel becomes a particle size suitable for promoting evaporation. As the injection hole size decreases and the injection pressure increases, atomization of the injected fuel is promoted. The collider is a device that reduces the particle size of the fuel when the injected fuel collides. Moreover, you may atomize injected fuel combining these. Further, the atomization may be performed by raising the temperature of the injected fuel.

そして、この予混合燃焼用噴射弁から噴射された微粒化された燃料に、予混合燃焼によって生じたEGRガスが直接、高温EGR装置によって吹き付けられる。即ち、EGRガス導入口から吸気枝管または吸気ポートに導入された高温のEGRガスと、予混合燃焼用噴射弁からの噴射燃料が混ざり合うことで、微粒化によって表面積が拡大された噴射燃料の蒸発がより促進される。その結果、噴射燃料の吸気枝管または吸気ポートの内壁面への付着が回避される。   Then, the EGR gas generated by the premixed combustion is directly sprayed on the atomized fuel injected from the premixed combustion injection valve by the high temperature EGR device. That is, the high temperature EGR gas introduced from the EGR gas inlet to the intake branch pipe or the intake port is mixed with the injected fuel from the premixed combustion injection valve, so that the surface area of the injected fuel is increased by atomization. Evaporation is further promoted. As a result, the adhesion of the injected fuel to the inner wall surface of the intake branch pipe or the intake port is avoided.

ここで、上記の予混合燃焼圧縮着火内燃機関において、前記EGRガス導入口は、前記噴射弁設置部位の吸気流れにおける下流側に位置するようにしてもよい。即ち、吸気枝管または吸気ポート内に存在する高温のEGRガスに向かって予混合燃焼用噴射弁から燃料を噴射することで、噴射燃料の蒸発を図る。また、EGRガス導入口と予混合燃焼用噴射弁との位置関係から、予混合燃焼用噴射弁にはEGRガスが直接当たらない。そのため、EGRガス中の煤が予混合燃焼用噴射弁に付着したり、該噴射弁内の燃料が炭化したりするのを回避することが可能となる。   Here, in the premixed combustion compression ignition internal combustion engine, the EGR gas inlet may be positioned downstream in the intake flow of the injection valve installation site. That is, the fuel is injected from the premixed combustion injection valve toward the high-temperature EGR gas existing in the intake branch pipe or the intake port, thereby evaporating the injected fuel. Further, because of the positional relationship between the EGR gas inlet and the premixed combustion injection valve, the EGR gas does not directly hit the premixed combustion injection valve. Therefore, it is possible to avoid soot in the EGR gas from adhering to the premixed combustion injection valve and carbonization of the fuel in the injection valve.

更に、上述までの予混合燃焼圧縮着火内燃機関において、前記高温EGR装置は、前記予混合圧縮着火内燃機関のシリンダヘッドの内部に設けられていてもよい。シリンダヘッド内部に高温EGR装置を設けることで、EGRガスを吸気系に再循環させる経路の長さを可及的に短くすることが可能となる。その結果、EGRガスの温度低下を抑制し、噴射
燃料の蒸発に適した高温のEGRガスを吸気枝管または吸気ポートに導入することが可能となる。
Furthermore, in the premixed combustion compression ignition internal combustion engine described above, the high temperature EGR device may be provided inside a cylinder head of the premix compression compression ignition internal combustion engine. By providing the high temperature EGR device inside the cylinder head, the length of the path for recirculating EGR gas to the intake system can be shortened as much as possible. As a result, it is possible to suppress the temperature drop of the EGR gas and introduce high-temperature EGR gas suitable for evaporation of the injected fuel into the intake branch pipe or the intake port.

更に、上述までの予混合燃焼圧縮着火内燃機関において、前記EGRガス導入口は、前記予混合燃焼用噴射弁からの噴射燃料が付着する前記吸気枝管または前記吸気ポートの所定付着部位に向けて開口するようにしてもよい。この所定部位とは、吸気枝管または吸気ポートの中でも、予混合燃焼用噴射弁からの噴射燃料が付着しやすい部位をいう。そこで、該所定部位に向かって高温のEGRガスが当たるように、EGRガス導入口の開口する方向を設定することで、噴射燃料の吸気枝管または吸気ポートの内壁面への付着を回避することが可能となる。   Furthermore, in the premixed combustion compression ignition internal combustion engine described above, the EGR gas inlet is directed to a predetermined adhesion portion of the intake branch pipe or the intake port to which the fuel injected from the premixed combustion injection valve adheres. You may make it open. This predetermined part means a part where the injected fuel from the premixed combustion injection valve easily adheres in the intake branch pipe or the intake port. Therefore, by setting the opening direction of the EGR gas inlet so that the high-temperature EGR gas hits the predetermined portion, the adhesion of the injected fuel to the intake branch pipe or the inner wall surface of the intake port can be avoided. Is possible.

ここで、逆に、上記の予混合燃焼圧縮着火内燃機関において、前記EGRガス導入口は、前記噴射弁設置部位の吸気流れにおける上流側に位置する場合、前記EGRガス導入口から前記吸気枝管または前記吸気ポートに突出し且つ前記予混合燃焼用噴射弁に向けて開口することで、該EGRガス導入口からEGRガスを導入するEGRガス導入装置を、更に備えるようにしてもよい。   Here, conversely, in the premixed combustion compression ignition internal combustion engine, when the EGR gas introduction port is located upstream in the intake flow of the injection valve installation site, the intake branch pipe extends from the EGR gas introduction port. Or you may make it further provide the EGR gas introduction apparatus which introduces EGR gas from this EGR gas introduction port by projecting in the said intake port and opening toward the said premixed combustion injection valve.

EGRガス導入口が噴射弁設置部位の上流側に位置する場合、EGRガスが噴射燃料と混ざる前に新気と混ぜることでEGRガス温度が低下する虞がある。そこで、EGRガス導入装置を備えることで、EGRガスが新気と混ざるのを可及的に回避した状態で予混合燃焼用噴射弁からの噴射燃料と混ざることが可能となる。これにより、噴射燃料の吸気枝管または吸気ポートの内壁面への付着を回避することが可能となる。   When the EGR gas introduction port is located on the upstream side of the injection valve installation site, the EGR gas temperature may be lowered by mixing with fresh air before the EGR gas is mixed with the injected fuel. Therefore, by providing the EGR gas introduction device, it is possible to mix the EGR gas with the fuel injected from the premixed combustion injection valve while avoiding the EGR gas from being mixed with fresh air as much as possible. Thereby, it becomes possible to avoid adhesion of the injected fuel to the inner wall surface of the intake branch pipe or the intake port.

ここで、上述までの予混合燃焼圧縮着火内燃機関において、予混合燃焼で生じるEGRガスの少なくとも一部を冷却するEGRクーラーと、前記EGRクーラーによって冷却されたEGRガスを、前記予混合燃焼圧縮着火内燃機関の吸気通路に導く低温EGR装置と、前記予混合燃焼圧縮着火内燃機関の運転状態に基づいて、前記高温EGR装置と前記低温EGR装置を流れるそれぞれのEGRガス流量を調整するEGR調整装置と、を更に備えるようにしてもよい。   Here, in the premixed combustion compression ignition internal combustion engine described above, the EGR cooler that cools at least a part of the EGR gas generated by the premixed combustion, and the EGR gas cooled by the EGR cooler are converted into the premixed combustion compression ignition. A low-temperature EGR device that leads to the intake passage of the internal combustion engine, and an EGR adjustment device that adjusts the respective EGR gas flow rates flowing through the high-temperature EGR device and the low-temperature EGR device based on the operating state of the premixed combustion compression ignition internal combustion engine , May be further provided.

低温EGR装置を設け、EGR調整装置によって高温EGR装置と低温EGR装置に流れ込むEGRガスの流量を調整することで、最終的に気筒内の温度を、予混合燃焼圧縮着火内燃機関の運転状態に適した温度に制御することが可能となる。このとき、高温EGR装置によって予混合燃焼用噴射弁からの噴射燃料の蒸発は十分に確保されているので、予混合燃焼時に、吸気枝管または吸気ポートの内壁面への燃料の付着を回避しつつ、気筒内温度を過早着火が回避し得る温度に制御することが可能となる。   By installing a low temperature EGR device and adjusting the flow rate of EGR gas flowing into the high temperature EGR device and the low temperature EGR device by the EGR adjustment device, the temperature inside the cylinder is finally suitable for the operating state of the premixed combustion compression ignition internal combustion engine Temperature can be controlled. At this time, since the evaporation of the injected fuel from the premixed combustion injection valve is sufficiently ensured by the high temperature EGR device, during the premixed combustion, the adhesion of fuel to the intake branch pipe or the inner wall of the intake port is avoided. On the other hand, it becomes possible to control the in-cylinder temperature to a temperature at which premature ignition can be avoided.

また、上記の予混合燃焼圧縮着火内燃機関において、前記EGR調整装置は、前記予混合燃焼圧縮着火内燃機関において予混合燃焼が行われるとき、前記高温EGR装置を流れるEGRガス流量を所定流量以上に維持した状態で、該予混合燃焼圧縮着火内燃機関の機関負荷が上昇するに従い前記低温EGR装置を流れるEGRガス流量を増量していくようにしてもよい。   Further, in the premixed combustion compression ignition internal combustion engine, the EGR adjustment device may cause the EGR gas flow rate flowing through the high temperature EGR device to be a predetermined flow rate or higher when premixed combustion is performed in the premixed combustion compression ignition internal combustion engine. In this state, the flow rate of the EGR gas flowing through the low temperature EGR device may be increased as the engine load of the premixed combustion compression ignition internal combustion engine increases.

予混合燃焼圧縮着火内燃機関の機関負荷が上昇するに従い燃料噴射量が増加するため、予混合燃焼において過早着火が生じる可能性が高くなる。そこで、気筒内により多くのEGRガスを供給するべく、EGR調整装置によって低温EGR装置を流れるEGRガス流量を増量する。しかし、予混合燃焼用噴射弁から噴射された燃料の蒸発を十分に確保するために、EGR調整装置は、高温EGR装置を流れるEGRガス流量を所定流量以上に維持する。即ち、過早着火を回避するために低温のEGRガスを増量しながらも、噴射燃料の蒸発が十分に行われるように、高温EGR装置と低温EGR装置とのそれぞれに流れる
EGRガス流量がEGR調整装置によって調整される。従って、上記の所定流量とは、予混合燃焼用噴射弁からの噴射燃料の蒸発が確保されるための高温のEGRガス流量である。
Since the fuel injection amount increases as the engine load of the premixed combustion compression ignition internal combustion engine increases, the possibility of premature ignition in premixed combustion increases. Therefore, in order to supply more EGR gas into the cylinder, the flow rate of the EGR gas flowing through the low temperature EGR device is increased by the EGR adjustment device. However, in order to ensure sufficient evaporation of the fuel injected from the premixed combustion injection valve, the EGR adjustment device maintains the EGR gas flow rate flowing through the high temperature EGR device at a predetermined flow rate or higher. That is, while increasing the amount of low-temperature EGR gas to avoid premature ignition, the flow rate of EGR gas flowing through each of the high-temperature EGR device and the low-temperature EGR device is adjusted for EGR so that the injected fuel is sufficiently evaporated. Adjusted by the device. Accordingly, the predetermined flow rate is a high-temperature EGR gas flow rate for ensuring the evaporation of the injected fuel from the premixed combustion injection valve.

更に、上記の予混合燃焼圧縮着火内燃機関が前記気筒内に燃料を噴射する拡散燃焼用噴射弁を備える場合、前記EGR調整装置は、前記拡散燃焼用噴射弁からの燃料噴射によって拡散燃焼が行われるとき、前記高温EGR装置へEGRガスが流れ込むのを遮断するようにしてもよい。   Further, when the premixed combustion compression ignition internal combustion engine includes a diffusion combustion injection valve that injects fuel into the cylinder, the EGR adjustment device performs diffusion combustion by fuel injection from the diffusion combustion injection valve. The EGR gas may be blocked from flowing into the high temperature EGR device.

上記の予混合燃焼圧縮着火内燃機関においては、例えば、該内燃機関の機関負荷が上昇し、予混合燃焼を行うと過早着火を回避することが困難となるとき、予混合燃焼ではなく拡散燃焼が行われる。この拡散燃焼は、圧縮行程上死点近傍の時期における燃料噴射によって行われる。このようなときには、予混合燃焼用噴射弁からの燃料噴射は行われないため、高温EGR装置にEGRガスを流す必要がなくなる。その結果、低温EGR装置のみによってEGRガスの再循環が行われるため、気筒内に効率的に多くのEGRガスを供給することが可能となる。   In the above-mentioned premixed combustion compression ignition internal combustion engine, for example, when the engine load of the internal combustion engine increases and it becomes difficult to avoid pre-ignition when premixed combustion is performed, diffusion combustion instead of premixed combustion is performed. Is done. This diffusion combustion is performed by fuel injection at a time near the top dead center of the compression stroke. In such a case, since fuel injection from the premixed combustion injection valve is not performed, it is not necessary to flow EGR gas through the high temperature EGR device. As a result, since the EGR gas is recirculated only by the low temperature EGR device, a large amount of EGR gas can be efficiently supplied into the cylinder.

予混合気を形成するための燃料噴射を吸気ポートや吸気枝管に設けられた噴射弁で行う予混合燃焼圧縮着火内燃機関において、噴射燃料が吸気ポートや吸気枝管の内壁面に付着するのを回避することが可能となる。   In a premixed combustion compression ignition internal combustion engine in which fuel injection for forming a premixed gas is performed by an injection valve provided in an intake port or intake branch pipe, the injected fuel adheres to the inner wall surface of the intake port or intake branch pipe Can be avoided.

ここで、本発明に係る予混合燃焼圧縮着火内燃機関の実施の形態について図面に基づいて説明する。   Here, an embodiment of a premixed combustion compression ignition internal combustion engine according to the present invention will be described based on the drawings.

図1は、本発明が適用される圧縮着火内燃機関(以下、単に「内燃機関」という。)1の概略構成を表すブロック図である。また、図2は、内燃機関1の主に吸気系を中心とした断面図である。内燃機関1は、4つの気筒2を有する圧縮着火式内燃機関である。また、吸気枝管7に燃料を噴射する予混合燃焼用噴射弁3および気筒2の燃焼室に直接燃料を噴射する通常燃焼用噴射弁11を備えている。予混合燃焼用噴射弁3は吸気枝管7に設けられ、通常燃焼用噴射弁11と比べて噴射燃料に付与する貫徹力は小さい。そして予混合燃焼用噴射弁3から噴射された燃料が吸気枝管7内に拡散し、予混合燃焼用の予混合気を形成する。また、通常燃焼用噴射弁11はシリンダヘッド30に設けられ、気筒2内に直接燃料を噴射する。そして、通常燃焼用噴射弁11からの噴射燃料は比較的貫徹力が強く、予混合燃焼用噴射弁3によって形成された予混合気の着火源となる燃料を噴射する。また、内燃機関1において予混合燃焼が行われないときは、通常燃焼用噴射弁3からの燃料噴射によって拡散燃焼が行われる。   FIG. 1 is a block diagram showing a schematic configuration of a compression ignition internal combustion engine (hereinafter simply referred to as “internal combustion engine”) 1 to which the present invention is applied. FIG. 2 is a cross-sectional view of the internal combustion engine 1 centering mainly on the intake system. The internal combustion engine 1 is a compression ignition type internal combustion engine having four cylinders 2. Further, a premixed combustion injection valve 3 for injecting fuel into the intake branch pipe 7 and a normal combustion injection valve 11 for injecting fuel directly into the combustion chamber of the cylinder 2 are provided. The premixed combustion injection valve 3 is provided in the intake branch pipe 7, and the penetrating force applied to the injected fuel is smaller than that of the normal combustion injection valve 11. The fuel injected from the premixed combustion injection valve 3 diffuses into the intake branch pipe 7 to form a premixed gas for premixed combustion. The normal combustion injection valve 11 is provided in the cylinder head 30 and injects fuel directly into the cylinder 2. The fuel injected from the normal combustion injection valve 11 has a relatively strong penetration force, and injects fuel that becomes an ignition source of the premixed gas formed by the premixed combustion injection valve 3. When premixed combustion is not performed in the internal combustion engine 1, diffusion combustion is performed by fuel injection from the normal combustion injection valve 3.

また、予混合燃焼用噴射弁3および通常燃焼用噴射弁11は、所定圧に加圧された燃料を貯留する蓄圧室4と接続されている。蓄圧室4には、燃料タンク5に貯留されている機関燃料である軽油が、燃料ポンプ6によって供給されている。尚、この燃料ポンプ6の駆動源は内燃機関1の機関出力の一部である。更に、内燃機関1の吸気枝管7の各枝管は、吸気ポート7bを介して燃焼室に接続される。同様に、内燃機関1には排気枝管12が接続され、排気枝管12の各枝管は排気ポートを介して燃焼室に接続される。ここで、吸気ポートおよび排気ポートには、各々吸気弁および排気弁が設けられている。   The premixed combustion injection valve 3 and the normal combustion injection valve 11 are connected to a pressure accumulation chamber 4 that stores fuel pressurized to a predetermined pressure. Light oil, which is engine fuel stored in the fuel tank 5, is supplied to the pressure accumulation chamber 4 by a fuel pump 6. The driving source of the fuel pump 6 is a part of the engine output of the internal combustion engine 1. Further, each branch pipe of the intake branch pipe 7 of the internal combustion engine 1 is connected to the combustion chamber via an intake port 7b. Similarly, an exhaust branch pipe 12 is connected to the internal combustion engine 1, and each branch pipe of the exhaust branch pipe 12 is connected to a combustion chamber via an exhaust port. Here, the intake port and the exhaust port are provided with an intake valve and an exhaust valve, respectively.

また、吸気枝管7は吸気管8に接続されている。更に、吸気管8における吸気枝管7の直上流に位置する部位には、吸気管8内を流れる吸気の流量を調節する吸気絞り弁10が
、更に吸気絞り弁10の上流側には、吸気管8を流れる吸入空気量を検出するエアフローメータ9が設けられている。一方、内燃機関1には、EGR装置21が設けられている。EGR装置21は排気枝管12を流れる排気の一部を吸気枝管7の各枝管へ再循環させる。EGR装置21は、排気枝管12(上流側)から吸気枝管7(下流側)へ延出しているEGR通路22と、EGRガスの流量調整用のEGR弁24と、から構成される。
The intake branch pipe 7 is connected to the intake pipe 8. Further, an intake throttle valve 10 that adjusts the flow rate of the intake air flowing through the intake pipe 8 is located in a portion of the intake pipe 8 that is located immediately upstream of the intake branch pipe 7. An air flow meter 9 for detecting the amount of intake air flowing through the pipe 8 is provided. On the other hand, the EGR device 21 is provided in the internal combustion engine 1. The EGR device 21 recirculates a part of the exhaust gas flowing through the exhaust branch pipe 12 to each branch pipe of the intake branch pipe 7. The EGR device 21 includes an EGR passage 22 extending from the exhaust branch pipe 12 (upstream side) to the intake branch pipe 7 (downstream side), and an EGR valve 24 for adjusting the flow rate of EGR gas.

エアフローメータ9と吸気絞り弁10との間に位置する吸気管8には、排気のエネルギーを駆動源として作動する過給機16のコンプレッサ側が設けられ、排気枝管12には過給機16のタービン側が設けられている。ここで、過給機16は、いわゆる可変容量型遠心過給機であって、その可変ノズルの開度が調整されることで、最終的に到達する過給圧を細かく調整することが可能となる。過給機16より下流の吸気管8には、過給機16によって加圧されて高温となった吸入空気を冷却するためのインタークーラ15が設けられている。また、過給機16のタービン側は、排気管13と接続され、この排気管13は、下流にてマフラーに接続されている。そして、排気管13の途中には、内燃機関1からの排気を浄化する排気浄化触媒14が設けられている。   An intake pipe 8 positioned between the air flow meter 9 and the intake throttle valve 10 is provided with a compressor side of a supercharger 16 that operates using exhaust energy as a drive source. A turbine side is provided. Here, the supercharger 16 is a so-called variable displacement centrifugal supercharger, and it is possible to finely adjust the finally reached supercharging pressure by adjusting the opening of the variable nozzle. Become. The intake pipe 8 downstream of the supercharger 16 is provided with an intercooler 15 for cooling the intake air that has been pressurized by the supercharger 16 and has reached a high temperature. Further, the turbine side of the supercharger 16 is connected to an exhaust pipe 13, and the exhaust pipe 13 is connected to a muffler downstream. An exhaust purification catalyst 14 that purifies exhaust from the internal combustion engine 1 is provided in the middle of the exhaust pipe 13.

また、内燃機関1には、該内燃機関1を制御するための電子制御ユニット(以下、「ECU」という)20が併設されている。このECU20は、CPUの他、後述する各種のプログラム及びマップを記憶するROM、RAM等を備えており、内燃機関1の運転条件や運転者の要求に応じて内燃機関1の運転状態等を制御するユニットである。   The internal combustion engine 1 is also provided with an electronic control unit (hereinafter referred to as “ECU”) 20 for controlling the internal combustion engine 1. The ECU 20 includes a CPU, a ROM, a RAM, and the like for storing various programs and maps to be described later, and controls the operating conditions of the internal combustion engine 1 according to the operating conditions of the internal combustion engine 1 and the driver's request. Unit.

ここで、予混合燃焼用噴射弁3および通常燃焼用噴射弁11は、ECU20からの制御信号によって開閉動作を行う。即ち、ECU20からの指令によって、予混合燃焼用噴射弁3および通常燃焼用噴射弁11からの燃料噴射時期および燃料噴射量が、内燃機関1の機関負荷や機関回転速度等の運転状態に応じて、噴射弁毎に制御され、以て内燃機関1において予混合燃焼や、通常燃焼が行われる。内燃機関1で行われる燃焼制御につては、後述する。また、EGR弁24、過給機16の可変ノズルの開度の開閉等も、ECU20からの指令に従って制御される。   Here, the premixed combustion injection valve 3 and the normal combustion injection valve 11 are opened and closed by a control signal from the ECU 20. That is, according to a command from the ECU 20, the fuel injection timing and the fuel injection amount from the premixed combustion injection valve 3 and the normal combustion injection valve 11 depend on the operating state of the internal combustion engine 1 such as the engine load and the engine speed. Control is performed for each injection valve, so that premixed combustion and normal combustion are performed in the internal combustion engine 1. The combustion control performed in the internal combustion engine 1 will be described later. Further, the opening and closing of the EGR valve 24 and the opening of the variable nozzle of the supercharger 16 are also controlled in accordance with commands from the ECU 20.

更に、アクセル開度センサ26がECU20と電気的に接続されており、ECU20はアクセル開度に応じた信号を受け取り、それより内燃機関1に要求される機関負荷等を算出する。また、クランクポジションセンサ25がECU20と電気的に接続されており、ECU20は内燃機関1の出力軸の回転角に応じた信号を受け取り、内燃機関1の機関回転速度や、該機関回転速度とギア比等から内燃機関1が搭載されている車両の車両速度等を算出する。   Further, an accelerator opening sensor 26 is electrically connected to the ECU 20, and the ECU 20 receives a signal corresponding to the accelerator opening and calculates an engine load required for the internal combustion engine 1 based on the signal. The crank position sensor 25 is electrically connected to the ECU 20, and the ECU 20 receives a signal corresponding to the rotation angle of the output shaft of the internal combustion engine 1, and the engine rotational speed of the internal combustion engine 1, the engine rotational speed and the gear. The vehicle speed or the like of the vehicle on which the internal combustion engine 1 is mounted is calculated from the ratio or the like.

ここで、上記の内燃機関1においては、機関回転速度および機関負荷で表される内燃機関1の運転状態に基づいて、予混合燃焼と通常燃焼(拡散燃焼)とが選択的に行われる。図3に、内燃機関1の運転状態の属する燃焼領域と内燃機関1で行われる燃焼との関係を示す。尚、図3に示すグラフの横軸は内燃機関1の機関回転速度で、縦軸は内燃機関1の機関負荷を表す。ここで、内燃機関1の運転状態は機関回転速度と機関負荷とで表され、低負荷側の予混合燃焼領域R1、高負荷側の通常燃焼領域R2の何れかの燃焼領域に属する。   Here, in the internal combustion engine 1, premixed combustion and normal combustion (diffusion combustion) are selectively performed based on the operating state of the internal combustion engine 1 represented by the engine speed and the engine load. FIG. 3 shows the relationship between the combustion region to which the operating state of the internal combustion engine 1 belongs and the combustion performed in the internal combustion engine 1. 3, the horizontal axis represents the engine speed of the internal combustion engine 1, and the vertical axis represents the engine load of the internal combustion engine 1. Here, the operating state of the internal combustion engine 1 is represented by the engine rotational speed and the engine load, and belongs to one of the combustion regions of the premix combustion region R1 on the low load side and the normal combustion region R2 on the high load side.

内燃機関1の機関負荷が大きくなり燃焼室に供給される燃料量が増大すると、又は機関回転速度が高くなり燃焼室内に予混合気を形成する実質的な時間が短くなると、燃焼室に形成される予混合気が均一とならず、過早着火が生じやすくなる。そこで、内燃機関1の運転状態が、過早着火を回避し得る予混合燃焼領域R1に属するときは予混合燃焼を行うことで、エミッションの改善や燃焼騒音の低減を図る。また、内燃機関1が、過早着火の回避が困難となる通常燃焼領域R2に属するときは予混合燃焼ではなく、いわゆる拡散燃
焼である通常燃焼を行うことで、高機関出力の発揮を図る。
When the engine load of the internal combustion engine 1 increases and the amount of fuel supplied to the combustion chamber increases, or when the engine rotation speed increases and the substantial time for forming the premixed gas in the combustion chamber decreases, it is formed in the combustion chamber. The premixed gas mixture is not uniform and pre-ignition tends to occur. Therefore, when the operating state of the internal combustion engine 1 belongs to the premixed combustion region R1 in which premature ignition can be avoided, premixed combustion is performed to improve emissions and reduce combustion noise. Further, when the internal combustion engine 1 belongs to the normal combustion region R2 where it is difficult to avoid premature ignition, high engine output is achieved by performing normal combustion which is so-called diffusion combustion instead of premixed combustion.

上述したように、内燃機関1の運転状態が属する燃焼領域に応じて、予混合燃焼又は通常燃焼が行われるが、予混合燃焼時には、燃料噴射時期が圧縮行程上死点近傍の時期より早い時期において予混合燃焼用噴射弁11から吸気枝管7内に燃料が噴射され、吸気弁の開弁とともに予混合気が気筒2内に導入され、気筒2内に均一な予混合気が形成される。そして、予混合燃焼時の過早着火を抑制するために、内燃機関1の運転状態が予混合燃焼領域R1に属すると、ECU20によってEGR弁24の開度が、内燃機関1の運転状態が通常燃焼領域R2に属する場合よりも開き側に制御され、より多くのEGRガスが吸気枝管7を経て気筒2内に供給される。即ち、予混合燃焼と通常燃焼が行われるときとでは、EGR弁24の開度は、それぞれの燃焼に適した開度に制御される。   As described above, premixed combustion or normal combustion is performed according to the combustion region to which the operating state of the internal combustion engine 1 belongs, but at the time of premixed combustion, the fuel injection timing is earlier than the timing near the top dead center of the compression stroke. Then, fuel is injected from the premixed combustion injection valve 11 into the intake branch pipe 7, and the premixed gas is introduced into the cylinder 2 when the intake valve is opened, so that a uniform premixed gas is formed in the cylinder 2. . In order to suppress premature ignition at the time of premixed combustion, when the operating state of the internal combustion engine 1 belongs to the premixed combustion region R1, the opening degree of the EGR valve 24 is set by the ECU 20 and the operating state of the internal combustion engine 1 is normally set. The EGR gas is controlled to be opened more than when belonging to the combustion region R2, and more EGR gas is supplied into the cylinder 2 through the intake branch pipe 7. That is, when premixed combustion and normal combustion are performed, the opening degree of the EGR valve 24 is controlled to an opening degree suitable for each combustion.

また、内燃機関1において予混合燃焼が行われるときは、気筒2内に吸気を導入すべく比較的高い過給圧が要求される。そこで、予混合燃焼時には、過給機16の可変ノズルの開度を調整して内燃機関1における過給圧を上昇させる。一方で、通常燃焼時は、機関負荷が比較的大きいことによって排気枝管12内の排気圧の過度の上昇に伴い燃焼状態が悪化するのを回避するために、該可変ノズルの開度が調整される。   Further, when premixed combustion is performed in the internal combustion engine 1, a relatively high supercharging pressure is required to introduce intake air into the cylinder 2. Therefore, during premixed combustion, the opening of the variable nozzle of the supercharger 16 is adjusted to increase the supercharging pressure in the internal combustion engine 1. On the other hand, during normal combustion, the opening degree of the variable nozzle is adjusted in order to avoid deterioration of the combustion state due to an excessive increase in exhaust pressure in the exhaust branch pipe 12 due to a relatively large engine load. Is done.

ここで、図2に戻って、内燃機関1における予混合気の形成について詳細に説明する。EGR装置21によるEGRガスの吸気枝管7への再循環は、EGR通路22が各枝管と導通するEGRガス導入口22aを介して行われる。また、EGR装置21には、EGRガスを冷却するための特別の装置は設けられておらず、内燃機関1での予混合燃焼によって生じたEGRガスが比較的高温の状態で、吸気枝管7に再循環される。ここで、本実施例におけるEGR導入口22aと予混合燃焼用噴射弁3との位置関係は、吸気の流れにおいて、EGRガス導入口22aが予混合燃焼用噴射弁3の下流側に位置している。そのため、予混合燃焼用噴射弁3から噴射された燃料は、比較的高温のEGRガスに曝された状態で吸気と混ざり合い予混合気を形成していく。   Here, returning to FIG. 2, the formation of the premixed gas in the internal combustion engine 1 will be described in detail. The recirculation of the EGR gas to the intake branch pipe 7 by the EGR device 21 is performed via the EGR gas inlet 22a through which the EGR passage 22 communicates with each branch pipe. The EGR device 21 is not provided with a special device for cooling the EGR gas, and the EGR gas generated by the premixed combustion in the internal combustion engine 1 is in a relatively high temperature state, and the intake branch pipe 7 Will be recycled. Here, the positional relationship between the EGR inlet 22a and the premixed combustion injection valve 3 in this embodiment is such that the EGR gas inlet 22a is positioned downstream of the premixed combustion injection valve 3 in the flow of intake air. Yes. Therefore, the fuel injected from the premixed combustion injection valve 3 is mixed with the intake air while being exposed to the relatively high temperature EGR gas to form a premixed gas.

また、予混合燃焼用噴射弁3においては、噴射燃料が微粒化されるように、その噴射圧が高められている。本実施例においては、予混合燃焼用噴射弁3の噴射圧は100MPaに設定されている。これによって、微粒化された噴射燃料が比較的高温のEGRガスに曝されて、該燃料の蒸発が促進される。その結果、噴射燃料の大部分が予混合気の形成に寄与し、吸気枝管7や吸気ポート7bの内壁面に噴射燃料が付着するのが回避される。   In addition, in the premixed combustion injection valve 3, the injection pressure is increased so that the injected fuel is atomized. In this embodiment, the injection pressure of the premixed combustion injection valve 3 is set to 100 MPa. As a result, the atomized fuel is exposed to a relatively high temperature EGR gas, and the evaporation of the fuel is promoted. As a result, most of the injected fuel contributes to the formation of the premixed gas, and it is avoided that the injected fuel adheres to the inner wall surfaces of the intake branch pipe 7 and the intake port 7b.

ここで、図4に予混合燃焼用噴射弁3からの噴射燃料が予混合気を形成するときの吸気温度と、内燃機関1の潤滑オイルの希釈率との関係を示す。この潤滑オイルの希釈は、予混合燃焼用噴射弁3からの噴射燃料が吸気枝管7や吸気ポート7bの内壁面を伝って気筒2内に入り込み、気筒2の内壁面から潤滑オイルに混ざって引き起こされる。図4より、予混合気を形成するための吸気温度が高くなると、オイル希釈率が低下すること、即ち予混合燃焼用噴射弁3からの噴射燃料が吸気枝管7や吸気ポート7bの内壁面に付着する量が減少することが理解できる。更に、予混合燃焼用噴射弁3における噴射圧が高く設定されて噴射燃料の微粒化が行われると、劇的に混合燃焼用噴射弁3からの噴射燃料が吸気枝管7や吸気ポート7bの内壁面に付着する量が減少することが理解できる。   Here, FIG. 4 shows the relationship between the intake air temperature when the fuel injected from the premixed combustion injection valve 3 forms a premixed gas and the dilution rate of the lubricating oil of the internal combustion engine 1. In this dilution of the lubricating oil, the fuel injected from the premixed combustion injection valve 3 enters the cylinder 2 through the inner wall surface of the intake branch pipe 7 and the intake port 7b, and mixes with the lubricating oil from the inner wall surface of the cylinder 2. Is caused. As shown in FIG. 4, when the intake air temperature for forming the premixed gas becomes high, the oil dilution rate decreases, that is, the injected fuel from the premixed combustion injection valve 3 becomes the inner wall surface of the intake branch pipe 7 or the intake port 7b. It can be seen that the amount attached to the surface decreases. Further, when the injection pressure in the premixed combustion injection valve 3 is set high and atomization of the injected fuel is performed, the injected fuel from the mixed combustion injection valve 3 is dramatically supplied to the intake branch pipe 7 and the intake port 7b. It can be understood that the amount attached to the inner wall surface decreases.

従って、図1および図2に示す本実施例の内燃機関1では、予混合燃焼用噴射弁3による燃料の微粒化と、噴射燃料が高温のEGRガスに曝されることによる燃料の蒸発促進によって、混合燃焼用噴射弁3からの噴射燃料の吸気枝管7や吸気ポート7bの内壁面への付着を十分に回避することが可能となる。また、予混合燃焼用噴射弁3の吸気枝管7への取り付けについては、噴霧方向がEGR導入口22aから流れ出るEGRガスに向かうように予混合燃焼用噴射弁3を取り付けることで、上記の効果を十分に引き出すことが可能
となる。
Accordingly, in the internal combustion engine 1 of the present embodiment shown in FIGS. 1 and 2, the fuel is atomized by the premixed combustion injection valve 3 and the evaporation of the fuel is accelerated by exposing the injected fuel to the high-temperature EGR gas. Further, it becomes possible to sufficiently prevent the fuel injected from the mixed combustion injection valve 3 from adhering to the inner wall surfaces of the intake branch pipe 7 and the intake port 7b. The premixed combustion injection valve 3 is attached to the intake branch pipe 7 by attaching the premixed combustion injection valve 3 so that the spray direction is directed to the EGR gas flowing out from the EGR introduction port 22a. Can be fully extracted.

また、EGRガス導入口22aが予混合燃焼用噴射弁3の下流側に位置しているため、予混合燃焼用噴射弁3には直接EGRガスが当たらない。従って、予混合燃焼用噴射弁3の噴口がEGRガス中の煤で詰まったり、噴射弁中の燃料が炭化したりする虞はない。   Further, since the EGR gas introduction port 22a is located downstream of the premixed combustion injection valve 3, the EGR gas does not directly hit the premixed combustion injection valve 3. Therefore, there is no possibility that the injection port of the premixed combustion injection valve 3 is clogged with soot in the EGR gas or the fuel in the injection valve is carbonized.

ここで、予混合燃焼用噴射弁3の噴射燃料の微粒化について、上記の実施例では、噴射圧を高く設定することで燃料の微粒化を行っているが、これに代えて予混用燃焼用噴射弁3の噴口径をより小さくしたり、噴口から噴射された燃料を衝突させる衝突子を設けたり、蓄圧室4に貯留されている燃料の温度を上昇させたり、またはこれらを複合的に行ったりすることで燃料の微粒化を行ってもよい。   Here, regarding atomization of the injected fuel of the premixed combustion injection valve 3, in the above embodiment, the fuel is atomized by setting the injection pressure high. The nozzle diameter of the injection valve 3 is made smaller, a colliding element for colliding the fuel injected from the nozzle hole is provided, the temperature of the fuel stored in the pressure accumulating chamber 4 is increased, or these are performed in combination. Or the atomization of the fuel may be performed.

図5に、本発明に係る予混合燃焼を行う圧縮着火内燃機関1の第二の実施例を示す。図5に示す内燃機関1は図1に示す内燃機関1の変化例であって、図5に示す内燃機関1の機関要素のうち図1に示す内燃機関1の機関要素と同一の機能を有するものについては同一の参照番号を付して、その機能の詳細な説明を省略する。本実施例における内燃機関1の特徴点は、EGR装置21を構成するEGR通路22がシリンダヘッド30の内部に設けられ、且つ実施例1で述べた予混合燃焼用噴射弁3とEGRガス導入口22aの位置関係が保たれている点である。具体的には、上流側の吸気枝管7に予混合燃焼用噴射弁3が設けられ、EGRガス導入口22aが下流側の吸気ポート7bに開口している。   FIG. 5 shows a second embodiment of a compression ignition internal combustion engine 1 that performs premixed combustion according to the present invention. The internal combustion engine 1 shown in FIG. 5 is a modification of the internal combustion engine 1 shown in FIG. 1 and has the same function as the engine elements of the internal combustion engine 1 shown in FIG. 1 among the engine elements of the internal combustion engine 1 shown in FIG. The same reference numerals are assigned to the items, and detailed description of the function is omitted. The feature of the internal combustion engine 1 in the present embodiment is that an EGR passage 22 constituting the EGR device 21 is provided inside the cylinder head 30, and the premixed combustion injection valve 3 and the EGR gas inlet described in the first embodiment. This is the point where the positional relationship 22a is maintained. Specifically, the premixed combustion injection valve 3 is provided in the intake branch pipe 7 on the upstream side, and the EGR gas inlet 22a opens to the intake port 7b on the downstream side.

シリンダヘッド30の内部にEGR通路22が設けられることで、排気枝管12から吸気枝管7に至るまでのEGRガスが流れる経路の長さがより短くなり、吸気枝管7に再循環される時点でのEGRガスの温度低下を可及的に抑制することが可能となる。その結果、予混合燃焼噴射弁3によって噴射された微粒化された燃料を、より高温のEGRガスに曝すことが可能となり、以てより確実に噴射燃料が吸気枝管7や吸気ポート7bの内壁面に付着するのを回避することが可能となる。   By providing the EGR passage 22 inside the cylinder head 30, the length of the path through which the EGR gas flows from the exhaust branch pipe 12 to the intake branch pipe 7 is shortened and recirculated to the intake branch pipe 7. It becomes possible to suppress the temperature drop of the EGR gas at the time as much as possible. As a result, the atomized fuel injected by the premixed combustion injection valve 3 can be exposed to a higher-temperature EGR gas, so that the injected fuel is more reliably contained in the intake branch pipe 7 and the intake port 7b. It is possible to avoid adhesion to the wall surface.

図6に、本発明に係る予混合燃焼を行う圧縮着火内燃機関1の第三の実施例を示す。図6に示す内燃機関1は図1に示す内燃機関1の変化例であって、図6に示す内燃機関1の機関要素のうち図1に示す内燃機関1の機関要素と同一の機能を有するものについては同一の参照番号を付して、その機能の詳細な説明を省略する。本実施例における内燃機関1の特徴点は、EGR装置21を構成するEGR通路22がシリンダヘッド30の内部に設けられ、且つ実施例1で述べた予混合燃焼用噴射弁3とEGRガス導入口22aの位置関係が保たれている点である。具体的には、シリンダヘッド30内の吸気ポート7bにおいて、その上流側に予混合燃焼用噴射弁3が設けられ、その下流側にEGRガス導入口22aが開口している。   FIG. 6 shows a third embodiment of a compression ignition internal combustion engine 1 that performs premixed combustion according to the present invention. The internal combustion engine 1 shown in FIG. 6 is a variation of the internal combustion engine 1 shown in FIG. 1 and has the same function as the engine elements of the internal combustion engine 1 shown in FIG. 1 among the engine elements of the internal combustion engine 1 shown in FIG. The same reference numerals are assigned to the components, and detailed description of the function is omitted. A feature of the internal combustion engine 1 in the present embodiment is that an EGR passage 22 constituting the EGR device 21 is provided in the cylinder head 30, and the premixed combustion injection valve 3 and the EGR gas inlet described in the first embodiment. This is that the positional relationship 22a is maintained. Specifically, in the intake port 7b in the cylinder head 30, the premixed combustion injection valve 3 is provided on the upstream side, and the EGR gas introduction port 22a is opened on the downstream side.

上記の実施例2と同様に、このようにシリンダヘッド30の内部にEGR通路22が設けられることで、排気枝管12から吸気枝管7に至るまでのEGRガスが流れる経路の長さがより短くなり、吸気枝管7に再循環される時点でのEGRガスの温度低下を可及的に抑制することが可能となる。その結果、予混合燃焼噴射弁3によって噴射された微粒化された燃料を、より高温のEGRガスに曝すことが可能となり、以てより確実に噴射燃料が吸気枝管7や吸気ポート7bの内壁面に付着するのを回避することが可能となる。   As in the second embodiment, the EGR passage 22 is provided in the cylinder head 30 in this way, so that the length of the path through which the EGR gas flows from the exhaust branch pipe 12 to the intake branch pipe 7 is further increased. It becomes shorter and it becomes possible to suppress the temperature drop of EGR gas at the time of recirculation to the intake branch pipe 7 as much as possible. As a result, the atomized fuel injected by the premixed combustion injection valve 3 can be exposed to a higher-temperature EGR gas, so that the injected fuel is more reliably contained in the intake branch pipe 7 and the intake port 7b. It is possible to avoid adhesion to the wall surface.

図7に本発明に係る予混合燃焼を行う圧縮着火内燃機関1の第四の実施例を示す。図7に示す内燃機関1は図1、図5に示す内燃機関1の変化例であって、図7に示す内燃機関
1の機関要素のうち図1、図5に示す内燃機関1の機関要素と同一の機能を有するものについては同一の参照番号を付して、その機能の詳細な説明を省略する。本実施例における内燃機関1の特徴点は、EGR装置21を構成するEGR通路22がシリンダヘッド30の内部に設けられ、且つ実施例1で述べた予混合燃焼用噴射弁3とEGRガス導入口22aの位置関係が保たれている点である。具体的には、上流側の吸気枝管7に予混合燃焼用噴射弁3が設けられ、EGRガス導入口22aが下流側の吸気ポート7bに開口している。更に、EGRガス導入口22aの開口方向が、吸気ポート7bの奥部R3に向かっている。この奥部R3は、吸気ポート7bの形状上、吸気(予混合燃焼用噴射弁3から噴射された燃料も含む。)があたりやすい場所であるため、奥部R3には噴射燃料の一部が付着しやすい。
FIG. 7 shows a fourth embodiment of a compression ignition internal combustion engine 1 that performs premixed combustion according to the present invention. The internal combustion engine 1 shown in FIG. 7 is a variation of the internal combustion engine 1 shown in FIGS. 1 and 5, and of the engine elements of the internal combustion engine 1 shown in FIG. 7, the engine elements of the internal combustion engine 1 shown in FIGS. Components having the same functions are denoted by the same reference numerals, and detailed description thereof is omitted. The feature of the internal combustion engine 1 in the present embodiment is that an EGR passage 22 constituting the EGR device 21 is provided inside the cylinder head 30, and the premixed combustion injection valve 3 and the EGR gas inlet described in the first embodiment. This is the point where the positional relationship 22a is maintained. Specifically, the premixed combustion injection valve 3 is provided in the intake branch pipe 7 on the upstream side, and the EGR gas inlet 22a opens to the intake port 7b on the downstream side. Furthermore, the opening direction of the EGR gas introduction port 22a is directed to the inner portion R3 of the intake port 7b. This back portion R3 is a place where intake (including fuel injected from the premixed combustion injection valve 3) is easy to hit due to the shape of the intake port 7b. Easy to adhere.

そこで、このようにEGRガス導入口22aの開口方向を奥部R3に向けることで、EGRガスM1が奥部R3に当たりその温度を常に高温状態に維持し、そこへの燃料付着を抑制することができる。また、仮に奥部R3に噴射燃料が付着しても、付着した燃料が直ちに蒸発するようになる。また、EGRガス導入口22aと予混合燃焼用噴射弁3との位置関係から、上述したように、予混合燃焼噴射弁3によって噴射された微粒化された燃料を、より高温のEGRガスに曝すことが可能となり、以てより確実に噴射燃料が吸気枝管7や吸気ポート7bの内壁面に付着するのを回避することが可能となる。更に、シリンダヘッド30の内部にEGR通路22が設けられることで、排気枝管12から吸気枝管7に至るまでのEGRガスが流れる経路の長さがより短くなり、吸気枝管7に再循環される時点でのEGRガスの温度低下を可及的に抑制することが可能となる。   Therefore, by directing the opening direction of the EGR gas introduction port 22a toward the back portion R3 in this way, the EGR gas M1 hits the back portion R3, and the temperature is always maintained at a high temperature, thereby suppressing fuel adhesion thereto. it can. Even if the injected fuel adheres to the inner portion R3, the attached fuel immediately evaporates. Further, from the positional relationship between the EGR gas inlet 22a and the premixed combustion injection valve 3, as described above, the atomized fuel injected by the premixed combustion injection valve 3 is exposed to a higher temperature EGR gas. Therefore, it is possible to more reliably prevent the injected fuel from adhering to the inner wall surfaces of the intake branch pipe 7 and the intake port 7b. Further, the EGR passage 22 is provided inside the cylinder head 30, whereby the length of the path through which the EGR gas flows from the exhaust branch pipe 12 to the intake branch pipe 7 becomes shorter, and recirculation is performed in the intake branch pipe 7. It is possible to suppress the temperature drop of the EGR gas at the time of being performed as much as possible.

図8に、本発明に係る予混合燃焼を行う圧縮着火内燃機関1の第五の実施例を示す。図8に示す内燃機関1は図1に示す内燃機関1の変化例であって、図8に示す内燃機関1の機関要素のうち図1に示す内燃機関1の機関要素と同一の機能を有するものについては同一の参照番号を付して、その機能の詳細な説明を省略する。予混合燃焼用噴射弁3は、吸気枝管7に設けられている。本実施例における内燃機関1の特徴点は、EGRガス導入口22aが予混合燃焼用噴射弁3の上流側に位置し、且つEGRガス導入口22aからのEGRガスは、EGRガス導入装置32によって、予混合燃焼用噴射弁3の噴口近くまで導かれている。即ち、予混合燃焼用噴射弁3の噴口に向けて開口しているEGRガス導入装置32によって、EGR通路22を経て再循環されたEGRガスが吸気枝管7内に供給される。   FIG. 8 shows a fifth embodiment of a compression ignition internal combustion engine 1 that performs premixed combustion according to the present invention. The internal combustion engine 1 shown in FIG. 8 is a variation of the internal combustion engine 1 shown in FIG. 1, and has the same function as the engine elements of the internal combustion engine 1 shown in FIG. 1 among the engine elements of the internal combustion engine 1 shown in FIG. The same reference numerals are assigned to the items, and detailed description of the function is omitted. The premixed combustion injection valve 3 is provided in the intake branch pipe 7. The characteristic point of the internal combustion engine 1 in this embodiment is that the EGR gas inlet 22a is located upstream of the premixed combustion injection valve 3, and the EGR gas from the EGR gas inlet 22a is fed by the EGR gas inlet 32. The premixed combustion injection valve 3 is led to the vicinity of the injection hole. That is, the EGR gas recirculated through the EGR passage 22 is supplied into the intake branch pipe 7 by the EGR gas introduction device 32 opened toward the injection port of the premixed combustion injection valve 3.

このように構成されることで、高温のEGRガスが吸気枝管7を流れる新気と混ざり合い温度低下する前に、予混合燃焼用噴射弁3からの噴射燃料と混ざり合うことになる。その結果、微粒化された噴射燃料をより高温のEGRガスに曝すことが可能となり、以てより確実に噴射燃料が吸気枝管7や吸気ポート7bの内壁面に付着するのを回避することが可能となる。   With this configuration, the high-temperature EGR gas is mixed with the fresh air flowing through the intake branch pipe 7 and mixed with the fuel injected from the premixed combustion injection valve 3 before the temperature is lowered. As a result, the atomized injected fuel can be exposed to a higher temperature EGR gas, and thus the injected fuel can be more reliably avoided from adhering to the inner wall surfaces of the intake branch pipe 7 and the intake port 7b. It becomes possible.

図9に、本発明に係る予混合燃焼を行う圧縮着火内燃機関1の第六の実施例を示す。図9に示す内燃機関1は図1に示す内燃機関1の変化例であって、図9に示す内燃機関1の機関要素のうち図1に示す内燃機関1の機関要素と同一の機能を有するものについては同一の参照番号を付して、その機能の詳細な説明を省略する。図1に示す内燃機関1と図9に示す内燃機関1との相違点は、EGR装置21の構成である。   FIG. 9 shows a sixth embodiment of a compression ignition internal combustion engine 1 that performs premixed combustion according to the present invention. The internal combustion engine 1 shown in FIG. 9 is a variation of the internal combustion engine 1 shown in FIG. 1, and has the same function as the engine elements of the internal combustion engine 1 shown in FIG. 1 among the engine elements of the internal combustion engine 1 shown in FIG. The same reference numerals are assigned to the items, and detailed description of the function is omitted. The difference between the internal combustion engine 1 shown in FIG. 1 and the internal combustion engine 1 shown in FIG. 9 is the configuration of the EGR device 21.

本実施例においては、EGR装置21は、EGR通路22、EGR弁24に加えて、低温EGR通路41とEGRクーラー40とで構成される。低温EGR通路41はEGR弁24から分岐して、吸気絞り弁10の下流側の吸気管8につながる通路である。その低温
EGR通路41の途中に、そこを流れるEGRガスを冷却するEGRクーラー40が設けられている。また、本実施例におけるEGR弁24は、EGR通路22と低温EGR通路41とに流れ込むEGRガスのそれぞれの流量を制御する弁である。
In this embodiment, the EGR device 21 includes a low temperature EGR passage 41 and an EGR cooler 40 in addition to the EGR passage 22 and the EGR valve 24. The low temperature EGR passage 41 is a passage branched from the EGR valve 24 and connected to the intake pipe 8 on the downstream side of the intake throttle valve 10. An EGR cooler 40 that cools the EGR gas flowing therethrough is provided in the middle of the low-temperature EGR passage 41. Further, the EGR valve 24 in the present embodiment is a valve that controls the flow rates of the EGR gas flowing into the EGR passage 22 and the low temperature EGR passage 41.

低温EGR通路41にEGRガスを流し込むことで、EGRクーラー40によってEGRガスが冷却される。その結果、気筒2内に供給される吸気温度が低下するとともに、より多くのEGRガスを気筒2内に供給することが可能となるため、予混合燃焼における過早着火を効率的に回避することが可能となり、また拡散燃焼におけるエミッションの改善も図られる。そこで、本実施例における内燃機関1においては、その運転状態に基づいてEGR弁24の開度を調整し、EGR通路22に流れるEGRガス流量と低温EGR通路41に流れるEGRガス流量とが制御される。   The EGR gas is cooled by the EGR cooler 40 by flowing the EGR gas into the low temperature EGR passage 41. As a result, the temperature of the intake air supplied into the cylinder 2 decreases, and more EGR gas can be supplied into the cylinder 2 so that premature ignition in premixed combustion can be efficiently avoided. It is possible to improve the emission in diffusion combustion. Therefore, in the internal combustion engine 1 according to the present embodiment, the opening degree of the EGR valve 24 is adjusted based on the operating state, and the EGR gas flow rate flowing through the EGR passage 22 and the EGR gas flow rate flowing through the low temperature EGR passage 41 are controlled. The

上記のEGRガス流量の制御について、図10に基づいて説明する。図10中のグラフの横軸は内燃機関1の機関負荷を表し、縦軸は気筒2内に供給される吸入ガス量を表す。この吸入ガス量は、EGR通路22を流れて吸気枝管7に再循環される比較的高温のEGRガス量(以下、「高温EGRガス量」という。)と、低温EGR通路41を流れてEGRクーラー40で冷却されて吸気管8に再循環される比較的低温のEGRガス量(以下、「低温EGRガス量」という。)と、過給機16によって過給された新気量の総和である。   The control of the EGR gas flow rate will be described with reference to FIG. The horizontal axis of the graph in FIG. 10 represents the engine load of the internal combustion engine 1, and the vertical axis represents the amount of intake gas supplied into the cylinder 2. This intake gas amount flows through the EGR passage 22 and is recirculated to the intake branch pipe 7, and the relatively high temperature EGR gas amount (hereinafter referred to as “high temperature EGR gas amount”) and the low temperature EGR passage 41 flow through the EGR. The sum of the relatively low temperature EGR gas amount cooled by the cooler 40 and recirculated to the intake pipe 8 (hereinafter referred to as “low temperature EGR gas amount”) and the amount of fresh air supercharged by the supercharger 16. is there.

ここで、内燃機関1の機関負荷が小さくその運転状態が予混合燃焼領域R1に属しているとき、予混合燃焼用噴射弁3からの燃料噴射によって予混合燃焼が行われる。このとき、常に高温EGRガス量は所定量G1以上となるように、EGR弁24の開度が調整される。この所定量G1は、上述した実施例1で示したように、予混合燃焼時に予混合燃焼用噴射弁3から噴射された微粒化された燃料を蒸発させるのに必要な高温EGRガス量である。また、内燃機関1の機関負荷の増加とともに予混合燃焼用噴射弁3からの燃料噴射量が増加していくため、過早着火の可能性が高くなる。そこで、機関負荷の増加とともに、低温EGRガス量を増量していき、気筒2内における実質的なEGRガス量を過早着火が抑制可能な量に維持する。   Here, when the engine load of the internal combustion engine 1 is small and its operating state belongs to the premixed combustion region R1, premixed combustion is performed by fuel injection from the premixed combustion injection valve 3. At this time, the opening degree of the EGR valve 24 is adjusted so that the high-temperature EGR gas amount is always equal to or greater than the predetermined amount G1. This predetermined amount G1 is the amount of high-temperature EGR gas necessary for evaporating the atomized fuel injected from the premixed combustion injection valve 3 during premixed combustion, as shown in the first embodiment. . Further, since the fuel injection amount from the premixed combustion injection valve 3 increases as the engine load of the internal combustion engine 1 increases, the possibility of premature ignition increases. Therefore, as the engine load increases, the amount of low-temperature EGR gas is increased, and the substantial amount of EGR gas in the cylinder 2 is maintained at an amount that can suppress pre-ignition.

更に、内燃機関1の機関負荷が上昇し、その運転状態が通常燃焼領域R2に属するようになると、予混合燃焼用噴射弁3からの燃料噴射が中止され、通常燃焼用噴射弁3からの燃料噴射により拡散燃焼が行われる。従って、この拡散燃焼が行われるときは、EGR弁24の開度を調整しEGR通路22に流れるEGRガス量を遮断し、EGRガスのすべてを低温EGR通路41に流す。このようにすることで、拡散燃焼時のエミッション改善に必要な量のEGRガスを効率的に気筒2内に供給する。尚、内燃機関1の機関負荷が更に上昇した場合は、その機関負荷に対応すべく、EGR装置21によるEGRガスの再循環を中断し、気筒2内に十分量の新気を確保する。   Further, when the engine load of the internal combustion engine 1 increases and the operation state belongs to the normal combustion region R2, the fuel injection from the premixed combustion injection valve 3 is stopped, and the fuel from the normal combustion injection valve 3 is stopped. Diffusion combustion is performed by injection. Therefore, when this diffusion combustion is performed, the opening degree of the EGR valve 24 is adjusted, the amount of EGR gas flowing through the EGR passage 22 is shut off, and all of the EGR gas flows through the low temperature EGR passage 41. In this way, an amount of EGR gas necessary for improving the emission during diffusion combustion is efficiently supplied into the cylinder 2. When the engine load of the internal combustion engine 1 further increases, the EGR gas recirculation by the EGR device 21 is interrupted to accommodate the engine load, and a sufficient amount of fresh air is secured in the cylinder 2.

以上より、本実施例による内燃機関1においては、EGR弁24の開度の調整によって、予混合燃焼時の噴射燃料の吸気枝管7や吸気ポートへの付着を回避することが可能となるとともに、運転状態に応じて行われる燃焼に適した量のEGRガスを気筒2内に供給することが可能となる。   As described above, in the internal combustion engine 1 according to this embodiment, by adjusting the opening degree of the EGR valve 24, it is possible to avoid the injection fuel from adhering to the intake branch pipe 7 and the intake port during premixed combustion. Thus, it becomes possible to supply an amount of EGR gas suitable for combustion performed according to the operating state into the cylinder 2.

図11に、本発明に係る予混合燃焼を行う圧縮着火内燃機関1の第七の実施例を示す。図11に示す内燃機関1は図9に示す内燃機関1の変化例であって、図11に示す内燃機関1の機関要素のうち図9に示す内燃機関1の機関要素と同一の機能を有するものについては同一の参照番号を付して、その機能の詳細な説明を省略する。図9に示す内燃機関1と図11に示す内燃機関1との相違点は、EGR装置21の構成である。   FIG. 11 shows a seventh embodiment of a compression ignition internal combustion engine 1 that performs premixed combustion according to the present invention. The internal combustion engine 1 shown in FIG. 11 is a variation of the internal combustion engine 1 shown in FIG. 9 and has the same function as the engine elements of the internal combustion engine 1 shown in FIG. 9 among the engine elements of the internal combustion engine 1 shown in FIG. The same reference numerals are assigned to the items, and detailed description of the function is omitted. The difference between the internal combustion engine 1 shown in FIG. 9 and the internal combustion engine 1 shown in FIG. 11 is the configuration of the EGR device 21.

本実施例においては、EGR装置21は、EGR通路22、EGR弁24aおよび24b、低温EGR通路41とEGRクーラー40とで構成される。そして、EGR通路22を流れるEGRガス流量はEGR弁24bによって、低温EGR通路41を流れるEGRガス流量はEGR弁24aによって、それぞれECU20からの指令に基づいて制御される。尚、各EGR弁の制御は、上述した実施例6における高温EGRガス量、低温EGRガス量が気筒2内に供給されるように行われる。   In the present embodiment, the EGR device 21 includes an EGR passage 22, EGR valves 24 a and 24 b, a low temperature EGR passage 41, and an EGR cooler 40. The EGR gas flow rate flowing through the EGR passage 22 is controlled by the EGR valve 24b, and the EGR gas flow rate flowing through the low temperature EGR passage 41 is controlled by the EGR valve 24a based on commands from the ECU 20, respectively. The control of each EGR valve is performed so that the high temperature EGR gas amount and the low temperature EGR gas amount in the sixth embodiment described above are supplied into the cylinder 2.

本発明の実施例1に係る予混合燃焼圧縮着火内燃機関の概略構成を表す図である。1 is a diagram illustrating a schematic configuration of a premixed combustion compression ignition internal combustion engine according to a first embodiment of the present invention. 本発明の実施例1に係る予混合燃焼圧縮着火内燃機関の吸気系近傍の概略構成を表す図である。It is a figure showing the schematic structure of the intake system vicinity of the premixed combustion compression ignition internal combustion engine which concerns on Example 1 of this invention. 本発明の実施例に係る予混合燃焼圧縮着火内燃機関において、その運転状態が属する燃焼領域を示す図である。In the premixed combustion compression ignition internal combustion engine which concerns on the Example of this invention, it is a figure which shows the combustion area to which the operating state belongs. 本発明の実施例に係る予混合燃焼圧縮着火内燃機関において、予混合燃焼用噴射弁からの噴射圧毎の、吸気温度と潤滑オイルの希釈率との関係を示す図である。In the premixed combustion compression ignition internal combustion engine according to the embodiment of the present invention, it is a diagram showing the relationship between the intake air temperature and the dilution rate of the lubricating oil for each injection pressure from the premixed combustion injection valve. 本発明の実施例2に係る予混合燃焼圧縮着火内燃機関の吸気系近傍の概略構成を表す図である。It is a figure showing the schematic structure of the intake system vicinity of the premixed combustion compression ignition internal combustion engine which concerns on Example 2 of this invention. 本発明の実施例3に係る予混合燃焼圧縮着火内燃機関の吸気系近傍の概略構成を表す図である。It is a figure showing schematic structure of the intake system vicinity of the premixed combustion compression ignition internal combustion engine which concerns on Example 3 of this invention. 本発明の実施例4に係る予混合燃焼圧縮着火内燃機関の吸気系近傍の概略構成を表す図である。It is a figure showing schematic structure of the intake system vicinity of the premixed combustion compression ignition internal combustion engine which concerns on Example 4 of this invention. 本発明の実施例5に係る予混合燃焼圧縮着火内燃機関の吸気系近傍の概略構成を表す図である。It is a figure showing the schematic structure of the intake system vicinity of the premixed combustion compression ignition internal combustion engine which concerns on Example 5 of this invention. 本発明の実施例6に係る予混合燃焼圧縮着火内燃機関の概略構成を表す図である。It is a figure showing schematic structure of the premixed combustion compression ignition internal combustion engine which concerns on Example 6 of this invention. 本発明の実施例6に係る圧縮着火内燃機関において、機関負荷と気筒内に供給される高温EGRガス量と低温EGRガス量との関係を示す図である。In the compression ignition internal combustion engine which concerns on Example 6 of this invention, it is a figure which shows the relationship between the engine load, the high temperature EGR gas amount supplied in a cylinder, and the low temperature EGR gas amount. 本発明の実施例7に係る予混合燃焼圧縮着火内燃機関の概略構成を表す図である。It is a figure showing schematic structure of the premixed combustion compression ignition internal combustion engine which concerns on Example 7 of this invention.

符号の説明Explanation of symbols

1・・・・圧縮着火内燃機関(内燃機関)
2・・・・気筒
3・・・・予混合燃焼用噴射弁
7・・・・吸気枝管
7b・・・・吸気ポート
8・・・・吸気管
11・・・・通常燃焼用噴射弁
12・・・・排気枝管
20・・・・ECU
21・・・・EGR装置
22・・・・EGR通路
22a・・・・EGRガス導入口
24・・・・EGR弁
24a・・・・EGR弁
24b・・・・EGR弁
25・・・・クランクポジションセンサ
26・・・・アクセル開度センサ
30・・・・シリンダヘッド
32・・・・EGRガス導入装置
40・・・・EGRクーラー
41・・・・低温EGR通路
R1・・・・予混合燃焼領域
R2・・・・通常燃焼領域
R3・・・・奥部
1. Compression compression internal combustion engine (internal combustion engine)
2 ... Cylinder 3 ... Premixed combustion injection valve 7 ... Intake branch pipe 7b ... Intake port 8 ... Intake pipe 11 ... Normal combustion injection valve 12 .... Exhaust branch pipe 20 ... ECU
21 ... EGR device 22 ... EGR passage 22a ... EGR gas inlet 24 ... EGR valve 24a ... EGR valve 24b ... EGR valve 25 ... crank Position sensor 26 ... Accelerator opening sensor 30 ... Cylinder head 32 ... EGR gas introduction device 40 ... EGR cooler 41 ... Low temperature EGR passage R1 ... Premixed combustion Region R2 ... Normal combustion region R3 ... Back

Claims (9)

圧縮着火内燃機関の吸気枝管または吸気ポートに燃料噴射を行うための予混合燃焼用噴射弁を有し、該予混合燃焼用噴射弁から圧縮行程上死点近傍の時期より早い時期に燃料噴射を行い気筒内に予混合気を形成して予混合燃焼を行う予混合燃焼圧縮着火内燃機関であって、
前記予混合燃焼用噴射弁には、噴射燃料を微粒化する微粒化手段が備えられ、
予混合燃焼で生じるEGRガスを、前記予混合燃焼用噴射弁が設けられた前記吸気枝管または前記吸気ポートの噴射弁設置部位近傍のEGRガス導入口に導く高温EGR装置を、更に備えることを特徴とする予混合燃焼圧縮着火内燃機関。
A premixed combustion injection valve for injecting fuel into an intake branch pipe or intake port of a compression ignition internal combustion engine, and fuel injection from the premixed combustion injection valve at a time earlier than the time near the top dead center of the compression stroke A premixed combustion compression ignition internal combustion engine that performs premixed combustion by forming a premixed gas in a cylinder,
The premixed combustion injection valve is provided with atomization means for atomizing the injected fuel,
A high-temperature EGR device that further guides EGR gas generated by premixed combustion to the intake branch pipe provided with the premixed combustion injection valve or the EGR gas inlet near the injection valve installation site of the intake port; A premixed combustion compression ignition internal combustion engine.
前記微粒化手段は、前記予混合燃焼用噴射弁の噴口径が所定大きさより小さいこと、該予混合燃焼用噴射弁における噴射圧が所定噴射圧より大きいこと、または該予混合燃焼用噴射弁から噴射された燃料を衝突させる衝突子が設けられることのうち少なくともいずれかであることを特徴とする請求項1に記載の予混合燃焼圧縮着火内燃機関。   The atomizing means may be configured such that the nozzle diameter of the premixed combustion injection valve is smaller than a predetermined size, the injection pressure in the premixed combustion injection valve is larger than a predetermined injection pressure, or from the premixed combustion injection valve 2. The premixed combustion compression ignition internal combustion engine according to claim 1, wherein at least one of collisions for colliding the injected fuel is provided. 前記EGRガス導入口は、前記噴射弁設置部位の吸気流れにおける下流側に位置することを特徴とする請求項1又は請求項2に記載の予混合燃焼圧縮着火内燃機関。   3. The premixed combustion compression ignition internal combustion engine according to claim 1, wherein the EGR gas introduction port is located downstream in the intake flow of the injection valve installation site. 4. 前記高温EGR装置は、前記予混合圧縮着火内燃機関のシリンダヘッドの内部に設けられていることを特徴とする請求項1から請求項3の何れかに記載の予混合燃焼圧縮着火内燃機関。   4. The premixed combustion compression ignition internal combustion engine according to claim 1, wherein the high temperature EGR device is provided inside a cylinder head of the premix compression ignition internal combustion engine. 5. 前記EGRガス導入口は、前記予混合燃焼用噴射弁からの噴射燃料が付着する前記吸気枝管または前記吸気ポートの所定付着部位に向けて開口していることを特徴とする請求項1から請求項4の何れかに記載の予混合燃焼圧縮着火内燃機関。   The said EGR gas inlet is open toward the predetermined attachment site | part of the said intake branch pipe or the said intake port to which the injection fuel from the said premix combustion injection valve adheres. Item 5. A premixed combustion compression ignition internal combustion engine according to any one of Items 4 to 6. 前記EGRガス導入口は、前記噴射弁設置部位の吸気流れにおける上流側に位置し、
前記EGRガス導入口から前記吸気枝管または前記吸気ポートに突出し且つ前記予混合燃焼用噴射弁に向けて開口することで、該EGRガス導入口からEGRガスを導入するEGRガス導入装置を、更に備えることを特徴とする請求項1又は請求項2に記載の予混合燃焼圧縮着火内燃機関。
The EGR gas inlet is located on the upstream side in the intake flow of the injection valve installation site,
An EGR gas introduction device for introducing EGR gas from the EGR gas introduction port by projecting from the EGR gas introduction port to the intake branch pipe or the intake port and opening toward the premixed combustion injection valve; The premixed combustion compression ignition internal combustion engine according to claim 1 or 2, further comprising:
予混合燃焼で生じるEGRガスの少なくとも一部を冷却するEGRクーラーと、
前記EGRクーラーによって冷却されたEGRガスを、前記予混合燃焼圧縮着火内燃機関の吸気通路に導く低温EGR装置と、
前記予混合燃焼圧縮着火内燃機関の運転状態に基づいて、前記高温EGR装置と前記低温EGR装置を流れるそれぞれのEGRガス流量を調整するEGR調整装置と、を更に備えることを特徴とする請求項1から請求項6の何れかに記載された予混合燃焼圧縮着火内燃機関。
An EGR cooler that cools at least part of the EGR gas generated by the premixed combustion;
A low-temperature EGR device that guides EGR gas cooled by the EGR cooler to an intake passage of the premixed combustion compression ignition internal combustion engine;
The EGR adjusting device that adjusts the flow rate of each EGR gas flowing through the high temperature EGR device and the low temperature EGR device based on the operating state of the premixed combustion compression ignition internal combustion engine is further provided. A premixed combustion compression ignition internal combustion engine according to any one of claims 1 to 6.
前記EGR調整装置は、前記予混合燃焼圧縮着火内燃機関において予混合燃焼が行われるとき、前記高温EGR装置を流れるEGRガス流量を所定流量以上に維持した状態で、該予混合燃焼圧縮着火内燃機関の機関負荷が上昇するに従い前記低温EGR装置を流れるEGRガス流量を増量していくことを特徴とする請求項7に記載の予混合燃焼圧縮着火内燃機関。   When the premixed combustion is performed in the premixed combustion compression ignition internal combustion engine, the EGR adjusting device maintains the EGR gas flow rate flowing through the high temperature EGR device at a predetermined flow rate or higher, and the premixed combustion compression ignition internal combustion engine. The premixed combustion compression ignition internal combustion engine according to claim 7, wherein the flow rate of the EGR gas flowing through the low temperature EGR device is increased as the engine load increases. 前記気筒内に燃料を噴射する拡散燃焼用噴射弁を、更に備え、
前記EGR調整装置は、前記拡散燃焼用噴射弁からの燃料噴射によって拡散燃焼が行われるとき、前記高温EGR装置へEGRガスが流れ込むのを遮断することを特徴とする請
求項8に記載の予混合燃焼圧縮着火内燃機関。
A diffusion combustion injection valve for injecting fuel into the cylinder;
The premixing according to claim 8, wherein the EGR adjusting device blocks the flow of EGR gas into the high temperature EGR device when diffusion combustion is performed by fuel injection from the diffusion combustion injection valve. Combustion compression ignition internal combustion engine.
JP2005057815A 2005-03-02 2005-03-02 Premixed combustion compression ignition internal combustion engine Expired - Fee Related JP4552696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005057815A JP4552696B2 (en) 2005-03-02 2005-03-02 Premixed combustion compression ignition internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005057815A JP4552696B2 (en) 2005-03-02 2005-03-02 Premixed combustion compression ignition internal combustion engine

Publications (2)

Publication Number Publication Date
JP2006242074A true JP2006242074A (en) 2006-09-14
JP4552696B2 JP4552696B2 (en) 2010-09-29

Family

ID=37048727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005057815A Expired - Fee Related JP4552696B2 (en) 2005-03-02 2005-03-02 Premixed combustion compression ignition internal combustion engine

Country Status (1)

Country Link
JP (1) JP4552696B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009162197A (en) * 2008-01-10 2009-07-23 Daihatsu Motor Co Ltd Exhaust gas recirculation device of multiple cylinder internal combustion engine
FR3020414A1 (en) * 2014-04-23 2015-10-30 Valeo Systemes Thermiques EXHAUST GAS RECIRCULATION SYSTEM.
JP2016017467A (en) * 2014-07-09 2016-02-01 三菱自動車工業株式会社 Internal combustion engine recirculated exhaust gas introduction device
WO2016180473A1 (en) * 2015-05-12 2016-11-17 Valeo Systemes Thermiques Exhaust gas recirculation system
JP2017020474A (en) * 2015-07-15 2017-01-26 三菱自動車工業株式会社 engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0587024A (en) * 1991-09-26 1993-04-06 Mazda Motor Corp Air intake device of engine
JP2004068697A (en) * 2002-08-06 2004-03-04 Toyota Motor Corp Fuel supply control device for internal combustion engine
JP2005051893A (en) * 2003-07-31 2005-02-24 Mazda Motor Corp Controller for hybrid vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0587024A (en) * 1991-09-26 1993-04-06 Mazda Motor Corp Air intake device of engine
JP2004068697A (en) * 2002-08-06 2004-03-04 Toyota Motor Corp Fuel supply control device for internal combustion engine
JP2005051893A (en) * 2003-07-31 2005-02-24 Mazda Motor Corp Controller for hybrid vehicle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009162197A (en) * 2008-01-10 2009-07-23 Daihatsu Motor Co Ltd Exhaust gas recirculation device of multiple cylinder internal combustion engine
FR3020414A1 (en) * 2014-04-23 2015-10-30 Valeo Systemes Thermiques EXHAUST GAS RECIRCULATION SYSTEM.
JP2016017467A (en) * 2014-07-09 2016-02-01 三菱自動車工業株式会社 Internal combustion engine recirculated exhaust gas introduction device
WO2016180473A1 (en) * 2015-05-12 2016-11-17 Valeo Systemes Thermiques Exhaust gas recirculation system
JP2017020474A (en) * 2015-07-15 2017-01-26 三菱自動車工業株式会社 engine

Also Published As

Publication number Publication date
JP4552696B2 (en) 2010-09-29

Similar Documents

Publication Publication Date Title
KR100644964B1 (en) Compression ignition internal combustion engine
US6782867B2 (en) Direct injection gasoline engine
US9234478B2 (en) Diesel engine for automobile, control device and control method
JP4161974B2 (en) Control device for diesel internal combustion engine
US20030230276A1 (en) Combustion control apparatus for an engine
US20130054119A1 (en) Control system for combustion system
JP4552696B2 (en) Premixed combustion compression ignition internal combustion engine
CN203009056U (en) Device for realizing efficient and clean low-temperature combustion of diesel engine
JP3879672B2 (en) Engine combustion control device
JP5532008B2 (en) Internal combustion engine
WO2011118030A1 (en) Combustion controller for internal combustion engine
JP4419860B2 (en) Combustion control system for compression ignition internal combustion engine
JP4747553B2 (en) Compression ignition internal combustion engine
JP2011089445A (en) Combustion control device of internal combustion engine
JP5093407B2 (en) Combustion control device for internal combustion engine
JP2012026412A (en) Fuel injection control device of internal combustion engine
JP2003286909A (en) Exhaust gas recirculation device for diesel engine
JP2004044453A (en) Fuel injection control device for internal combustion engine
JP2005226486A (en) Premixed compression ignition internal combustion engine
WO2023105860A1 (en) Diesel engine
JP5861826B2 (en) Internal combustion engine
WO2021065426A1 (en) Internal combustion engine
JP2008064073A (en) Fuel injection device
JP2005226487A (en) Fuel injection control method for internal combustion engine
KR100767505B1 (en) A swirl generating apparatus of intake port for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees