JPH0586768B2 - - Google Patents

Info

Publication number
JPH0586768B2
JPH0586768B2 JP4845186A JP4845186A JPH0586768B2 JP H0586768 B2 JPH0586768 B2 JP H0586768B2 JP 4845186 A JP4845186 A JP 4845186A JP 4845186 A JP4845186 A JP 4845186A JP H0586768 B2 JPH0586768 B2 JP H0586768B2
Authority
JP
Japan
Prior art keywords
group
formula
hydrogen atom
alkyl
various combinations
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4845186A
Other languages
Japanese (ja)
Other versions
JPS62207228A (en
Inventor
Teruo Umemoto
Kyoichi Tomita
Kosuke Kawada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Onoda Cement Co Ltd
Sagami Chemical Research Institute
Original Assignee
Onoda Cement Co Ltd
Sagami Chemical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Onoda Cement Co Ltd, Sagami Chemical Research Institute filed Critical Onoda Cement Co Ltd
Priority to JP4845186A priority Critical patent/JPS62207228A/en
Publication of JPS62207228A publication Critical patent/JPS62207228A/en
Publication of JPH0586768B2 publication Critical patent/JPH0586768B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はα−位にフツ素原子を有するカルボニ
ル化合物又はγ−位にフツ素原子を有するα,β
−不飽和カルボニル化合物の製造方法に関する。 上記のフツ素原子を有するカルボニル化合物
は、農薬、医薬品、又はそれらの製造のための有
用中間体であることが知られている。なかでもフ
ツ素置換カルボニル構造をもつ含フツ素ステロイ
ド系化合物はすぐれた抗炎症、鉱質代謝、糖代謝
等の薬理作用を有していることが知られている
〔石川延男、小林義郎著“フツ素の化合物−その
化学と応用”講談社サイエンテイフイク、pp202
−232(1979年); R&DレポートNo.6、“フツ素化合物の化学と工
業”、シーエムシー(1977)、pp415−473;有合
化、42、794(1984);有合化、43、1073(1985);
特開昭60−6700;特開昭59−139398;
Tetrahedron Lett、21、3591、3593(1980)参
照〕。 〔従来技術〕 一般にα−又はγ−位にフツ素原子を有するカ
ルボニル又はα,β−不飽和カルボニル化合物を
製造する際のフツ素源としては次のものが知られ
ている。 (1) F2〔J.Org Chem、47、1107(1982)参照〕 (2) 次に示すフツ素化剤 XeF2〔たとえばJ.Chem.Soc.Chem.Comm、
1980、759参照〕 CF3OF〔たとえばJ.Am.Chem.Soc.、102、4845
(1980)参照〕 CF3CF2OF〔Tetrahedron Lett、725(1979)参
照〕 FClO3〔たとえばChem.Ber.、102、1944(1969)
参照〕 CF3COOF〔J.Fluorine Chem.、16、19(1980)
参照〕 CH3COOF〔Synthesis、665?1985)参照〕 ArSO2NFR〔J.Am.Chem.Soc.、106、452
(1984)参照〕 1−フルオロ−2−ピリドン〔J.Org.Chem.、
48、761(1983)参照〕 (3) KFやAgF等に代表されるF を有する塩 〔たとえばJ.Chem.Soc.3786(1953)、J.Am
Chem Soc、78、2658(1956)参照〕 (4) トリフルオロエチレンやヘキサフルオロプロ
ペン等のフルオロオレフイン〔Chem.Lett.、
1980、1107、1981、107参照〕 〔発明が解決しようとする問題点〕 しかしながら(1)のF2を用いる方法はF2の激し
い反応性により制御が困難で使用範囲が非常に制
限されること、(2)のフツ素化試剤を用いる方法で
は、高価な試剤を用いること、爆発性や毒性の強
い試剤を用いること、不安定な試剤を用いるため
たとえば反応に極低温を必要とすること、フツ素
化試剤の合成が困難であること、またフツ素化反
応の収率あるいは選択性の低いこと等のいずれか
の欠点を有している。また(3)の方法では、F は
水素原子を置換することはできないため、カルボ
ニル化合物をF と置換しうる脱離基をもつ化合
物へ変換しなければならないので、使用範囲に制
限を受けること、さらにF との反応では望む置
換反応ばかりでなく、副反応である脱離反応が起
こる〔たとえばJ.Fluorine Chem.、27、35
(1985)参照〕等の欠点がある。また銀塩は高価
である。(4)の方法はフルオロオレフインを鍵中間
体として、α−フルオロ−β−ケトエステルやフ
ルオロマロン酸ジエステルを製造する方法である
が、この方法は高価な原料及び多数の反応工程を
必要とする。 以上、いずれの方法も工業的製法としては不十
