JPH058691B2 - - Google Patents

Info

Publication number
JPH058691B2
JPH058691B2 JP60109985A JP10998585A JPH058691B2 JP H058691 B2 JPH058691 B2 JP H058691B2 JP 60109985 A JP60109985 A JP 60109985A JP 10998585 A JP10998585 A JP 10998585A JP H058691 B2 JPH058691 B2 JP H058691B2
Authority
JP
Japan
Prior art keywords
compound
reaction
group
compounds
naphthoquinone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60109985A
Other languages
Japanese (ja)
Other versions
JPS61268650A (en
Inventor
Kinji Hashimoto
Kyoto Goto
Yoshiaki Tsuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otsuka Pharmaceutical Co Ltd
Original Assignee
Otsuka Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Pharmaceutical Co Ltd filed Critical Otsuka Pharmaceutical Co Ltd
Priority to JP10998585A priority Critical patent/JPS61268650A/en
Publication of JPS61268650A publication Critical patent/JPS61268650A/en
Publication of JPH058691B2 publication Critical patent/JPH058691B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は新規なナフトキノン誘導体に関する。 従来の技術 本発明のナフトキノン誘導体は、文献未載の新
規化合物である。 発明が解決しようとする問題点 本発明は、後記するように医薬品として有用な
化合物を提供することをその目的としている。 問題点を解決するための手段 本発明によれば、下記一般式(1)で表わされるナ
フトキノン誘導体が提供される。 〔式中R3は水素原子又は−CHR4−COOR5
(R4及びR5は夫々水素原子又は低級アルキル基で
ある)を示し、該R3が水素原子のとき、R1及び
R2は一方が水酸基もしくはカルボキシル基を有
するアルキル基で且他方がA−S(O)n−基
(Aは水酸基を有することのある低級アルキル基
及びnは0,1又は2である)を示す。またR3
が−CHR4−COOR5基のとき、R1は低級アルキ
ル基又は
INDUSTRIAL APPLICATION FIELD The present invention relates to novel naphthoquinone derivatives. Prior Art The naphthoquinone derivative of the present invention is a novel compound that has not been described in any literature. Problems to be Solved by the Invention The purpose of the present invention is to provide a compound useful as a pharmaceutical, as described later. Means for Solving the Problems According to the present invention, a naphthoquinone derivative represented by the following general formula (1) is provided. [In the formula, R 3 represents a hydrogen atom or a -CHR 4 -COOR 5 group (R 4 and R 5 are a hydrogen atom or a lower alkyl group, respectively), and when R 3 is a hydrogen atom, R 1 and
One of R 2 is an alkyl group having a hydroxyl group or a carboxyl group, and the other is an A-S(O)n- group (A is a lower alkyl group that may have a hydroxyl group, and n is 0, 1, or 2). show. Also R 3
is −CHR 4 −COOR 5 group, R 1 is a lower alkyl group or

【式】基を示し、R2は水素原 子又はB−S−基(Bは低級アルキル基を有する
ことのあるフエニル基又は低級アルキル基であ
る)を示すか、R1及びR2は両者が結合して−
(CH24−基を形成してもよい。〕 本明細書において、低級アルキル基のなる語
は、炭素数1〜6の直鎖状又は分枝鎖状アルキル
基を指称するものであり、その具体例には、メチ
ル、エチル、プロピル、イソプロピル、ブチル、
イソブチル、sec−ブチル、tert−ブチル、ペン
チル、ヘキシル基等が包含される。またアルキル
基なる語は、炭素数1〜20の直鎖状又は分枝鎖状
アルキル基を指称し、その具体例には上記例示の
低級アルキル基の他、ヘプチル、オクチル、ノニ
ル、デシル、ウンデシル、ドデシル、トリデシ
ル、テトラデシル、ペンタデシル、ヘキサデシ
ル、ヘプタデシル、ノナデシル、エイコシル基等
が包含される。 本発明の上記一般式(1)で表わされるナフトキノ
ン誘導体中、遊離のカルボキシル基を有するもの
は、例えばナトリウム、カリウム等のアルカリ金
属やカルシウム、マグネシウム等のアルカリ土類
金属の塩とすることができ、本発明はかかる塩を
も包含するものである。 上記本発明化合物及びその塩は、いずれもプロ
スタグランジン生合成の遮断作用や調節作用を有
しており、動物とりわけ哺乳動物に対して抗炎
症、抗リウマチ、抗アレルギー、鎮痛、利尿、血
小板凝集阻止、血圧降下等の各種薬理作用を示
す。従つて之等は抗炎症剤、抗リウマチ剤、抗ア
レルギー剤、鎮痛剤、利尿剤、抗血栓剤、降圧剤
等の医薬として利用できる。 以下、本発明化合物の製造方法につき詳述す
る。 本発明化合物は、例えば下記反応工程式−1に
示す方法により製造できる。 〔各式中R1a,R4a及びR5aは夫々低級アル
キル基を示し、R4及びR5は前記に同じである。〕 上記反応工程式−1において出発原料として用
いる化合物(2a)は、例えば次のようにして得
られる。即ち、キノンのフリーラジカルアルキル
化方法〔オーガニツク シンセシーズ(Oganic
Syntheses),Vol,56,p68〕に従つて、公知の
1,4−ナフトキノンと低級アルキルカルボン酸
との、硝酸銀と過硫酸アンモニウム〔(NH42S2
O8〕との存在下にラジカル的に反応させ炭素−
炭素結合を生成させて得られる2−低級アルキル
−1,4−ナフトキノン、或いは市販されている
2−メチル−1,4−ナフトキノンを、適当な還
元剤、例えば塩酸酸性含水アルコール中で当モル
〜3倍モル量の塩化第一錫(SnCl2・2H2O)又
は5%パラジウムカーボン、酸化白金(PtO2
等の接触水添用触媒の存在下に不活性溶媒中で水
素を用いて接触還元し、次いで得られるハイドロ
キノン類を常法(フエノール類のメチル化反応)
に従い、例えば硫酸ジメチルと水酸化アルカリ水
溶液とを用いてメチル化することにより製造でき
る。 上記のごとくして得られる化合物(2a)のフ
リーデル・クラフト反応は、ラマラオ(A.V.
Ramarao)らの報文(テトラヘドロン レター
ズ(Tetrahedron Letters),Vol.23,4373
(1982)〕に記載の方法に準じて実施される。即
ち、該反応は化合物(2a)に対して約1.0〜5.0倍
モル量の無水酢酸と、約1.0〜5.0倍モル量の無水
塩化アルミニウムとを用いて、不活性溶媒、好ま
しくは1,2−ジクロルエタン、二硫化炭素、ニ
トロメタン、ジクロルメタン、クロロホルム等の
溶媒中で、約20〜80℃で行なわれ、これにより、
目的とする化合物(3a)を高収率で製造するこ
とができる。 得られる化合物(3a)から化合物(4a)を得
る反応は、ビルゲロツト・キンドラー
(Willgerodt−Kindler)反応に従うことができ
る。即ち、該反応は、化合物(3a)に対して1.0
〜5.0倍モル量の硫黄と1.0〜10.0倍モル量のモル
ホリンとを用いて、約100〜130℃に加熱し、その
後過剰の水酸化アルカリ水溶液を用いて加水分解
することにより実施される。 上記により得られる化合物(4a)のエステル
化反応は、通常のエステル化反応に従つて行ない
得る。即ち、硫酸、p−トルエンスルホン酸等の
酸触媒の存在下に、低級アルコール中、約50℃〜
溶媒の沸点範囲の温度に加熱することにより、容
易に実施できる。 かくして得られる化合物(5a)のアルキル化
反応もまた通常の方法に従うことができる。例え
ば該アルキル化反応は、ジメチルホルムアミド
(DMF)、テトラヒドロフラン(THF)等の溶媒
中、−78〜0℃の温度条件下、当モル量の水素化
ナトリウム、リチウムジイソプロピルアミド等の
塩基を用いて、化合物(5a)の活性メチレンを
脱プロトンし、次いで当モル量のアルキルハライ
ドを加えて反応させることにより行なわれる。 上記アルキル化反応においてメチル又はエチル
基を導入する場合は、とりわけ田村の方法〔ジヤ
ーナル オブ メデイシナル ケミストリー(J.
Med.Chem.),Vol.24,43(1981)〕に従つて、四
級アンモニウム塩の存在下、水酸化アルカリ水溶
液と、例えばジクロルメタン、クロロホルム、ベ
ンゼン等の有機溶媒との混合液に、化合物(5a)
と共にその5.0〜15.0倍モル量のアルキルハライ
ドを加えて、0〜30℃の温度条件で反応させるこ
とにより、選択的に目的とするアルキル化反応が
進行する。 上記により得られる化合物(6a)からは、通
常の加水分解反応、好ましくは水酸化アルカリ水
溶液を用いたアルカリ加水分解によつて化合物
(7a)を収得できる。 また上記各反応により得られる化合物(4a)
〜化合物(7a)は、これらをそれぞれ酸化反応
させることにより、各々所望の化合物(1a)と
することができる。この酸化反応は、例えばセリ
ツクアンモニウムニトラート〔(NH42Ce(NO3
6〕(以下これを「CAN」と呼ぶ)を用いる方法、
或いはジヨーンズ酸化反応方法に従うことができ
る。 上記CANを用いる方法は、より詳細には、例
えばジオキサン、アセトニトリル、THF、ジク
ロルメタン、クロロホルム、エーテル等の適当な
溶媒中、各原料化合物(4a)〜(7a)に対して
当モル量〜5倍モル量程度、好ましくは約2〜
2.5モル量のCANを用いて、約−20〜60℃、好ま
しくは約0〜30℃の温度条件下に実施することが
できる。またジヨーンズ酸化反応は、例えば代表
的には、フイーザーらの成書〔リエイジエンツ
フオー オーガニツク シンセシス(Reagents
for Organic Synthesis),Vol.142,Wiley,
NewYork(1967)〕に記載のジヨーンズ試薬を用
いて実施される。該ジヨーンズ試薬としては、例
えばCrO370g、水500ml及び濃H2SO461mlから調
製したものを好ましく利用できる。該ジヨーンズ
試薬の使用量は、適宜決定できるが、通常クロム
酸量として原料化合物(4a)〜(7a)と当モル
量〜20倍モル量、好ましくは当モル〜8倍モル量
とされるのがよい。該試薬を用いる反応は、例え
ばアセトン、ジオキサン、エーテル等、好ましく
はアセトンを溶媒として、約0〜50℃、好ましく
は0〜25℃の温度条件下に行なわれ、かくして化
合物(1a)を製造できる。 本発明化合物はまた下記反応工程式−2〜−3
に示す方法によつても製造することができる。 〔各式中R6はフエニル基を示す。またR4,R4
a,R5及びR5aは前記に同じ。〕 反応工程式−2によれば、本発明の化合物
(1b)は、次のごとくして製造される。即ち、ま
ず1,4−ナフトキノン(8)を出発原料とし
て、これとチオール類(R6SH)とを付加反応さ
せ、得られるハイドロキノン類(9)を上記した
メチル化反応に従わせて化合物(2b)を得る。
該化合物(2b)は、そのナフタレン環の2位に
電子供与性の基(R6S−)を有しており、従つ
てこれは前記反応工程式−1に示した化合物
(2a)と同様に、フリーデルクラフト反応させる
ことができ、これにより得られる化合物(3b)
は、引続き同様にビルゲロツト・キンドラー反
応、エステル化反応、アルキル化反応及び加水分
解反応させることによりそれぞれ化合物(4b),
(5b),(6b)及び(7b)とすることができ、之等
各化合物を酸化反応させることにより、目的とす
る化合物(1b)を製造することができる。 上記1,4−ナフトキノン(8)とチオール類
との反応は、通常の方法、例えばパタイら(S.
Patai)の成書〔ザ ケミストリー オブ ザ
キノイド カンパウンズ(The Chemistry of
the Quinoid Compounds,Parts1,2,Wiley,
NewYork,1974)〕に記載の方法によつて実施
できる。この反応に引続くメチル化反応以降の各
反応は、前記反応工程式−1に示したそれらと
夫々同様にして実施できる。特に化合物(6b)
及び化合物(7b)の酸化反応は、前記CANを用
いる方法によるのが好ましい。 〔各式中R4,R4a,R5及びR5aは前記に同
じ。〕 反応工程式−3によれば、本発明の化合物
(1c)は、1,4−ナフトキノン(8)を出発原
料として以下のごとくして製造することができ
る。即ちまず該1,4−ナフトキノン(8)とブ
タジエンとを酢酸中、デイールス・アルダー反応
させ、次いで少量の酢酸アルカリを反応混合物中
に加えてエノール化反応させてハイドロキノン
(10)を得る。このものを前記反応工程式−2に
示す方法と同様にメチル化反応させ、次に得られ
る化合物(11)の不飽和二重結合を通常の還元条
件、例えばPtO2触媒の存在下に水素添加して還
元して化合物(2c)を得る。その後、前記反応工
程式−2に示すフリーデルクラフト反応、ビルゲ
ロツト・キンドラー反応、エステル化反応、アル
キル化反応及び加水分解反応を行なうことにより
それぞれ化合物(3c)〜(7c)を得、之等各化合
物の酸化反応により目的とする化合物(2c)を製
造することができる。 更に本発明の化合物は、下記反応工程式−4及
び−5に示す方法によつても製造することができ
る。 〔式中R1,R4及びR5は前記に同じ。R6′は低級
アルキル基又は低級アルキル基を有することのあ
るフエニル基を示す。〕 反応工程式−4において、化合物(1a)とチ
オール類(R6′SH)との反応は、前記反応工程式
−2に示す化合物(2b)の製造方法と同様にし
て実施できる。その際用いられる不活性溶媒とし
ては、例えばメタノール、エタノール等の低級ア
ルコール類、DMF,TGF、水、アセトン等及び
之等の混合溶媒を例示できる。反応は、好ましく
は窒素、アルゴン等の不活性気流中、化合物
(1a)に対してチオール類を、通常0.5〜2倍モル
量、好ましくは約1〜1.1倍モル量を用い、約0
℃〜溶媒の沸点温度程度、好ましくは約20〜80℃
程度にて、約1時間〜100時間を要して行なわれ
る。尚、上記反応によれば、中間的に下記一般式
(12)で表わされる縮合体が副生するが、該縮合
体は、反応系内に過剰量の塩化第二鉄水溶液を添
加するか、又は酸素(空気)を吹込んで酸化する
ことにより、目的とする化合物(1d)に変換す
ることができる。 〔式中R1,R4,R5及びR6′は前記に同じ〕 〔式中R2aは、水酸基又はカルボキシル基を
有するアルキル基を示し、R7は、水酸基を有す
ることのある低級アルキル基を示す。〕 反応工程式−5においては、1,4−ナフトキ
ノン(8)に、既に前記反応工程式−1で示した
キノンのフリーラジカルアルキル化反応を利用し
て、R2a基を与えるアルキルジカルボン酸を反
応させて、該R2aがカルボキシル基を有するア
ルキル基である1,4−ナフキノン誘導体(13)
を製造する。またR2aが水酸基を有するアルキ
ル基である化合物(13)は、上記で得られるR2
aがカルボキシル基を有するアルキル基である化
合物を常法に従い、例えばLiAlH4で還元し、次
いで空気酸化することにより製造することができ
る。 かくして得られる化合物(13)を、次に反応工
程式−4に示したチオール類との付加反応及び引
続く酸化反応に従わせることにより、目的とする
化合物(1e)を収得できる。 更に、上記反応工程式−2,−4及び−5に示
した各方法により得られる本発明のチオール化合
物(1b),(1d)及び(1e)は、これらを常法に
従い、例えば過酸化水素水、m−クロル過安息香
酸等を用いて酸化反応させることにより、対応す
るスルホキシド体(一般式(1)中n=1の化合物)
及びスルホン体(一般式(1)中n=2の化合物)と
することができる。 上記酸化反応は通常の方法により実施できる。
例えば、酢酸、クロロホルム、塩化メチレン等の
適当な溶媒中、原料化合物に対して等モル〜約
3.0倍モル量の酸化剤の存在下に、約−20℃〜溶
媒の沸点温度範囲に加熱することにより行なうこ
とができる。 また本発明化合物(1)は、次式に示すように
通常の還元剤、例えば塩化第一錫、水素化ホウ素
ナトリウム、ナトリウムハイドロサルフアイド
(Na2S2O4)等を用いて還元反応させることによ
り、対応するハイドロキノン体(1′)とすること
ができ、かかるハイドロキノン体は、これを例え
ば空気酸化、塩化第2鉄等を用いた酸化反応に供
することにより容易にキノン体(1)に変換する
ことができる。本発明は、かかるキノン体(1)
の還元体であるハイドメキノン体(1′)をも包含
するものである。 上記各反応工程式に示す方法により得られる各
目的化合物及び本発明化合物は、慣用の分離手段
により、反応系により容易に分離することがで
き、必要に応じて更に精製することができる。こ
の分離手段及び精製手段としては、通常の方法、
例えば溶媒抽出法、再結晶法、カラムクロマトグ
ラフイー等を適宜採用できる。 また本発明化合物(1)の塩の形成反応は、常
法に従つておこなえばよい。更に本発明化合物に
は光学異性体が存在するが、本発明はかかる異性
体をも当然に包含する。 実施例 以下、本発明を更に詳しく説明するため、本発
明化合物の製造例を実施例として挙げ、また原料
化合物の製造例を参考例として挙げる。 参考例 1 2−アルキル−1,4−ジメトキシナフタリ
ン〔化合物(2a)〕の製造 a 2−メチル−1,4−ナフトキノンからラ
ポポート(H.Rapoport)らの報文〔ジヤー
ナル オブ アメリカン ケミカル ソサイ
エテイー(J.Am.Chem.Soc.),96,8046
(1974)〕に従つて2−メチル−1,4−ナフ
トハイドロキノンを得た。 即ち、2−メチル−1,4−ナフトキノン
1.72gを、エーテル100mlに懸濁させ、10%
Na2S2O4水溶液で色が完全に消えるまで振つ
た。有機層を飽和食塩水で洗浄した後、分取
し、乾燥濃縮して目的化合物1.57gを得た。 融点:166℃(分解) また他のアルキル−キノン類として、下記
各化合物を以下の操作により得た。 b 2−メチル−1,4−ジメトキシナフタレ
ンの製造 アルゴン気流下、2−メチル−1,4−ナ
フトキノン25gをエタノール500mlと塩化メ
チレン150mlとの混液に溶解し、SnCl2・2H2
O34.5gの水350ml溶液を加え、濃塩酸35mlを
更に加え、その後、室温で一晩撹拌した。反
応混合物を濃縮し、析出した結晶を取して
2−メチル−1,4−ナフトハイドロキノン
を得た。 次いで水酸化カリウム55gの水100ml溶液
に、上記結晶を溶かし、ジメチル硫酸73mlを
氷冷下に徐々に加え、更に室温で1時間撹拌
を続けた。反応混合物を水に移し、酢酸エチ
ルで抽出し、有機層を水洗、乾燥、濃縮後、
減圧下に蒸留して、沸点130〜135℃/0.5mm
Hgの目的物20gを得た。 1H−NMR(CDCl3):δppm 7.96−8.24(2H,m) 7.30−7.61(2H,m) 6.58(1H,s) 3.94(3H,s) 3.85(3H,s) 2.43(3H,s) c 2−ペンチル−1,4−ナフトキノンの製
造1,4−ナフトキノン50g、ヘキサノイツ
クアシツド55g及びAgNO315.8gを、水1.2
及びアセトニトリル400mlに懸濁させ、これ
に60℃で、(NH42S2O879gの水320ml溶液を
30分を要して加えた。その後、同条件下に1
時間撹拌を続けた後、水に移し、ベンゼンで
抽出し、有機層を5%NaHCO3水溶液で洗
浄し、乾燥、濃縮後、カラムクロマトグラフ
イー(エーテル:ヘキサン=1:30)にて精
製して、目的化合物45gを油状物として得
た。 1H−NMR(CDCl3):δppm 8.00−8.23(2H,m) 7.63−7.91(2H,m) 6.77(1H,t,J=1.3) 2.56(2H,bt,J=6.8) 1.21−1.91(6H,m) 0.91(3H,t,J=6.6) d 2−ペンチル−1,4−ジメトキシナフタ
レンの製造 2−ペンチル−1,4−ナフトキノンを用
い、上記b)法と同様にして、還元、メチル
化して油状物を得た。これをカラムクロマト
グラフイー(エーテル:ヘキサン=1:70)
にて精製して、目的化合物を油状物として得
た。 1H−NMR(CDCl3):δppm 7.97−8.31(2H,m) 7.38−7.65(2H,m) 6.60(1H,s) 3.95(3H,s) 3.86(3H,s) 2.78(2H,t,J=7.5) 1.25−1.95(6H,m) 0.91(3H,t,J=6.8) 2−R6S−1,4−ジメトキシナフタレン
〔化合物(2b)〕の製造 1,4−ナフトキノン20g及びチオフエノール
14gを、アセトン300mlに溶解し、アルゴル気流
下、室温で20時間撹拌した。次いで反応混合物に
Na2S2O440g、K2CO390g及びジメチル硫酸72ml
を加え、20時間還流した。不溶物を別し、アセ
トンで洗浄後、母液を濃縮し、カラムクロマトグ
ラフイー(ヘキサン→ヘキサン:酢酸エチル=
1:10)にて精製して、目的化合物である2−フ
エニルチオ−1,4−ジメトキシナフタレン15g
を油状物として得た。 1H−NMR(CDCl3):δppm 8.00−8.25(2H,m) 7.20−7.70(7H,m) 6.55(1H,s) 3.97(3H,s) 3.79(3H,s) 5,6,7,8−テトラヒドロ−9,10−ジ
メトキシアントラセン(化合物(2c)〕の製造 1,4−ナフトキノン40g及びブタジエン20g
を酢酸150mlに溶解し、60℃で20時間加温した。
反応混合物に酢酸ナトリウム3gを加え、30分間
還流した。冷却後、析出した結晶を取し、更に
エーテル・n−ヘキサン(1:1)で洗浄して
5,8−ジヒドロ−9,10−ジハイドロオキシア
ントラセン30gを得た。 上記で得た化合物を前記−b)に示した方法
と同様の方法でメチル化して、5,8−ジヒドロ
−9,10−ジメトキシアントラセン(11)の20g
を得た。 1H−NMR(DMSO−d6):δppm 7.95−8.05(2H,m) 7.50−7.60(2H,m) 6.03(2H,bs) 3.93(6H,s) 3.38(4H,bs) 次いで上記化合物をDMF280mlに溶解し、
PtO2400mgを加え、常圧、水素気流下に、接触還
元して5,6,7,8−テトラヒドロ−9,10−
ジメトキシアントラセン〔化合物(2c)〕17gを
得た。 融点:113〜116℃ 1H−NMR(CDCl3):δppm 7.97−8.08(2H,m) 7.36−7.47(2H,m) 3.86(6H,s) 2.90−3.10(4H,m) 1.70−2.00(4H,m) 2−カルボキシアルキル−1,4−ナフトキ
ノン及び2−ハイドロキシアルキル−1,4−
ナフトキノン〔化合物(13)〕の製造 a 1,4−ナフトキノン15.8g、アジピン酸
34.5g及びAgNO35gを水375ml及びCH3
CN125ml混液に溶解し、これに(NH42S2
O830gの水100ml溶液を、60℃で30分間を要
して加え、更に10分間撹拌を続けた。反応混
合物をベンゼンにて抽出し、有機層を乾燥
し、濃縮し、得られた結晶を取して、2−
(4−カルボキシブチル)−1,4−ナフトキ
ノン9.5gを得た。 1H−NMR(CD3OD−CDCl3):δppm 7.97−8.23(2H,m) 7.65−7.90(2H,m) 6.80(1H,t,J=1.3) 2.60(2H,bt,J=6.0) 2.37(2H,t,J=6.6) 1.50−2.00(4H,m) b 上記化合物21gを、THF25mlに溶解し、こ
のものを氷冷下に、LiAlH4910mgをTHF70
mlに懸濁させた液に加え、次いで3.5時間還
流した。希塩酸で酸性にした後、酢酸エチル
で抽出し、有機層を乾燥し、濃縮し、得られ
る粗生成物を、カラムクロマトグラフイー
(クロロホルム:n−ヘキサン=10:1〜
25:1)で生成して、2−(5−ヒドロキシ
ペンチル)−1,4−ナフトキノン1gを得
た。 融点65〜67℃ c 上記a)において、アジピン酸に代えて、
1,10−デカンジカルボン酸を用い、同様に
して、2−(10−カルボキシデシル)−1,4
−ナフトキノンを得た。 1H−NMR(CDCl3):δppm 8.01−8.21(2H,m) 7.65−7.91(2H,m) 6.80(1H,t,J=1.3) 2.57(2H,bt,J=6.0) 2.33(2H,t,J=7.3) 1.15−1.93(16H,m) FC反応による化合物(3a),(3b)及び(3c)
の製造 化合物(2a),(2b)及び(2c)のそれぞれ18.3
ミリモル、無水酢酸23g及びAlCl354gを、1,2
−ジクロルエチレン1に溶解し、60℃にて1〜
3時間加温した。次いで氷冷した希塩酸中に移
し、塩化メチレンで抽出し、有機層を乾燥、濃縮
し、得られた結晶を再結晶して目的化合物を得
た。それらの物性は各々下記第1表通りである。
[Formula] represents a group, and R 2 represents a hydrogen atom or a B-S- group (B is a phenyl group or a lower alkyl group that may have a lower alkyl group), or R 1 and R 2 both represent a Combine-
A (CH 2 ) 4 - group may be formed. ] In this specification, the term lower alkyl group refers to a straight chain or branched alkyl group having 1 to 6 carbon atoms, and specific examples thereof include methyl, ethyl, propyl, isopropyl. , butyl,
Included are isobutyl, sec-butyl, tert-butyl, pentyl, hexyl, and the like. The term alkyl group refers to a linear or branched alkyl group having 1 to 20 carbon atoms, and specific examples thereof include heptyl, octyl, nonyl, decyl, undecyl, in addition to the lower alkyl groups listed above. , dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, nonadecyl, eicosyl groups, and the like. Among the naphthoquinone derivatives represented by the above general formula (1) of the present invention, those having a free carboxyl group can be, for example, salts of alkali metals such as sodium and potassium, and alkaline earth metals such as calcium and magnesium. , the present invention also includes such salts. The above-mentioned compounds of the present invention and their salts have an effect of blocking or regulating prostaglandin biosynthesis, and have anti-inflammatory, anti-rheumatic, anti-allergic, analgesic, diuretic, and platelet aggregation effects on animals, especially mammals. It exhibits various pharmacological effects such as inhibition and lowering of blood pressure. Therefore, they can be used as medicines such as anti-inflammatory agents, anti-rheumatic agents, anti-allergic agents, analgesics, diuretics, antithrombotic agents, and antihypertensive agents. The method for producing the compound of the present invention will be described in detail below. The compound of the present invention can be produced, for example, by the method shown in Reaction Scheme-1 below. [In each formula, R 1 a, R 4 a and R 5 a each represent a lower alkyl group, and R 4 and R 5 are the same as above. ] Compound (2a) used as a starting material in the above reaction scheme-1 can be obtained, for example, as follows. That is, a method for free radical alkylation of quinone [Organic Synthesis]
Silver nitrate and ammonium persulfate [(NH 4 ) 2 S 2
Carbon-
2-lower alkyl-1,4-naphthoquinone obtained by forming a carbon bond, or commercially available 2-methyl-1,4-naphthoquinone, is mixed with an equimolar amount of 2-methyl-1,4-naphthoquinone in a suitable reducing agent such as hydrochloric acid and an acidic hydroalcohol. 3 times the molar amount of stannous chloride (SnCl 2 2H 2 O) or 5% palladium on carbon, platinum oxide (PtO 2 )
Catalytic reduction using hydrogen in an inert solvent in the presence of a catalytic hydrogenation catalyst such as
For example, it can be produced by methylation using dimethyl sulfate and an aqueous alkali hydroxide solution. The Friedel-Crafts reaction of compound (2a) obtained as above is performed by Rama Rao (AV
(Tetrahedron Letters, Vol. 23, 4373)
(1982)]. That is, the reaction is carried out using acetic anhydride in an amount of about 1.0 to 5.0 times the molar amount of compound (2a) and anhydrous aluminum chloride in a molar amount of about 1.0 to 5.0 times the amount of compound (2a), and an inert solvent, preferably 1,2- It is carried out in a solvent such as dichloroethane, carbon disulfide, nitromethane, dichloromethane, chloroform, etc. at about 20 to 80 °C, thereby:
The target compound (3a) can be produced in high yield. The reaction for obtaining compound (4a) from compound (3a) can follow the Willgerodt-Kindler reaction. That is, the reaction is 1.0 for compound (3a).
It is carried out by heating to about 100 to 130° C. using sulfur in a molar amount of ~5.0 times and morpholine in a molar amount of 1.0 to 10.0 times, followed by hydrolysis using an excess aqueous alkali hydroxide solution. The esterification reaction of compound (4a) obtained above can be carried out according to a conventional esterification reaction. That is, in the presence of an acid catalyst such as sulfuric acid or p-toluenesulfonic acid, in a lower alcohol, from about 50°C to
This can be easily carried out by heating to a temperature within the boiling point range of the solvent. The alkylation reaction of the compound (5a) thus obtained can also be carried out by a conventional method. For example, the alkylation reaction is carried out using an equimolar amount of a base such as sodium hydride or lithium diisopropylamide in a solvent such as dimethylformamide (DMF) or tetrahydrofuran (THF) at a temperature of -78 to 0°C. The reaction is carried out by deprotonating the active methylene of compound (5a), and then adding an equimolar amount of alkyl halide to cause the reaction. When introducing a methyl or ethyl group in the above alkylation reaction, the Tamura method [Journal of Medicinal Chemistry (J.
Med. (5a)
By adding 5.0 to 15.0 times the molar amount of alkyl halide and reacting at a temperature of 0 to 30°C, the desired alkylation reaction proceeds selectively. From compound (6a) obtained above, compound (7a) can be obtained by a usual hydrolysis reaction, preferably alkaline hydrolysis using an aqueous alkali hydroxide solution. Compound (4a) obtained by each of the above reactions
~Compound (7a) can be converted into a desired compound (1a) by subjecting them to an oxidation reaction. This oxidation reaction can be carried out, for example, with seric ammonium nitrate [(NH 4 ) 2 Ce(NO 3 )
6 ] (hereinafter referred to as “CAN”),
Alternatively, Johns oxidation reaction method can be followed. In more detail, the above method using CAN is carried out in an equimolar amount to 5 times the amount of each raw material compound (4a) to (7a) in a suitable solvent such as dioxane, acetonitrile, THF, dichloromethane, chloroform, or ether. About a molar amount, preferably about 2 to
It can be carried out using 2.5 molar amounts of CAN under temperature conditions of about -20 to 60°C, preferably about 0 to 30°C. In addition, the Johns oxidation reaction is typically described in the book by Fieser et al.
Four Organic Synthesis (Reagents)
for Organic Synthesis), Vol.142, Wiley,
New York (1967)]. As the Johns reagent, one prepared from, for example, 70 g of CrO 3 , 500 ml of water, and 61 ml of concentrated H 2 SO 4 can be preferably used. The amount of Johns reagent to be used can be determined as appropriate, but it is usually an equivalent molar amount to 20 times the molar amount of the raw material compounds (4a) to (7a) as the amount of chromic acid, preferably an equivalent molar amount to 8 times the molar amount of the raw material compounds (4a) to (7a). Good. The reaction using the reagent is carried out using acetone, dioxane, ether, etc., preferably acetone, as a solvent at a temperature of about 0 to 50°C, preferably 0 to 25°C, and thus compound (1a) can be produced. . The compounds of the present invention can also be used in the following reaction schemes -2 to -3.
It can also be produced by the method shown below. [In each formula, R 6 represents a phenyl group. Also R 4 , R 4
a, R 5 and R 5 a are the same as above. ] According to Reaction Scheme-2, the compound (1b) of the present invention is produced as follows. That is, first, using 1,4-naphthoquinone (8) as a starting material, it is subjected to an addition reaction with a thiol (R 6 SH), and the resulting hydroquinone (9) is subjected to the above-mentioned methylation reaction to form a compound ( 2b).
The compound (2b) has an electron-donating group (R 6 S-) at the 2-position of its naphthalene ring, and therefore it is similar to the compound (2a) shown in the reaction scheme-1 above. can be subjected to a Friedel-Crafts reaction, resulting in the compound (3b)
were subsequently subjected to the same Bilgerott-Kindler reaction, esterification reaction, alkylation reaction and hydrolysis reaction to obtain compounds (4b) and 4b, respectively.
(5b), (6b) and (7b), and by subjecting these compounds to an oxidation reaction, the desired compound (1b) can be produced. The reaction of the above-mentioned 1,4-naphthoquinone (8) with thiols can be carried out by a conventional method, such as Patai et al. (S.
The Chemistry of the Patai)
Kinoid Campounds (The Chemistry of
the Quinoid Compounds, Parts 1, 2, Wiley,
New York, 1974)]. Each reaction after the methylation reaction following this reaction can be carried out in the same manner as shown in the reaction scheme-1 above. Especially compound (6b)
The oxidation reaction of compound (7b) is preferably carried out by the method using CAN. [In each formula, R 4 , R 4 a, R 5 and R 5 a are the same as above. ] According to Reaction Scheme-3, the compound (1c) of the present invention can be produced as follows using 1,4-naphthoquinone (8) as a starting material. That is, first, the 1,4-naphthoquinone (8) and butadiene are subjected to a Diels-Alder reaction in acetic acid, and then a small amount of alkali acetate is added to the reaction mixture to carry out an enolization reaction to obtain hydroquinone (10). This product is subjected to a methylation reaction in the same manner as shown in the reaction scheme-2 above, and then the unsaturated double bonds of the resulting compound (11) are hydrogenated under normal reducing conditions, for example in the presence of a PtO 2 catalyst. and reduction to obtain compound (2c). Thereafter, compounds (3c) to (7c) were obtained by carrying out Friedel-Crafts reaction, Bilgerott-Kindler reaction, esterification reaction, alkylation reaction, and hydrolysis reaction shown in the reaction scheme-2, respectively. The desired compound (2c) can be produced by oxidation reaction of the compound. Furthermore, the compound of the present invention can also be produced by the methods shown in the following reaction schemes -4 and -5. [In the formula, R 1 , R 4 and R 5 are the same as above. R 6 ' represents a lower alkyl group or a phenyl group that may have a lower alkyl group. ] In Reaction Scheme-4, the reaction between compound (1a) and thiols (R 6 'SH) can be carried out in the same manner as the method for producing compound (2b) shown in Reaction Scheme-2 above. Examples of the inert solvent used in this case include lower alcohols such as methanol and ethanol, DMF, TGF, water, acetone, and mixed solvents thereof. The reaction is preferably carried out in an inert gas stream such as nitrogen or argon, using thiols in a molar amount usually 0.5 to 2 times, preferably about 1 to 1.1 times the amount of compound (1a), and about 0.
°C to about the boiling point temperature of the solvent, preferably about 20 to 80 °C
The process takes about 1 hour to 100 hours depending on the degree. In addition, according to the above reaction, a condensate represented by the following general formula (12) is produced as a by-product, but this condensate can be obtained by adding an excessive amount of ferric chloride aqueous solution into the reaction system, or Alternatively, it can be converted to the target compound (1d) by blowing oxygen (air) into it for oxidation. [In the formula, R 1 , R 4 , R 5 and R 6 ' are the same as above] [In the formula, R 2 a represents an alkyl group having a hydroxyl group or a carboxyl group, and R 7 represents a lower alkyl group that may have a hydroxyl group. ] In Reaction Scheme-5, 1,4-naphthoquinone (8) is treated with an alkyl dicarboxylic acid that provides an R 2 a group by utilizing the free radical alkylation reaction of quinone already shown in Reaction Scheme-1 above. to produce a 1,4-naphquinone derivative (13) in which R 2 a is an alkyl group having a carboxyl group.
Manufacture. Further, the compound (13) in which R 2 a is an alkyl group having a hydroxyl group is the R 2 a obtained above.
It can be produced by reducing a compound in which a is an alkyl group having a carboxyl group according to a conventional method, for example, with LiAlH 4 and then performing air oxidation. The target compound (1e) can be obtained by subjecting the thus obtained compound (13) to an addition reaction with a thiol and a subsequent oxidation reaction shown in Reaction Scheme-4. Furthermore, the thiol compounds (1b), (1d), and (1e) of the present invention obtained by the methods shown in the above reaction schemes -2, -4, and -5 can be prepared by adding hydrogen peroxide, for example, by a conventional method. By carrying out an oxidation reaction using water, m-chloroperbenzoic acid, etc., the corresponding sulfoxide form (compound of n=1 in general formula (1))
and a sulfone compound (a compound where n=2 in general formula (1)). The above oxidation reaction can be carried out by a conventional method.
For example, in a suitable solvent such as acetic acid, chloroform, methylene chloride, etc., equimolar to about
This can be carried out by heating to a temperature ranging from about -20°C to the boiling point of the solvent in the presence of an oxidizing agent in a 3.0-fold molar amount. Further, the compound (1) of the present invention can be subjected to a reduction reaction using a conventional reducing agent such as stannous chloride, sodium borohydride, sodium hydrosulfide (Na 2 S 2 O 4 ), etc. as shown in the following formula. By this, the corresponding hydroquinone form (1') can be obtained, and such hydroquinone form can be easily converted into the quinone form (1) by subjecting it to an oxidation reaction using, for example, air oxidation or ferric chloride. can be converted. The present invention provides such a quinone body (1)
It also includes hydromequinone (1'), which is a reduced form of . The target compounds and the compounds of the present invention obtained by the methods shown in the above reaction schemes can be easily separated in the reaction system by conventional separation means, and can be further purified if necessary. As this separation means and purification means, ordinary methods,
For example, a solvent extraction method, a recrystallization method, a column chromatography, etc. can be appropriately employed. Further, the salt formation reaction of the compound (1) of the present invention may be carried out according to a conventional method. Further, the compounds of the present invention have optical isomers, and the present invention naturally includes such isomers. EXAMPLES Hereinafter, in order to explain the present invention in more detail, production examples of compounds of the present invention will be given as examples, and production examples of raw material compounds will be given as reference examples. Reference Example 1 Production of 2-alkyl-1,4-dimethoxynaphthalene [compound (2a)] a From 2-methyl-1,4-naphthoquinone to the report by H.Rapoport et al. [Journal of American Chemical Society (J) .Am.Chem.Soc.), 96 , 8046
(1974)] to obtain 2-methyl-1,4-naphthohydroquinone. That is, 2-methyl-1,4-naphthoquinone
Suspend 1.72g in 100ml of ether, 10%
It was shaken with an aqueous Na 2 S 2 O 4 solution until the color completely disappeared. The organic layer was washed with saturated brine, separated, dried and concentrated to obtain 1.57 g of the target compound. Melting point: 166°C (decomposed) In addition, as other alkyl-quinones, the following compounds were obtained by the following operations. b Production of 2-methyl-1,4-dimethoxynaphthalene Under an argon atmosphere, 25 g of 2-methyl-1,4-naphthoquinone was dissolved in a mixture of 500 ml of ethanol and 150 ml of methylene chloride, and SnCl 2 2H 2
A solution of 4.5 g of O in 350 ml of water was added, and 35 ml of concentrated hydrochloric acid was further added, followed by stirring overnight at room temperature. The reaction mixture was concentrated, and the precipitated crystals were collected to obtain 2-methyl-1,4-naphthohydroquinone. Next, the above crystals were dissolved in a solution of 55 g of potassium hydroxide in 100 ml of water, and 73 ml of dimethyl sulfuric acid was gradually added under ice cooling, followed by further stirring at room temperature for 1 hour. The reaction mixture was transferred to water, extracted with ethyl acetate, and the organic layer was washed with water, dried, and concentrated.
Distilled under reduced pressure, boiling point 130-135℃/0.5mm
20g of Hg target was obtained. 1 H-NMR (CDCl 3 ): δppm 7.96-8.24 (2H, m) 7.30-7.61 (2H, m) 6.58 (1H, s) 3.94 (3H, s) 3.85 (3H, s) 2.43 (3H, s) c Production of 2-pentyl-1,4-naphthoquinone 50 g of 1,4-naphthoquinone, 55 g of hexanoic acid and 15.8 g of AgNO 3 were added to 1.2 g of water.
and suspended in 400 ml of acetonitrile, and a solution of 79 g of (NH 4 ) 2 S 2 O 8 in 320 ml of water was added to this at 60°C.
It took 30 minutes to add. After that, under the same conditions, 1
After stirring for an hour, it was transferred to water, extracted with benzene, and the organic layer was washed with 5% NaHCO 3 aqueous solution, dried, concentrated, and purified by column chromatography (ether:hexane = 1:30). Thus, 45 g of the target compound was obtained as an oil. 1 H-NMR (CDCl 3 ): δppm 8.00-8.23 (2H, m) 7.63-7.91 (2H, m) 6.77 (1H, t, J = 1.3) 2.56 (2H, bt, J = 6.8) 1.21-1.91 ( 6H, m) 0.91 (3H, t, J = 6.6) d Production of 2-pentyl-1,4-dimethoxynaphthalene Using 2-pentyl-1,4-naphthoquinone, reduce in the same manner as method b) above, Methylation gave an oil. This was subjected to column chromatography (ether: hexane = 1:70).
The target compound was obtained as an oil. 1 H-NMR (CDCl 3 ): δppm 7.97-8.31 (2H, m) 7.38-7.65 (2H, m) 6.60 (1H, s) 3.95 (3H, s) 3.86 (3H, s) 2.78 (2H, t, J=7.5) 1.25−1.95 (6H, m) 0.91 (3H, t, J=6.8) 2-R 6 S-Production of 1,4-dimethoxynaphthalene [compound (2b)] 20 g of 1,4-naphthoquinone and thio phenol
14 g was dissolved in 300 ml of acetone and stirred at room temperature for 20 hours under a stream of Algol. Then in the reaction mixture
40g Na2S2O4 , 90g K2CO3 and 72ml dimethyl sulfate
was added and refluxed for 20 hours. After separating the insoluble matter and washing with acetone, the mother liquor was concentrated and subjected to column chromatography (hexane → hexane: ethyl acetate =
1:10) to obtain 15 g of the target compound, 2-phenylthio-1,4-dimethoxynaphthalene.
was obtained as an oil. 1 H-NMR (CDCl 3 ): δppm 8.00-8.25 (2H, m) 7.20-7.70 (7H, m) 6.55 (1H, s) 3.97 (3H, s) 3.79 (3H, s) 5, 6, 7, Production of 8-tetrahydro-9,10-dimethoxyanthracene (compound (2c)) 1,4-naphthoquinone 40g and butadiene 20g
was dissolved in 150 ml of acetic acid and heated at 60°C for 20 hours.
3 g of sodium acetate was added to the reaction mixture, and the mixture was refluxed for 30 minutes. After cooling, the precipitated crystals were collected and further washed with ether/n-hexane (1:1) to obtain 30 g of 5,8-dihydro-9,10-dihydroxyanthracene. The compound obtained above was methylated in the same manner as shown in -b) above to obtain 20 g of 5,8-dihydro-9,10-dimethoxyanthracene (11).
I got it. 1 H-NMR (DMSO-d 6 ): δppm 7.95-8.05 (2H, m) 7.50-7.60 (2H, m) 6.03 (2H, bs) 3.93 (6H, s) 3.38 (4H, bs) Then, the above compound Dissolve in 280ml of DMF,
Add 400 mg of PtO 2 and perform catalytic reduction under normal pressure and hydrogen flow to give 5,6,7,8-tetrahydro-9,10-
17 g of dimethoxyanthracene [compound (2c)] was obtained. Melting point: 113-116℃ 1 H-NMR (CDCl 3 ): δppm 7.97-8.08 (2H, m) 7.36-7.47 (2H, m) 3.86 (6H, s) 2.90-3.10 (4H, m) 1.70-2.00 ( 4H, m) 2-carboxyalkyl-1,4-naphthoquinone and 2-hydroxyalkyl-1,4-
Production of naphthoquinone [compound (13)] a 1,4-naphthoquinone 15.8g, adipic acid
34.5g and 5g of AgNO3 in 375ml of water and CH3
Dissolve in 125ml of CN mixture and add (NH 4 ) 2 S 2 to this.
A solution of 30 g of O 8 in 100 ml of water was added over 30 minutes at 60° C. and stirring was continued for a further 10 minutes. The reaction mixture was extracted with benzene, the organic layer was dried and concentrated, the obtained crystals were collected, and 2-
9.5 g of (4-carboxybutyl)-1,4-naphthoquinone was obtained. 1H -NMR ( CD3OD - CDCl3 ): δppm 7.97-8.23 (2H, m) 7.65-7.90 (2H, m) 6.80 (1H, t, J = 1.3) 2.60 (2H, bt, J = 6.0) 2.37 (2H, t, J = 6.6) 1.50-2.00 (4H, m) b Dissolve 21g of the above compound in 25ml of THF, cool this on ice, and add 910mg of LiAlH 4 to 70ml of THF.
ml and then refluxed for 3.5 hours. After acidification with dilute hydrochloric acid, extraction with ethyl acetate, drying and concentration of the organic layer, and column chromatography (chloroform: n-hexane = 10:1 ~
25:1) to obtain 1 g of 2-(5-hydroxypentyl)-1,4-naphthoquinone. Melting point 65-67℃ c In the above a), instead of adipic acid,
Using 1,10-decanedicarboxylic acid, 2-(10-carboxydecyl)-1,4
- Naphthoquinone was obtained. 1 H-NMR (CDCl 3 ): δppm 8.01-8.21 (2H, m) 7.65-7.91 (2H, m) 6.80 (1H, t, J = 1.3) 2.57 (2H, bt, J = 6.0) 2.33 (2H, t, J = 7.3) 1.15-1.93 (16H, m) Compounds (3a), (3b) and (3c) by FC reaction
Production of compounds (2a), (2b) and (2c) each at 18.3
1,2 mmol, 23 g of acetic anhydride and 54 g of AlCl 3
-Dissolved in dichloroethylene 1 to 1 at 60℃
It was heated for 3 hours. The mixture was then transferred into ice-cooled dilute hydrochloric acid, extracted with methylene chloride, the organic layer was dried and concentrated, and the resulting crystals were recrystallized to obtain the target compound. Their physical properties are shown in Table 1 below.

【表】【table】

【表】 化合物(4a),(4b)及び(4c)の製造 化合物(3a),(3b)及び(3c)のそれぞれ10
ミリモルを、モルホリン1.8g及び硫黄640mgと混
合し、130〜135℃にて、1.5〜5時間加熱した。
反応混合物を水に移し、塩化メチレンで抽出し、
有機層を濃縮して得られる化合物に、更に水酸化
カリウム3〜15gをエタノール20〜50ml及び水1
〜5mlに溶解した溶液を加え、20〜48時間還流し
た。冷却後、水に移し、水層をベンゼンで洗浄し
た後、濃塩酸で酸性とし、塩化メチレンで抽出し
た。有機層を乾燥、濃縮して得られる結晶を塩化
メチレン:ヘキサンから再結晶して目的化合物を
得た。 得られた各化合物の物性は第2表に示す。 化合物(5a),(5b),(5c)の製造 上記で得た各化合物を低級アルコールに溶解
し、濃硫酸の触媒量を加え、3〜20時間還流して
目的とするエステル体を得た。 之等は反応混合物を有機溶媒で抽出し、有機層
を5%NaHCO3及び水で洗浄し、乾燥、濃縮し、
更にカラムクロマトグラフイー(エーテル:ヘキ
サン系)で精製できた。 得られた各化合物の物性は第2表に示す。 化合物(6a),(6b),(6c)の製造 上記で得た各化合物18ミリモルを、塩化メチ
レン60mlに溶解し、このものに水酸化ナトリウム
45ml(NaOH23gを水290mlに溶解したもの)、硫
酸テトラ−n−ブチルアンモニウム12g及びアル
キルハライド72ミリモルを加え、25℃で6〜8時
間撹拌した。次いで有機層を別し、母液を濃縮
し、カラムクロマトグラフイー(エーテル:ヘキ
サン系)にて精製して、目的化合物を得た。 得られた各化合物の物性は第2表に示す。 また上記で得た各化合物をエタノールに溶解
し、これに水酸化ナトリウムを加えて加水分解し
て、化合物(7a)〜(7c)の各々を得た。 之等各化合物の物性を併せて下記第2表に示
す。
[Table] Production of compounds (4a), (4b) and (4c) 10% each of compounds (3a), (3b) and (3c)
mmol was mixed with 1.8 g of morpholine and 640 mg of sulfur and heated at 130-135° C. for 1.5-5 hours.
The reaction mixture was transferred to water, extracted with methylene chloride,
To the compound obtained by concentrating the organic layer, add 3 to 15 g of potassium hydroxide to 20 to 50 ml of ethanol and 1 ml of water.
A solution of ~5 ml was added and refluxed for 20-48 hours. After cooling, the mixture was transferred to water, and the aqueous layer was washed with benzene, acidified with concentrated hydrochloric acid, and extracted with methylene chloride. The organic layer was dried and concentrated, and the resulting crystals were recrystallized from methylene chloride:hexane to obtain the target compound. The physical properties of each compound obtained are shown in Table 2. Production of compounds (5a), (5b), (5c) Each compound obtained above was dissolved in lower alcohol, a catalytic amount of concentrated sulfuric acid was added, and the mixture was refluxed for 3 to 20 hours to obtain the desired ester. . The reaction mixture was extracted with an organic solvent, the organic layer was washed with 5% NaHCO3 and water, dried, concentrated,
It was further purified by column chromatography (ether:hexane system). The physical properties of each compound obtained are shown in Table 2. Production of compounds (6a), (6b), (6c) 18 mmol of each compound obtained above was dissolved in 60 ml of methylene chloride, and this was added with sodium hydroxide.
45 ml (23 g of NaOH dissolved in 290 ml of water), 12 g of tetra-n-butylammonium sulfate and 72 mmol of alkyl halide were added, and the mixture was stirred at 25° C. for 6 to 8 hours. The organic layer was then separated, and the mother liquor was concentrated and purified by column chromatography (ether:hexane system) to obtain the target compound. The physical properties of each compound obtained are shown in Table 2. Moreover, each of the compounds obtained above was dissolved in ethanol, and sodium hydroxide was added thereto for hydrolysis to obtain each of compounds (7a) to (7c). The physical properties of each compound are shown in Table 2 below.

【表】 No. 融点 又は 1H−NMR (℃) (CDCl3 1 85〜86.5 2 127.5〜128.5 3 65.5〜66.5 4 143〜143.5 5 98.5〜100 6 132〜133 7 8.09(1H,d,J=2.0),7.98(1H,d,J
=8.8),7.47(1H,dd,J=8.8,2.0),6.58
(1H,s),4.12(2H,q,J=7.0),3.95(3H,
s),3.84(3H,s),3.85(1H,q,J=7.2),
2.42(3H,s),1.57(3H,d,J=7.2),1.19
(3H,t,J=7.0) 8 7.98(1H,d,J=9.0),7.93(1H,d,J
=1.7),7.39(1H,dd,J=9.0,1.7),4.13
(2H,q,J=7.0),3.86(1H,q,J=7.2),
3.87(3H,s),3.86(3H,s),2.94(2H,bs),
1.83(2H,m),1.58(3H,d,J=7.2),1.20
(3H,t,J=7.0) 9 8.08(1H,d,J=1.8),(1H,d,J=
8.6),7.44(1H,dd,J=8.6,1.8),6.60(1H,
s),4.15(2H,q,J=7.0),3.96(3H,s),
3.86(3H,s),3.76(2H,s),2.78(2H,bt),
1.25(3H,t,J=7.0),0.80−2.00(9H,m) 10 単離せず 11 単離せず 12 単離せず 13 8.10(1H,d,J=1.8),7.97(1H,d,J
=8.8),7.46(1H,dd,J=8.8,1.8),6.60
(1H,s),4.16(2H,q,J=7.0),3.96(3H,
s),3.85(3H,s),3.86(1H,q,J=7.2),
2.84(2H,bt),1.57(3H,d,J=7.2),1.27
(3H,t,J=7.0),0.80−2.00(9H,m) 実施例 1 化合物(1a)〜(1c)の製造 CANによる酸化反応 上記参考例で得た化合物(4a)〜(7c)の
夫々15.6ミリモルを塩化メチレン200mlに溶解し、
CAN21gの水200ml水溶液を加え、室温で激しく
振つた。その後、有機層を分取し、乾燥、濃縮
し、カラムクロマトグラフイー(酢酸エチル:メ
タノール)で精製して、目的化合物を60〜80%の
収率で得た。得られた化合物の物性は第3表に示
す。 ジヨーンズ試薬による酸化反応 上記参考例で得た化合物(4a)〜(6c)(但し
化合物(4b),(5b)及び(6b)は除く)を、ア
セトン100mlに溶解し、氷冷下にジヨーンズ試薬
18mlを加え、20〜40分間撹拌を続けた。その後、
反応混合物を水に移し、塩化メチレンにて抽出
し、有機層を乾燥、濃縮し、カラムクロマトグラ
フイー酢酸エチル−メタノール)にて精製して、
目的化合物を40〜70%の収率で得た。得られた化
合物の物性は第3表に示す。 実施例 2 化合物(1d)及び(1e)の製造 化合物(1a)及び化合物(13)のそれぞれ3.3
ミリモルを、エタノール20ml及びDMF10ml混液
に溶解し、これにチオール化合物(HS−R6′)の
3.5〜6.6ミリモルを加え、25℃で20〜72時間(薄
層クロマトグラフイーにより原料化合物の消失が
認められるまで)撹拌を続けた。次いで10%
FeCl3水溶液50mlを加え、更に2時間撹拌した。
反応混合物を水に移し、酢酸エチルで抽出し、有
機層を乾燥、濃縮後、カラムクロマトグラフイー
(酢酸エチル:メタノール)で粗生成物を精製し
て、目的化合物を50〜70%の収率で得た。得られ
た化合物の物性は第3表に示す。 実施例 3 スルホキシド体及びスルホン体の製造 化合物(1b),(1d)及び(1e)のそれぞれ10
ミリモルを、塩化メチレン200mlに溶解し、これ
にm−クロル過安息香酸(70%)2.5gを氷冷下に
ゆつくり加え、更に撹拌を10分間続けた。反応混
合物を30℃以下で濃縮し、粗生成物をカラムクロ
マトグラフイー(酢酸エチル−メタノール)で精
製して目的化合物を得た。得られた化合物の物性
を、下記第3表に示す。
[Table] No. Melting point or 1 H-NMR (℃) (CDCl 3 ) 1 85-86.5 2 127.5-128.5 3 65.5-66.5 4 143-143.5 5 98.5-100 6 132-133 7 8.09 (1H, d, J = 2.0), 7.98 (1H, d, J
= 8.8), 7.47 (1H, dd, J = 8.8, 2.0), 6.58
(1H, s), 4.12 (2H, q, J=7.0), 3.95 (3H,
s), 3.84 (3H, s), 3.85 (1H, q, J = 7.2),
2.42 (3H, s), 1.57 (3H, d, J=7.2), 1.19
(3H, t, J = 7.0) 8 7.98 (1H, d, J = 9.0), 7.93 (1H, d, J
= 1.7), 7.39 (1H, dd, J = 9.0, 1.7), 4.13
(2H, q, J=7.0), 3.86 (1H, q, J=7.2),
3.87 (3H, s), 3.86 (3H, s), 2.94 (2H, bs),
1.83 (2H, m), 1.58 (3H, d, J=7.2), 1.20
(3H, t, J=7.0) 9 8.08 (1H, d, J=1.8), (1H, d, J=
8.6), 7.44 (1H, dd, J=8.6, 1.8), 6.60 (1H,
s), 4.15 (2H, q, J = 7.0), 3.96 (3H, s),
3.86 (3H, s), 3.76 (2H, s), 2.78 (2H, bt),
1.25 (3H, t, J = 7.0), 0.80-2.00 (9H, m) 10 Not isolated 11 Not isolated 12 Not isolated 13 8.10 (1H, d, J = 1.8), 7.97 (1H, d, J
= 8.8), 7.46 (1H, dd, J = 8.8, 1.8), 6.60
(1H, s), 4.16 (2H, q, J=7.0), 3.96 (3H,
s), 3.85 (3H, s), 3.86 (1H, q, J = 7.2),
2.84 (2H, bt), 1.57 (3H, d, J=7.2), 1.27
(3H, t, J=7.0), 0.80-2.00 (9H, m) Example 1 Production of compounds (1a) to (1c) Oxidation reaction by CAN Compounds (4a) to (7c) obtained in the above reference example Dissolve 15.6 mmol of each in 200 ml of methylene chloride,
A solution of 21 g of CAN in 200 ml of water was added, and the mixture was shaken vigorously at room temperature. Thereafter, the organic layer was separated, dried, concentrated, and purified by column chromatography (ethyl acetate:methanol) to obtain the target compound in a yield of 60 to 80%. The physical properties of the obtained compound are shown in Table 3. Oxidation reaction using Johns reagent Compounds (4a) to (6c) obtained in the above reference example (excluding compounds (4b), (5b) and (6b)) were dissolved in 100 ml of acetone, and under ice cooling, the compounds (4a) to (6c) were dissolved in Johns reagent.
Added 18ml and continued stirring for 20-40 minutes. after that,
The reaction mixture was transferred to water, extracted with methylene chloride, the organic layer was dried, concentrated, and purified by column chromatography (ethyl acetate-methanol).
The target compound was obtained with a yield of 40-70%. The physical properties of the obtained compound are shown in Table 3. Example 2 Production of compounds (1d) and (1e) 3.3% each of compound (1a) and compound (13)
mmol was dissolved in a mixture of 20 ml of ethanol and 10 ml of DMF, and the thiol compound (HS-R 6 ') was added to this.
3.5 to 6.6 mmol was added, and stirring was continued at 25° C. for 20 to 72 hours (until disappearance of the starting compound was observed by thin layer chromatography). then 10%
50 ml of FeCl 3 aqueous solution was added, and the mixture was further stirred for 2 hours.
The reaction mixture was transferred to water, extracted with ethyl acetate, the organic layer was dried and concentrated, and the crude product was purified by column chromatography (ethyl acetate:methanol) to obtain the target compound in a yield of 50-70%. I got it from The physical properties of the obtained compound are shown in Table 3. Example 3 Production of sulfoxide compound and sulfone compound 10 each of compounds (1b), (1d) and (1e)
mmol was dissolved in 200 ml of methylene chloride, 2.5 g of m-chloroperbenzoic acid (70%) was slowly added thereto under ice cooling, and stirring was continued for an additional 10 minutes. The reaction mixture was concentrated at below 30°C, and the crude product was purified by column chromatography (ethyl acetate-methanol) to obtain the target compound. The physical properties of the obtained compound are shown in Table 3 below.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 一般式 〔式中R3は水素原子又は−CHR4−COOR5
(R4及びR5は夫々水素原子又は低級アルキル基で
ある)を示し、該R3が水素原子のとき、R1及び
R2は一方が水酸基もしくはカルボキシル基を有
するアルキル基で且他方がA−S(O)o−基(A
は水酸基を有することのある低級アルキル基及び
nは0,1又は2である)を示す。またR3が−
CHR4−COOR5基のとき、R1は低級アルキル基
又は【式】基を示し、R2は水素原子又 はB−S−基(Bは低級アルキル基を有すること
のあるフエニル基又は低級アルキル基である)を
示すか、R1及びR2は両者が結合して−(CH24
基を形成してもよい。〕 で表わされることを特徴とするナフトキノン誘導
体及びその塩。
[Claims] 1. General formula [In the formula, R 3 represents a hydrogen atom or a -CHR 4 -COOR 5 group (R 4 and R 5 are a hydrogen atom or a lower alkyl group, respectively), and when R 3 is a hydrogen atom, R 1 and
One of R 2 is an alkyl group having a hydroxyl group or a carboxyl group, and the other is an A-S(O) o - group (A
represents a lower alkyl group which may have a hydroxyl group and n is 0, 1 or 2). Also, R 3 is −
When CHR 4 -COOR 5 groups, R 1 represents a lower alkyl group or a [Formula] group, and R 2 represents a hydrogen atom or a B-S- group (B is a phenyl group or a lower alkyl group that may have a lower alkyl group). ), or R 1 and R 2 are both bonded to -(CH 2 ) 4 -
It may also form a group. ] A naphthoquinone derivative and a salt thereof, characterized by the following:
JP10998585A 1985-05-21 1985-05-21 Naphthoquinone derivative Granted JPS61268650A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10998585A JPS61268650A (en) 1985-05-21 1985-05-21 Naphthoquinone derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10998585A JPS61268650A (en) 1985-05-21 1985-05-21 Naphthoquinone derivative

Publications (2)

Publication Number Publication Date
JPS61268650A JPS61268650A (en) 1986-11-28
JPH058691B2 true JPH058691B2 (en) 1993-02-02

Family

ID=14524156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10998585A Granted JPS61268650A (en) 1985-05-21 1985-05-21 Naphthoquinone derivative

Country Status (1)

Country Link
JP (1) JPS61268650A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4692874B2 (en) * 2004-11-26 2011-06-01 川崎化成工業株式会社 1,2,3,4-Tetrahydroanthracene-9,10-diether and process for producing the same
CN118439973A (en) 2018-04-26 2024-08-06 株式会社Api Method for producing aromatic nitrile compound
US11643386B2 (en) 2019-10-29 2023-05-09 Api Corporation High purity 2-naphthylacetonitrile and method for producing same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3880659A (en) * 1973-08-02 1975-04-29 Eastman Kodak Co Triazolium salt photoreductive imaging
US3912767A (en) * 1974-10-21 1975-10-14 American Cyanamid Co Novel sulfonate esters of 2-hydroxy-3-(methylthio)-1,4-naphthoquinone

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3880659A (en) * 1973-08-02 1975-04-29 Eastman Kodak Co Triazolium salt photoreductive imaging
US3912767A (en) * 1974-10-21 1975-10-14 American Cyanamid Co Novel sulfonate esters of 2-hydroxy-3-(methylthio)-1,4-naphthoquinone

Also Published As

Publication number Publication date
JPS61268650A (en) 1986-11-28

Similar Documents

Publication Publication Date Title
KR880000760B1 (en) Process for the preparation of quinone derivatives
US3925458A (en) Process for preparing 2-(4-alkylphenyl)-propion-aldehyde and propionic acid
JPH058691B2 (en)
JPH0414091B2 (en)
JPS6145613B2 (en)
US4007217A (en) Process for producing 2-hydroxy-3-butenoic acid derivatives
US4016196A (en) Butenoic and pyruvic acid derivatives
GB1584120A (en) Process for the preparation of thiophene derivatives and thiophene derivatives obtained therethrough
US4298530A (en) Process for production of 3-hydroxy-3-methylphthalide or the nuclearly substituted derivatives thereof
EP0000152B1 (en) Oxaminic acids and esters, process for their preparation and pharmaceutical compositions containing them
JPS5879943A (en) Manufacture of vitamin k3 and k4 and derivatives
JPS6399024A (en) Manufacture of aryl and heteroarylalkanoic acid
KR950003328B1 (en) 1,1-(3-ethylphenyl)phenylethylene and method for its preparation
JP2588969B2 (en) Method for producing phenoxyethylaminopyrimidine derivative
US4266067A (en) Process for preparing thiophene derivatives
KR910001236B1 (en) Process for the preparation of 2-(4-amino phenyl0-2-methyl propyl alcohol
JPH0432060B2 (en)
KR940006531B1 (en) Process for preparation of pyridine derivatives
KR910002282B1 (en) Process for the preparation of inden acetic acid
KR900007370B1 (en) Process for the preparation of 2,4-dibromo-5-fluorobenroicacid
JPS5821897B2 (en) 2- Phenylpropionaldehyde
JP3128703B2 (en) Method for producing color-forming compounds, intermediates thereof, and methods for producing them
JPS6339825A (en) Manufacture of alpha-arylalkane ester
KR800001045B1 (en) Method for the preparation of 2-(4'-alkylphenyl)propion aldehyde
JPH04211646A (en) Quinone derivative