分なものである。 本発明者らは、これらの欠点を克服すべく鋭意
研究を行なつた結果、従来の反応とは全く異なる
すぐれたフツ素化反応を見い出し本発明を完成す
るに至つた。 〔問題点を解決するための手段〕 本発明の製法は、一般式 【化】 〔式中、Mは水素原子、アルキル基、アリール
基、アシル基、又はSiR11R12R13であり(なお
R11、R12、及びR13はアルキル基、アリール基、
アルコキシ基、アリールオキシ基又はハロゲン原
子であり、種々の組み合わせでヘテロ原子を介在
して又は非介在で環状構造をとつてもよい)、R1
は水素原子、アルキル基、アルコキシ基又はトリ
アルキルシリルオキシ基であり、R2及びR3は水
素原子、アルキル基、アルケニル基、アリール
基、アシル基又はアルコキシカルボニル基であ
り、R4及びR5は水素原子又はアルキル基であり、
nは0又は1である。R1、R2、R3、R4及びR5
種々の組み合わせで、ヘテロ原子を介在して又は
非介在で環状構造をとつてもよい。〕 で表わされるエノール化合物と、一般式 【化】 (式中、R6、R7、R8、R9及びR10は水素原子、
アルキル基、アリール基、アルコキシ基、ヒドロ
キシ基、アリールオキシ基、アシル基、アシルオ
キシ基、アシルチオ基、ニトロ基、シアノ基、ア
ルケニル基、アルキニル基、アルコキシカルボニ
ル基、アリールオキシカルボニル基、アミド基、
カルバモイル基、アルキルスルホニル基、アリー
ルスルホニル基、アルコキシスルホニル基、アリ
ールオキシスルホニル基、アルカンスルホニルオ
キシ基、アレーンスルホニルオキシ基又はハロゲ
ン原子であり、X-はブレンステツド酸の共役塩
基である。R6、R7、R8、R9及びR10は種々の組
み合わせでヘテロ原子を介在して又は非介在で環
状構造を有してもよい。またX-はR6、R7、R8
R9及びR10と種々の組み合わせでヘテロ原子を介
在して又は非介在で結合していてもよい。)で表
わされるN−フルオロピリジニウム塩とを反応さ
せることを特徴とする、一般式 【化】 (式中、R1、R2、R3、R4及びR5は前記同様の意
味を表わす。) で表わされるフツ素置換カルボニル化合物を製造
するものである。 一般式()で表わされる化合物でMが水素原子
のものは入手容易な又は容易に製造できる化合物
であり、Mが水素原子以外のものは一般に次の方
法で製造される。 (1) MがSiR11R12R13の場合。 相当するカルボニル化合物〔前記一般式
()、M=H〕を塩基の存在下ClSiR11R12R13
又はCF3SO2CSiR11R12R13で処理する方法〔J.
Org.Chem.、34、2324(1969);Synthesis、
1976、259参照〕 (2) Mがアシル基の場合。 相当するカルボニル化合物を酸無水物又は2
−アシルオキシ−1−プロペン等で処理する方
法〔Fieser & Fieser、“Reagents for
Organic Synthesis、”John Wiley and Sons、
Inc.、Vol 1、pp524−526(1967)参照〕 (3) Mがアルキル基又はアリール基の場合。 相当するカルボニル化合物をオルト酸エステ
ル等で処理する方法。 前記一般式()で表わされる化合物で、Mが水
素原子である化合物は、次式に示すようなケトー
エノール平衡の状態にあることはよく知られてい
る〔H.O.House、“Modern Synthetic
Reactions”2nd.、W.A.Benjamin、Inc.、
California(1972)、pp492〜497参照〕。 【化】 前記一般式()で表わされるエノール化合物と
しては、たとえば 2−トリメチルシリルオキシ−2−ドデセン、 2−メトキシ−2−ドデセン、 2−トリメチルシリルオキシ−1−フエニル−1
−プロペン、 2−トリメチルシリルオキシ−1,3−ブタジエ
ン、 1−フエニル−3−トリメチルシリルオキシ−
1,3−ブタジエン、 2−トリメチルシリルオキシ−3,3−ジメチル
−1−ブテン、 1−トリメチルシリルオキシ−1−シクロヘキセ
ン、 1−トリメチルシリルオキシ−1−シクロペンテ
ン、 1−トリエチルシリルオキシ−1−シクロヘキセ
ン、 1−ジメチル−t−ブチルシリルオキシ−1−シ
クロヘキセン、 1−ジメチルフエニルシリルオキシ−1−シクロ
ヘキセン、 1−クロルジフエニルシリルオキシ−1−シクロ
ヘキセン、 1−トリエトキシシリルオキシ−1−シクロヘキ
セン、 1−メトキシ−1−シクロヘキセン、 1−フエノキシ−1−シクロヘキセン、 1−アセチルオキシ−1−シクロヘキセン、 1−プロピオニルオキシ−1−シクロヘキセン、 1−ホルミルオキシ−1−シクロヘキセン、 1−トリメチルシリルオキシ−1−シクロオクタ
セン、 1−メトキシ−1−シクロノネン、 1−メトキシ−1−シクロデセン、 フエニルアセトン、 アセチルアセトン、 ベンゾイル酢酸エチルエステル、 ホルミルアセトン、 アセト酢酸メチルエステル、 2−メチルアセト酢酸エチルエステル、 3−トリメチルシリルオキシ−2,3−ジメチル
−2−ブテン酸メチルエステル、 3−トリメチルシリルオキシ−3−メトキシ−2
−プロペン酸メチルエステル、 2−メトキシカルボニルシクロペンタノン、 2−メチル−シクロペンタン−1,3−ジオン、 2−フルオロアセチルアセトン、 2−クロロアセチルアセトン、 1−トリメチルシリルオキシ−1−エトキシエテ
ン、 1−トリメチルシリルオキシ−1−メトキシ−1
−オクテン、 1,1−ビス(トリメチルシリルオキシ)−2−
フエニルエテン、 1,1−ビス(トリメチルシリルオキシ)−2−
(p−イソブチルフエニル)エテン、 1,1−ビス(トリメチルシリルオキシ)−2−
(p−シクロヘキシルフエニル)エテン、 1−トリメチルシリルオキシ−1−メトキシ−2
−(p−クロロフエニル)エテン、 1−トリメチルシリルオキシ−1−メトキシ−2
−(α−チエニル)エテン、 1−トリメチルシリルオキシ−1−エトキシ−2
−(α−フリル)エテン、 1−トリメチルシリルオキシ−1−メトキシ−2
−(β−ナフチル)エテン、 1−トリメチルシリルオキシ−1−メトキシ−2
−(α−N−メチルピロリル)エテン、 オキザール酢酸ジエチルエステル、 フエニルピルビン酸、 フエニルピリジン酸メチルエステル、 2−フエニルアセチル酢酸メチルエステル、 2−フエニル−3−トリメチルシリルオキシ−3
−メトキシプロペン酸エチルエステル、 2−(p−メトキシフエニル)マロン酸ジエチル
エステル、 5,5−ジメチルシクロヘキサン−1,3−ジオ
ン、 2−トリメチルシリルオキシ−1,4−ジヒドロ
ナフタレン、 2−アリルアセト酢酸メチルエステル、 2−ホルミルシクロヘキサノン、 α−アセチル−δ−ラクトン、 2−ベンゾイル−6,6−ジメチルシクロヘキサ
ノン、 2−アセチルマロン酸ジエチルエステル、 2−トリメチルシリルオキシ−1,3−シクロヘ
キサジエン、 6−トリメチルシリルオキシ−N,N−ジメチル
ウラシル、 6−オキソウラシル、 2−トリメチルシリルオキシ−4,5−ジヒドロ
フラン、 2−(トリメチルシリルオキシ)フラン、 2−アセチルオキシ−4,5−ジヒドロフラン、 6−トリメチルシリルオキシ−2H,3H,4H−
ピラン、 【化】 【化】 【化】 【化】 【化】 【化】 【化】 【化】 【化】 【式】 【式】 【式】 【式】 等を例示することができる。 一方、一般式()で表わされるN−フルオロピ
リジニウム塩はピリジンにF2を反応させること
により〔Z.Chem.、、64(1965)〕、又ピリジン
又はピリジン誘導体にF2とM″X(M″は水素原子、
金属原子、アンモニウム残基、ピリジニウム残基
又はSiR11R12R13である。)又はルイス酸とを反応
させることにより(特願昭60−118882参照)製造
することができる。 前記一般式()で表わされるN−フルオロピリ
ジニウム塩としては、たとえば 【化】 【化】 【化】 【化】 【化】 【化】 【化】 【化】 【化】 【化】 【化】 【化】 【化】 【式】 【式】(nは整 数) 【式】 【化】 等を挙げることができる。 本発明の反応は、溶媒中で行なうのが好まし
く、溶媒としては、塩化メチレン、クロロホル
ム、四塩化炭素、シクロロエタン等のハロゲン化
炭化水素、ジエチルエーテル、テトラヒドロフラ
ン(THF)、ジメトキシエタン等のエーテル、ヘ
キサン、ペンタン、トルエン等の炭化水素、アセ
トニトリル等又はこれらの混合溶媒を用いること
ができる。 反応温度は−100℃〜150℃を選ぶことができる
が、反応が効率よく進行する点で−80℃〜+100
℃が好ましい。 前記一般式()で表わされるエノール化合物と
前記一般式()で表わされるN−フルオロピリジ
ニウム塩との反応で、Mがアルキル基、又はアリ
ール基の場合、目的物である前記一般式()で表
わされるフツ素置換カルボニル化合物を収率よく
得るには、続いて加水分解を行なうのが好まし
い。 本発明の利点の一つとして、反応に選択性があ
ることである。後記する実施例18及び19に示すよ
うに、同一分子内に二つ以上の反応点があると
き、反応条件を設定することにより、一つの反応
点のみと反応を起こさせることができる。反応の
選択性は、反応点を多く持つ複雑な化合物を合成
する上で、重要な点であり、反応の選択性が高け
れば高いほど有益な反応といえる。 以下、参考例及び実施例により本発明を更に詳
細に説明する。 参考例 1 【化】 ピリジン10g(0.126mol)の無水アセトニト
リル100ml溶液を−40℃に冷却下、激しく撹拌し
ながら窒素ガスで10%に希釈したフツ素ガスを90
ml/分の流速で導入した。導入したフツ素の全量
は0.18molであつた。その後トリフルオロメタン
スルホン酸ナトリウム22g(0.128mol)を加え、
−40℃で5時間撹拌した。その後生成したフツ化
ナトリウムを濾別し、溶媒を留去後残渣を塩化メ
チレンを用いて結晶化させN−フルオロピリジニ
ウムトリフルオロメタンスルホナート17.5g(71
%)得た。再結晶は塩化メチレン−アセトニトリ
ルによつて行なつた。物性値は表1に示した。 参考例 2 【化】 2,4,6−トリメチルピリジン0.57g
(4.67mmol)及びトリフルオロメタンスルホン酸
ナトリウム0.803g(4.67mmol)を無水アセトニ
トリル20mlに溶解させ、−40℃に冷却下激しく撹
拌しながら窒素ガスで10%に希釈したフツ素ガス
を30ml/minの流速で導入した。導入したフツ素
ガスの量は8.93mmolであつた。反応後、生成し
たフツ化ナトリウムを濾別し、溶媒留去後、アセ
トニトリル−ジエチルエーテルを用いて結晶化さ
せてN−フルオロ−2,4,6−トリメチルピリ
ジニウムトリフルオロメタンスルホナートを1.11
g(82%)得た。物性値は表1に示した。 参考例 3〜10 参照例2と同様の操作で行ない、表1に示すN
−フルオロピリジニウム塩を51〜87%の収率で得
た。物性値は表1に示した。 なお参考例9は出発原料として2−l−メント
キシピリジン〔旋光度〔α〕20 D=−110.7(C=
0.994)〕を用い、生成したN−フルオロ−2−l
−メントキシピリジニウムトリフルオロメタンス
ルホナートの旋光度は 〔α〕25 D=−77.73(C=4.16、CHCl3)であつた。 参考例 11 【化】 2,4,6−トリメチルピリジン0.605g
(5mmol)の無水アセトニトリル10ml溶液を−40
℃に冷却下激しく撹拌しながらフツ素と窒素の混
合ガス(1:9)を40ml/分の流速で導入した。
導入したフツ素の全量は15mmolであつた。次い
で同温度下でフルオロスルホン酸0.5ml
(8.7mmol)を加えて10分間撹拌した。反応後ジ
エチルエーテル20mlを加え結晶化させN−フルオ
ロ−2,4,6−トリメチルピリジニウムフルオ
ロスルホナート0.665g(56%)を白色結晶とし
て得た。物性値は表1に示した。 【表】 【表】 【表】 実施例 1 【化】 アルゴン雰囲気下、N−フルオロピリジニウム
トリフルオロメタンスルホナート249mg
(1mmol)の乾燥塩化メチレン懸濁液(4ml)
に、トリメチルシロキシシクロヘキセン170mg
(1mmol)を滴下し、室温で7時間撹拌した。反
応混合物に内部標準としてクロルベンゼンを加
え、ガスクロマトグラフイーにより定量したとこ
ろ2−フルオロシクロヘキサノンの収率は87%で
あつた。反応混合物を水中にあけ、エーテル抽出
し、エーテル層を水洗し、無水硫酸マグネシウム
で乾燥後、溶媒を留去して得られる粗生成物をガ
スクロマトグラフイーにより精製して2−フルオ
ロシクロヘキサノンの構造をスペクトルより確認
した。NMRデータを次に示す。1 H−nmr(CDCl3)δ;1.55−2.80(m,8H)、
4.90(d,m,J=50Hz,1H):19F−nmr
(CDCl3)ppm;+188.0(d,J=50Hz)。 実施例 2〜23 実施例1と同様の操作で表2に示す条件下にエ
ノール化合物とN−フルオロピリジニウム塩とを
反応させた。その結果を実施例1も合わせて表2
に示した。 なお実施例10〜23に記載された収率はシリカゲ
ルカラムクロマトグラフイーによる単離収率であ
る。また実施例12、13の収率は、得られた生成物
をジアゾメタンで処理した後、精製し、メチルエ
ステルとして単離した収率である。 【表】 【表】 【表】 【表】 【表】 【表】 【表】 【表】 【表】 【表】 【表】 実施例 24 【化】 アルゴン雰囲気下、N−フルオロピリジニウム
トリフルオロメタンスルホナート250mg
(1.01mmol)の乾燥塩化メチレン懸濁液(4ml)
に、1−メトキシシクロヘキセン113mg
(1.01mmol)を滴加し、0.5時間加熱還流を行な
つた。その後、混合液に水0.05mlを加え室温で約
4時間撹拌したところ、2−フルオロシクロヘキ
サノンが60%(ガスクロマトグラフイー収率)の
収率で得られた。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to carbonyl compounds having a fluorine atom at the α-position or α, β carbonyl compounds having a fluorine atom at the γ-position.
-Regarding a method for producing an unsaturated carbonyl compound. The above-mentioned carbonyl compounds having a fluorine atom are known to be agricultural chemicals, pharmaceuticals, or useful intermediates for their production. Among them, fluorine-containing steroid compounds with a fluorine-substituted carbonyl structure are known to have excellent pharmacological effects such as anti-inflammatory, mineral metabolism, and sugar metabolism [Nobuo Ishikawa, Yoshiro Kobayashi, “ Fluorine Compounds - Their Chemistry and Applications, Kodansha Scientific, pp202
-232 (1979); R&D Report No. 6, “Chemistry and Industry of Fluorine Compounds”, CMC (1977), pp415-473; Enryoka, 42 , 794 (1984); Aryoka, 43 , 1073 (1985);
JP-A-60-6700; JP-A-59-139398;
See Tetrahedron Lett, 21 , 3591, 3593 (1980)]. [Prior Art] Generally, the following fluorine sources are known for producing carbonyl or α,β-unsaturated carbonyl compounds having a fluorine atom at the α- or γ-position. (1) F 2 [See J.Org Chem, 47 , 1107 (1982)] (2) The following fluorinating agent XeF 2 [For example, J.Chem.Soc.Chem.Comm,
1980, 759] CF 3 OF [e.g. J.Am.Chem.Soc., 102 , 4845
(1980)] CF 3 CF 2 OF [See Tetrahedron Lett, 725 (1979)] FClO 3 [For example, Chem.Ber., 102 , 1944 (1969)]
Reference] CF 3 COOF [J.Fluorine Chem., 16 , 19 (1980)
Reference] CH 3 COOF [Synthesis, 665?1985] Reference] ArSO 2 NFR [J.Am.Chem.Soc., 106 , 452
(1984)] 1-Fluoro-2-pyridone [J.Org.Chem.,
48, 761 (1983)] (3) F-containing salts such as KF and AgF [for example, J.Chem.Soc.3786 (1953), J.Am
Chem Soc, 78 , 2658 (1956)] (4) Fluoroolefins such as trifluoroethylene and hexafluoropropene [Chem.Lett.
1980, 1107, 1981 , 107] [Problems to be solved by the invention] However, the method (1) using F 2 is difficult to control due to the intense reactivity of F 2 , and the range of use is extremely limited. , In the method (2) using a fluorinated reagent, expensive reagents are used, highly explosive or toxic reagents are used, and unstable reagents are used, so for example, extremely low temperatures are required for the reaction. It has drawbacks such as difficulty in synthesizing the fluorination reagent and low yield or selectivity of the fluorination reaction. In addition, in method (3), since F cannot replace a hydrogen atom, the carbonyl compound must be converted into a compound with a leaving group that can replace F, which limits the range of use. Furthermore, in the reaction with F, not only the desired substitution reaction but also an elimination reaction, which is a side reaction, occurs [for example, J.Fluorine Chem., 27 , 35
(1985)]. Furthermore, silver salt is expensive. Method (4) is a method for producing α-fluoro-β-ketoester and fluoromalonic acid diester using fluoroolefin as a key intermediate, but this method requires expensive raw materials and a large number of reaction steps. As described above, both methods are insufficient as industrial production methods. The present inventors conducted intensive research to overcome these drawbacks, and as a result, they discovered an excellent fluorination reaction that is completely different from conventional reactions and completed the present invention. [ Means for Solving the Problems] The production method of the present invention is based on the general formula :
R 11 , R 12 , and R 13 are an alkyl group, an aryl group,
an alkoxy group, an aryloxy group, or a halogen atom, which may have a cyclic structure with or without intervening hetero atoms in various combinations), R 1
is a hydrogen atom, an alkyl group, an alkoxy group, or a trialkylsilyloxy group, R 2 and R 3 are a hydrogen atom, an alkyl group, an alkenyl group, an aryl group, an acyl group, or an alkoxycarbonyl group, R 4 and R 5 is a hydrogen atom or an alkyl group,
n is 0 or 1. R 1 , R 2 , R 3 , R 4 and R 5 may form a cyclic structure in various combinations with or without intervening hetero atoms. ] An enol compound represented by the general formula
Alkyl group, aryl group, alkoxy group, hydroxy group, aryloxy group, acyl group, acyloxy group, acylthio group, nitro group, cyano group, alkenyl group, alkynyl group, alkoxycarbonyl group, aryloxycarbonyl group, amide group,
It is a carbamoyl group, an alkylsulfonyl group, an arylsulfonyl group, an alkoxysulfonyl group, an aryloxysulfonyl group, an alkanesulfonyloxy group, an arenesulfonyloxy group, or a halogen atom, and X - is a conjugate base of Bronsted acid. R 6 , R 7 , R 8 , R 9 and R 10 may have a cyclic structure in various combinations with or without intervening hetero atoms. Also, X - is R 6 , R 7 , R 8 ,
It may be bonded to R 9 and R 10 in various combinations with or without intervening heteroatoms. ), characterized in that it is reacted with an N-fluoropyridinium salt represented by the general formula: (wherein R 1 , R 2 , R 3 , R 4 and R 5 have the same meanings as above). ) A fluorine-substituted carbonyl compound represented by the following formula is produced. Compounds represented by the general formula () in which M is a hydrogen atom are readily available or can be easily produced, and compounds in which M is other than a hydrogen atom are generally produced by the following method. (1) When M is SiR 11 R 12 R 13 . The corresponding carbonyl compound [the above general formula (), M=H] is ClSiR 11 R 12 R 13 in the presence of a base.
Or treatment with CF 3 SO 2 CSiR 11 R 12 R 13 [J.
Org.Chem., 34 , 2324 (1969); Synthesis,
1976, 259] (2) When M is an acyl group. The corresponding carbonyl compound as an acid anhydride or
- Method of treatment with acyloxy-1-propene etc. [Fieser & Fieser, “Reagents for
Organic Synthesis, “John Wiley and Sons,”
Inc., Vol 1, pp524-526 (1967)] (3) When M is an alkyl group or an aryl group. A method in which the corresponding carbonyl compound is treated with an orthoacid ester, etc. It is well known that the compound represented by the above general formula () in which M is a hydrogen atom is in a state of ketoenol equilibrium as shown in the following formula [HOHouse, “Modern Synthetic
Reactions”2nd., WABenjamin, Inc.
California (1972), pp. 492-497]. [Chemical formula] Examples of the enol compound represented by the general formula () include 2-trimethylsilyloxy-2-dodecene, 2-methoxy-2-dodecene, 2-trimethylsilyloxy-1-phenyl-1
-Propene, 2-trimethylsilyloxy-1,3-butadiene, 1-phenyl-3-trimethylsilyloxy-
1,3-butadiene, 2-trimethylsilyloxy-3,3-dimethyl-1-butene, 1-trimethylsilyloxy-1-cyclohexene, 1-trimethylsilyloxy-1-cyclopentene, 1-triethylsilyloxy-1-cyclohexene, 1 -dimethyl-t-butylsilyloxy-1-cyclohexene, 1-dimethylphenylsilyloxy-1-cyclohexene, 1-chlorodiphenylsilyloxy-1-cyclohexene, 1-triethoxysilyloxy-1-cyclohexene, 1- Methoxy-1-cyclohexene, 1-phenoxy-1-cyclohexene, 1-acetyloxy-1-cyclohexene, 1-propionyloxy-1-cyclohexene, 1-formyloxy-1-cyclohexene, 1-trimethylsilyloxy-1-cycloocta sen, 1-methoxy-1-cyclononene, 1-methoxy-1-cyclodecene, phenylacetone, acetylacetone, benzoylacetic acid ethyl ester, formyl acetone, acetoacetic acid methyl ester, 2-methylacetoacetic acid ethyl ester, 3-trimethylsilyloxy-2 , 3-dimethyl-2-butenoic acid methyl ester, 3-trimethylsilyloxy-3-methoxy-2
-Propenoic acid methyl ester, 2-methoxycarbonylcyclopentanone, 2-methyl-cyclopentane-1,3-dione, 2-fluoroacetylacetone, 2-chloroacetylacetone, 1-trimethylsilyloxy-1-ethoxyethene, 1-trimethylsilyl Oxy-1-methoxy-1
-octene, 1,1-bis(trimethylsilyloxy)-2-
Phenylethene, 1,1-bis(trimethylsilyloxy)-2-
(p-isobutylphenyl)ethene, 1,1-bis(trimethylsilyloxy)-2-
(p-cyclohexylphenyl)ethene, 1-trimethylsilyloxy-1-methoxy-2
-(p-chlorophenyl)ethene, 1-trimethylsilyloxy-1-methoxy-2
-(α-thienyl)ethene, 1-trimethylsilyloxy-1-ethoxy-2
-(α-furyl)ethene, 1-trimethylsilyloxy-1-methoxy-2
-(β-naphthyl)ethene, 1-trimethylsilyloxy-1-methoxy-2
-(α-N-methylpyrrolyl)ethene, oxalacetic acid diethyl ester, phenylpyruvic acid, phenylpyridic acid methyl ester, 2-phenylacetylacetic acid methyl ester, 2-phenyl-3-trimethylsilyloxy-3
-Methoxypropenoic acid ethyl ester, 2-(p-methoxyphenyl)malonic acid diethyl ester, 5,5-dimethylcyclohexane-1,3-dione, 2-trimethylsilyloxy-1,4-dihydronaphthalene, 2-allylacetoacetic acid Methyl ester, 2-formylcyclohexanone, α-acetyl-δ-lactone, 2-benzoyl-6,6-dimethylcyclohexanone, 2-acetylmalonic acid diethyl ester, 2-trimethylsilyloxy-1,3-cyclohexadiene, 6-trimethylsilyl Oxy-N,N-dimethyluracil, 6-oxouracil, 2-trimethylsilyloxy-4,5-dihydrofuran, 2-(trimethylsilyloxy)furan, 2-acetyloxy-4,5-dihydrofuran, 6-trimethylsilyloxy −2H, 3H, 4H−
Examples include pyran, [C] [C] [C] [C] [C] [C] [C] [C] [C] [C] [C] [C] [C] [C] [C] [C] [C] [C] [C] [C] [C] [C] [C] [C] On the other hand, the N-fluoropyridinium salt represented by the general formula () can be prepared by reacting pyridine with F 2 [Z.Chem., 5 , 64 (1965)], or by reacting pyridine or a pyridine derivative with F 2 and M″X (M″ is a hydrogen atom,
It is a metal atom, an ammonium residue, a pyridinium residue, or SiR 11 R 12 R 13 . ) or Lewis acid (see Japanese Patent Application No. 118882/1982). Examples of the N-fluoropyridinium salt represented by the general formula () include [C] [C] [C] [C] [C] [C] [C] [C] [C] [C] [C] [C] [C] [C] [C] [C] [Formula] [Formula] [Formula] (n is an integer) [Formula] [Formula] [Formula] [Formula] [Formula] [Formula] [Formula] [Formula] [Formula] [Formula] [Formula] [Formula] The reaction of the present invention is preferably carried out in a solvent, and examples of the solvent include halogenated hydrocarbons such as methylene chloride, chloroform, carbon tetrachloride, and cycloethane, ethers such as diethyl ether, tetrahydrofuran (THF), and dimethoxyethane; Hydrocarbons such as hexane, pentane, toluene, etc., acetonitrile, etc., or a mixed solvent thereof can be used. The reaction temperature can be selected from -100℃ to 150℃, but in order for the reaction to proceed efficiently, -80℃ to +100℃ is recommended.
°C is preferred. In the reaction between the enol compound represented by the above general formula () and the N-fluoropyridinium salt represented by the above general formula (), when M is an alkyl group or an aryl group, the target product in the above general formula () is In order to obtain the expressed fluorine-substituted carbonyl compound in good yield, it is preferable to subsequently perform hydrolysis. One of the advantages of the present invention is the selectivity of the reaction. As shown in Examples 18 and 19 below, when there are two or more reaction points in the same molecule, it is possible to cause a reaction to occur with only one reaction point by setting the reaction conditions. Reaction selectivity is an important point in synthesizing complex compounds with many reactive sites, and the higher the reaction selectivity, the more beneficial the reaction is. Hereinafter, the present invention will be explained in more detail with reference to Reference Examples and Examples. Reference Example 1 [Chemical] A solution of 10 g (0.126 mol) of pyridine in 100 ml of anhydrous acetonitrile was cooled to -40°C and diluted to 10% with nitrogen gas while stirring vigorously.
A flow rate of ml/min was introduced. The total amount of fluorine introduced was 0.18 mol. Then add 22g (0.128mol) of sodium trifluoromethanesulfonate,
Stirred at -40°C for 5 hours. Thereafter, the generated sodium fluoride was filtered off, the solvent was distilled off, and the residue was crystallized using methylene chloride to obtain 17.5 g of N-fluoropyridinium trifluoromethanesulfonate (71
%)Obtained. Recrystallization was performed using methylene chloride-acetonitrile. The physical property values are shown in Table 1. Reference example 2 [Chemical formula] 2,4,6-trimethylpyridine 0.57g
(4.67 mmol) and 0.803 g (4.67 mmol) of sodium trifluoromethanesulfonate were dissolved in 20 ml of anhydrous acetonitrile, and while cooling to -40°C and stirring vigorously, fluorine gas diluted to 10% with nitrogen gas was added at a rate of 30 ml/min. It was introduced at a flow rate. The amount of fluorine gas introduced was 8.93 mmol. After the reaction, the produced sodium fluoride was filtered off, the solvent was distilled off, and the crystallization was performed using acetonitrile-diethyl ether to obtain 1.11 N-fluoro-2,4,6-trimethylpyridinium trifluoromethanesulfonate.
g (82%) was obtained. The physical property values are shown in Table 1. Reference Examples 3 to 10 Perform the same operation as Reference Example 2, and obtain N shown in Table 1.
-Fluoropyridinium salts were obtained in yields of 51-87%. The physical property values are shown in Table 1. Reference Example 9 uses 2-l-menthoxypyridine [optical rotation [α] 20 D = -110.7 (C =
0.994)], N-fluoro-2-l produced using
The optical rotation of -menthoxypyridinium trifluoromethanesulfonate was [α] 25 D = -77.73 (C = 4.16, CHCl 3 ). Reference example 11 [chemical formula] 2,4,6-trimethylpyridine 0.605g
(5 mmol) in 10 ml of anhydrous acetonitrile at -40
A mixed gas of fluorine and nitrogen (1:9) was introduced at a flow rate of 40 ml/min while stirring vigorously while cooling to .degree.
The total amount of fluorine introduced was 15 mmol. Then add 0.5ml of fluorosulfonic acid at the same temperature.
(8.7 mmol) was added and stirred for 10 minutes. After the reaction, 20 ml of diethyl ether was added for crystallization to obtain 0.665 g (56%) of N-fluoro-2,4,6-trimethylpyridinium fluorosulfonate as white crystals. The physical property values are shown in Table 1. [Table] [Table] [Table] Example 1 [Chemical formula] N-fluoropyridinium trifluoromethanesulfonate 249 mg under argon atmosphere
(1 mmol) in dry methylene chloride suspension (4 ml)
, trimethylsiloxycyclohexene 170mg
(1 mmol) was added dropwise, and the mixture was stirred at room temperature for 7 hours. Chlorobenzene was added to the reaction mixture as an internal standard, and the yield of 2-fluorocyclohexanone was 87% as determined by gas chromatography. The reaction mixture was poured into water, extracted with ether, the ether layer was washed with water, dried over anhydrous magnesium sulfate, the solvent was distilled off, and the resulting crude product was purified by gas chromatography to determine the structure of 2-fluorocyclohexanone. Confirmed from spectrum. The NMR data is shown below. 1 H−nmr (CDCl 3 ) δ; 1.55−2.80 (m, 8H),
4.90 (d, m, J=50Hz, 1H): 19 F−nmr
( CDCl3 ) ppm; +188.0 (d, J = 50Hz). Examples 2 to 23 In the same manner as in Example 1, an enol compound and an N-fluoropyridinium salt were reacted under the conditions shown in Table 2. The results are shown in Table 2 along with Example 1.
It was shown to. Note that the yields described in Examples 10 to 23 are isolated yields by silica gel column chromatography. Moreover, the yields of Examples 12 and 13 are the yields obtained by treating the obtained product with diazomethane, purifying it, and isolating it as a methyl ester. [Table] [Table] [Table] [Table] [Table] [Table] [Table] [Table] [Table] [Table] [Table] Example 24 [Chemical] Under an argon atmosphere, N-fluoropyridinium trifluoromethane sulfonate Nato 250mg
(1.01 mmol) in dry methylene chloride suspension (4 ml)
, 1-methoxycyclohexene 113mg
(1.01 mmol) was added dropwise and heated under reflux for 0.5 hour. Thereafter, 0.05 ml of water was added to the mixture and stirred at room temperature for about 4 hours, and 2-fluorocyclohexanone was obtained in a yield of 60% (gas chromatography yield).

Claims (1)

【特許請求の範囲】 1 一般式 【式】 で表わされるエノール化合物と一般式 【式】 で表わされるN−フルオロピリジニウム塩とを反
応させることを特徴とする、一般式 【式】 で表わされるフツ素置換カルボニル化合物の製造
方法 〔式中、Mは水素原子、アルキル基、アリール
基、アシル基又はSiR11R12R13であり(なおR11
R12及びR13はアルキル基、アリール基、アルコ
キシ基、アリールオキシ基、アシルオキシ基又は
ハロゲン原子であり、種々の組み合わせでヘテロ
原子を介在して又は非介在で環状構造をとつても
よい。)、R1は水素原子、アルキル基、アルコキ
シ基又はトリアルキルシリルオキシ基であり、
R2及びR3は水素原子、アルキル基、アルケニル
基、アリール基、アシル基又はアルコキシカルボ
ニル基であり、R4及びR5は水素原子又はアルキ
ル基であり、nは0又は1である。R1、R2、R3
R4及びR5は種々の組み合わせで、ヘテロ原子を
介在して又は非介在で環状構造をとつてもよい。
R6、R7、R8、R9及びR10は水素原子、アルキル
基、アリール基、アルコキシ基、ヒドロキシ基、
アリールオキシ基、アシル基、アシルオキシ基、
アシルチオ基、ニトロ基、シアノ基、アルケニル
基、アルキニル基、アルコキシカルボニル基、ア
リールオキシカルボニル基、アミド基、カルバモ
イル基、アルキルスルホニル基、アリールスルホ
ニル基、アルコキシスルホニル基、アリールオキ
シスルホニル基、アルカンスルホニルオキシ基、
アレーンスルホニルオキシ基又はハロゲン原子で
あり、X-はブレンステツド酸の共役塩基である。
R6、R7、R8、R9及びR10は種々の組み合わせで
ヘテロ原子を介在して又は非介在で環状構造を有
してもよい。またX-はR6、R7、R8、R9及びR10
は種々の組み合わせでヘテロ原子を介在して又は
非介在で結合していてもよい。〕。
[Claims] 1. A compound represented by the general formula [Formula], characterized in that an enol compound represented by the general formula [Formula] and an N-fluoropyridinium salt represented by the general formula [Formula] are reacted. Method for producing a substituted carbonyl compound [wherein M is a hydrogen atom, an alkyl group, an aryl group, an acyl group, or SiR 11 R 12 R 13 (R 11 ,
R 12 and R 13 are an alkyl group, an aryl group, an alkoxy group, an aryloxy group, an acyloxy group, or a halogen atom, and may form a cyclic structure in various combinations with or without intervening hetero atoms. ), R 1 is a hydrogen atom, an alkyl group, an alkoxy group or a trialkylsilyloxy group,
R 2 and R 3 are a hydrogen atom, an alkyl group, an alkenyl group, an aryl group, an acyl group, or an alkoxycarbonyl group, R 4 and R 5 are a hydrogen atom or an alkyl group, and n is 0 or 1. R1 , R2 , R3 ,
R 4 and R 5 may form a cyclic structure in various combinations with or without intervening hetero atoms.
R 6 , R 7 , R 8 , R 9 and R 10 are hydrogen atoms, alkyl groups, aryl groups, alkoxy groups, hydroxy groups,
Aryloxy group, acyl group, acyloxy group,
Acylthio group, nitro group, cyano group, alkenyl group, alkynyl group, alkoxycarbonyl group, aryloxycarbonyl group, amide group, carbamoyl group, alkylsulfonyl group, arylsulfonyl group, alkoxysulfonyl group, aryloxysulfonyl group, alkanesulfonyloxy basis,
It is an arenesulfonyloxy group or a halogen atom, and X - is a conjugate base of Bronsted acid.
R 6 , R 7 , R 8 , R 9 and R 10 may have a cyclic structure in various combinations with or without intervening hetero atoms. Also, X - is R 6 , R 7 , R 8 , R 9 and R 10
may be bonded with or without intervening heteroatoms in various combinations. ].
JP4845186A 1986-03-07 1986-03-07 Production of fluorine-substituted carbonyl compound Granted JPS62207228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4845186A JPS62207228A (en) 1986-03-07 1986-03-07 Production of fluorine-substituted carbonyl compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4845186A JPS62207228A (en) 1986-03-07 1986-03-07 Production of fluorine-substituted carbonyl compound

Publications (2)

Publication Number Publication Date
JPS62207228A JPS62207228A (en) 1987-09-11
JPH0586768B2 true JPH0586768B2 (en) 1993-12-14

Family

ID=12803710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4845186A Granted JPS62207228A (en) 1986-03-07 1986-03-07 Production of fluorine-substituted carbonyl compound

Country Status (1)

Country Link
JP (1) JPS62207228A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0667332B1 (en) * 1992-10-30 1998-09-23 Daikin Industries, Limited Process for producing fluorinated dicarbonyl compound
JPH07233097A (en) * 1994-02-23 1995-09-05 Chichibu Onoda Cement Corp Production of electrophilic fluorination agent

Also Published As

Publication number Publication date
JPS62207228A (en) 1987-09-11

Similar Documents

Publication Publication Date Title
EP0785205B1 (en) 2-silyloxytetrahydrothienopyridine, salt thereof, and process for producing the same
HU198465B (en) Process for producing 3-/benzyloxymethyl/-aryl-tetralone derivatives
JP4659309B2 (en) Process for producing 5-hydroxy-3-oxopentanoic acid derivative
JPH0586768B2 (en)
JP2622887B2 (en) Isoxazole derivative and method for producing the same
JP3598611B2 (en) Method for producing difluoro compound
JP3276707B2 (en) Method for producing optically active β-hydroxyketone
US4558148A (en) Fluorinated allylic compounds and a process for preparing these compounds
US4051126A (en) Process for the preparation of 6-alkoxy-substituted penicillins
JP3503451B2 (en) Process for producing oxazolidine-2-one derivative
US4235779A (en) Bicyclic lactones
JPH07324081A (en) Production of dihalogenated prostacyclins
JPS6411620B2 (en)
KR100502833B1 (en) Improved preparation method of simvastatin and their intermediates
JPH10101614A (en) Production of alpha alpha-difluoro-beta-hydroxy ester
KR100543172B1 (en) A Process for Preparing Terrein Compounds
US4058567A (en) Cyclopentene sulfoxides
JP2734646B2 (en) Novel synthetic method of 2,2-difluorocarboxylic acid derivatives
KR20010052544A (en) Process for the preparation of vitamin a, intermediates, and process for the preparation of the intermediates
JP3403761B2 (en) 3,5-Dihydroxy-1-octen-7-ynes and method for producing the same
JP3634874B2 (en) Trifluoromethylacetylene derivative, method for producing the same, and method for producing the intermediate
JP4710698B2 (en) Process for producing β-diketone compound having silyl ether group
JPH0586770B2 (en)
JPH0235757B2 (en)
JP2512550B2 (en) 2-Methyl-1-oxadethiacephalosporin intermediate and method for producing the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees