JPH0586650B2 - - Google Patents

Info

Publication number
JPH0586650B2
JPH0586650B2 JP58052079A JP5207983A JPH0586650B2 JP H0586650 B2 JPH0586650 B2 JP H0586650B2 JP 58052079 A JP58052079 A JP 58052079A JP 5207983 A JP5207983 A JP 5207983A JP H0586650 B2 JPH0586650 B2 JP H0586650B2
Authority
JP
Japan
Prior art keywords
diffusion
boron
gas
flow rate
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58052079A
Other languages
Japanese (ja)
Other versions
JPS59177923A (en
Inventor
Akio Saito
Mitsuo Oomi
Mitsuo Kishimoto
Kazuaki Matsura
Yoshihiko Katsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP5207983A priority Critical patent/JPS59177923A/en
Publication of JPS59177923A publication Critical patent/JPS59177923A/en
Publication of JPH0586650B2 publication Critical patent/JPH0586650B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/223Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a gaseous phase

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Formation Of Insulating Films (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体基板に固体拡散源からの硼素を
拡散導入する工程の処理条件を改善した半導体へ
の硼素拡散方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for diffusing boron into a semiconductor, which improves the processing conditions of the step of diffusing and introducing boron from a solid diffusion source into a semiconductor substrate.

従来例の構成とその問題点 半導体基板への硼素の拡散導入には、通常、固
定拡散源、たとえば窒化硼素(BN)からの硼素
供給方式が利用され、第1図に示すような製造装
置が用いられる。この製造装置は管状炉1内に石
英管2を配し、同管内の石英ボート3に半導体基
板4と窒化硼素板5とを並べて立て、これにガス
制御器6から所定の雰囲気ガスを供給するように
なつている。ガス制御器6では、窒素、酸素およ
び水素がガス注入口7,8,9より送られ、流量
計10を用いて、所定混合ガスが形成される。製
造処理期間中の混合ガス供給プロセスは3段階に
分けられ、第1段階は、石英管2内の温度を拡散
条件に保持して、その中に、半導体基板4および
窒化硼素板5を並べて載置した石英ボート3を設
置し、同管内温度が平衡に達するまでの期間で、
これをリカバリーサイクルと呼び、第2段階は、
石英管2内における拡散用不純物源の安定化をは
かる処理期間で、これをソースサイクルと称し、
さらに、第3階段は、半導体基板4が所望濃度に
拡散導入されるまでの拡散処理期間で、これをソ
ークサイクルと呼ぶ。まず、第1段階のリカバリ
ーサイクルでは、窒素と酸素との混合キヤリアガ
スを供給する。第2段階のソースサイクルでは、
窒化硼素板5の表面部に形成される3酸化硼素
(B2O3)と水(H2O)との化合物でなる水酸化
硼素(HBO2)を石英管2内に形成し、不純物供
給源の安定化をはかるために、窒素と酸素の混合
キヤリアガスに加えて窒素と水素との混合ガスを
短時間供給する。そして、第3段階のソークサイ
クルでは、窒素のみをその拡散処理期間中供給す
る。
Conventional structure and its problems Normally, a boron supply method from a fixed diffusion source, such as boron nitride (BN), is used to diffuse and introduce boron into a semiconductor substrate, and a manufacturing apparatus as shown in Fig. 1 is used. used. This manufacturing equipment has a quartz tube 2 placed in a tube furnace 1, a semiconductor substrate 4 and a boron nitride plate 5 are placed side by side in a quartz boat 3 in the tube, and a predetermined atmospheric gas is supplied to this from a gas controller 6. It's becoming like that. In the gas controller 6, nitrogen, oxygen, and hydrogen are sent through gas injection ports 7, 8, and 9, and a predetermined mixed gas is formed using a flow meter 10. The mixed gas supply process during the manufacturing process is divided into three stages. In the first stage, the temperature inside the quartz tube 2 is maintained at a diffusion condition, and the semiconductor substrate 4 and the boron nitride plate 5 are placed side by side inside the quartz tube 2. The quartz boat 3 was installed, and the temperature inside the tube reached equilibrium.
This is called the recovery cycle, and the second stage is
This is a processing period for stabilizing the impurity source for diffusion within the quartz tube 2, and is called a source cycle.
Furthermore, the third step is a diffusion treatment period until the semiconductor substrate 4 is diffused to a desired concentration, and is called a soak cycle. First, in the first stage recovery cycle, a mixed carrier gas of nitrogen and oxygen is supplied. In the second stage source cycle,
Boron hydroxide (HBO 2 ), which is a compound of boron trioxide (B 2 O 3 ) formed on the surface of the boron nitride plate 5 and water (H 2 O), is formed in the quartz tube 2 to supply impurities. In order to stabilize the source, a mixture of nitrogen and hydrogen is supplied for a short period of time in addition to the carrier gas mixture of nitrogen and oxygen. In the third stage soak cycle, only nitrogen is supplied during the diffusion process.

ところで、上述のソースサイクルで供給する窒
素と水素との混合ガスは、その水素含有量によつ
て、その後の拡散処理の安定性に変動を与える。
By the way, the mixed gas of nitrogen and hydrogen supplied in the above-mentioned source cycle varies the stability of the subsequent diffusion process depending on its hydrogen content.

すなわち、水素含有量は、通常、体積比で4%
以下というのが一応の目安であるが、この範囲で
も、拡散処理後の半導体基板シート抵抗値が大幅
なばらつきを呈し、とくに、水素含有量が多い
と、過剰のHBO2が生じ、これが半導体基板と石
英ボートに付着し、安定な拡散条件が得られな
い。
That is, the hydrogen content is usually 4% by volume.
The following is a rough guideline, but even within this range, the semiconductor substrate sheet resistance value after diffusion treatment exhibits large variations, and in particular, when the hydrogen content is high, excessive HBO 2 is generated, which causes the semiconductor substrate to and adheres to the quartz boat, making it impossible to obtain stable diffusion conditions.

発明の目的 本発明は、固体拡散源からの硼素拡散処理の安
定化をはかるもので、とくに、窒化硼素板を拡散
源とする処理過程における窒素と水素との混合ガ
スの適正条件を与えるものである。
Purpose of the Invention The present invention aims to stabilize boron diffusion treatment from a solid diffusion source, and in particular provides appropriate conditions for a mixed gas of nitrogen and hydrogen in a treatment process using a boron nitride plate as a diffusion source. be.

発明の構成 本発明は、要約するに、半導体基板に隣接配置
された固体拡散源から、硼素を導入するにあた
り、水素の処理条件として、水素の体積比の下限
を拡散温度に関係なく0.6%とし、水素の体積比
の上限を910℃の拡散温度のとき1.7%、950℃の
拡散温度のとき1.2%とした半導体への硼素拡散
方法であり、これにより、量産過程における安定
性が顕著に向上した。
Structure of the Invention To summarize, the present invention sets the lower limit of the volume ratio of hydrogen to 0.6% regardless of the diffusion temperature as a hydrogen treatment condition when introducing boron from a solid diffusion source placed adjacent to a semiconductor substrate. , is a boron diffusion method into semiconductors in which the upper limit of the hydrogen volume ratio is 1.7% at a diffusion temperature of 910°C and 1.2% at a diffusion temperature of 950°C, which significantly improves stability in the mass production process. did.

実施例の説明 第2図は本発明の実施例によつて得られた特性
図であり、ソースサイクルにおける水素含有量と
シート抵抗値のばらつきおよび過剰HBO2による
付着状態の関係を示している。
DESCRIPTION OF EMBODIMENTS FIG. 2 is a characteristic diagram obtained according to an embodiment of the present invention, showing the relationship between the hydrogen content in the source cycle, the variation in sheet resistance value, and the adhesion state due to excess HBO 2 .

すなわち、第2図中の特性曲線Iは、体積比で
水素成分9%、残り91%が窒素でなる混合ガス
(以下、便宜上、グリーンガスと呼ぶ)を、流量
の多い方から順にA,B,CおよびDと流量を変
化させたときのシート抵抗値のばらきつを示す。
なお、グリーンガスを流しているときには窒素と
酸素の混合キヤリアガスを同時に流しておく。た
だしグリーンガスの流量に対応して混合キヤリア
ガスの流量も変化させてある ここで、グリーンガス流量Aは、水素含有量が
体積比で4%に相当し、同B点で1.7%、同C点
で1.2%、同D点で0.6%にあたる。また、グリー
ンガス流量が多いと、過剰HBO2の生成付着量が
急激に増大し、処理温度が910℃では特性に依
存し、同じく950℃の場合には特性に依存して、
それぞれ、HBO2の付着状態が著しく増加する。
この結果から、シート抵抗値のばらつきを最小限
に抑え、かつ、HBO2の付着がほとんど起こらな
いような水素含有量の範囲は、グリーンガス流量
で換算して、910℃のときは、D〜Bの範囲、950
℃のときは、D〜Cの範囲であることがわかる。
本発明実施例の具体的条件で言えば、リカバリー
サイクルでは、2l/分の窒素と1l/分の酸素流量
とを混合した混合キヤリアガスを供給しながら、
10分〜15分の処理を行なう。次に、ソースサイク
ルでは、拡散温度を910℃に設定したとき、グリ
ーンガス流量を200c.c./分〜600c.c./分でそれに対
応した混合キヤリアガスの流量を2900c.c./分〜
2500c.c./分の範囲内に、また、拡散温度950℃の
場合には、グリーンガス流量を200c.c./分〜400
c.c./分でそれに対応した混合キヤリアガスの流量
を2900c.c./分〜2700c.c./分の範囲内に、それぞれ
調節して、1分間の処理を行なう。そして、ソー
クサイクルでは、窒素流量3l/分の条件で所望の
シート抵抗値が得られるような拡散処理を行な
う。これによれば、シート抵抗値のばらつきが±
0.3〜0.5Ω/ロであり、石英管2の内壁あるいは
石英ボート3の周辺での水酸化硼素(HBO2)の
付着が認められず、再現性も良好であつた。
In other words, the characteristic curve I in Figure 2 shows that a mixed gas (hereinafter referred to as green gas for convenience) consisting of 9% hydrogen and the remaining 91% nitrogen in volume ratio is A and B in descending order of flow rate. , C and D show the variation in sheet resistance value when the flow rate is changed.
Note that when the green gas is flowing, a mixed carrier gas of nitrogen and oxygen is flowing at the same time. However, the flow rate of the mixed carrier gas is also changed in accordance with the flow rate of green gas.Here, green gas flow rate A corresponds to a hydrogen content of 4% by volume, 1.7% at point B, and 1.7% at point C. This corresponds to 1.2% at point D, and 0.6% at point D. In addition, when the green gas flow rate is large, the amount of excess HBO 2 generated and attached increases rapidly, and when the processing temperature is 910℃, it depends on the characteristics, and when the processing temperature is 950℃, it also depends on the characteristics.
Respectively, the adhesion status of HBO 2 increases significantly.
From this result, the range of hydrogen content that minimizes the variation in sheet resistance value and causes almost no adhesion of HBO 2 is D to D at 910°C when converted by green gas flow rate. Range of B, 950
It can be seen that when the temperature is 0.degree. C., it is in the range of D to C.
In terms of the specific conditions of the embodiment of the present invention, in the recovery cycle, while supplying a mixed carrier gas containing nitrogen at a flow rate of 2 l/min and oxygen at a flow rate of 1 l/min,
Process for 10 to 15 minutes. Next, in the source cycle, when the diffusion temperature is set to 910°C, the green gas flow rate is 200 c.c./min to 600 c.c./min, and the corresponding mixed carrier gas flow rate is 2900 c.c./min to 600 c.c./min.
Within the range of 2500c.c./min, and when the diffusion temperature is 950℃, the green gas flow rate should be between 200c.c./min and 400c.c./min.
The corresponding flow rate of the mixed carrier gas in cc/min was adjusted within the range of 2900 c.c./min to 2700 c.c./min, and the treatment was carried out for 1 minute. In the soak cycle, a diffusion process is performed to obtain a desired sheet resistance value at a nitrogen flow rate of 3 l/min. According to this, the variation in sheet resistance value is ±
The resistance was 0.3 to 0.5 Ω/ro, no boron hydroxide (HBO 2 ) was observed to adhere to the inner wall of the quartz tube 2 or around the quartz boat 3, and the reproducibility was good.

発明の効果 本発明によれば、半導体基板に固定拡散源、た
とえば窒化硼素板から、硼素を拡散導入するにあ
たり、雰囲気中の水素含有量を体積比の下限を
0.6%とし、上限を910℃の拡散温度のとき1.7%、
950℃の拡散温度のとき1.2%に限定することで、
拡散処理後の半導体基板のシート抵抗値が安定化
されるとともに、処理後の付着物の発生がなく、
再現性がよくなる。このことは半導体装置の特性
の安定化、品質保障に有益である。
Effects of the Invention According to the present invention, when boron is diffused into a semiconductor substrate from a fixed diffusion source, such as a boron nitride plate, the hydrogen content in the atmosphere is set to the lower limit of the volume ratio.
0.6%, and the upper limit is 1.7% at a diffusion temperature of 910℃.
By limiting it to 1.2% at a diffusion temperature of 950℃,
The sheet resistance value of the semiconductor substrate after the diffusion treatment is stabilized, and no deposits are generated after the treatment.
Improves reproducibility. This is useful for stabilizing the characteristics of the semiconductor device and ensuring quality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例で用いた拡散処理装置の
概要図、第2図は実施例方法で得られた特性図で
ある。 1……管状炉、2……石英管、3……石英ボー
ト、4……半導体基板、5……窒化硼素板、6…
…ガス制御器、7,8,9……ガス注入口、10
……流量計。
FIG. 1 is a schematic diagram of a diffusion processing apparatus used in an example of the present invention, and FIG. 2 is a characteristic diagram obtained by the method of the example. 1... Tubular furnace, 2... Quartz tube, 3... Quartz boat, 4... Semiconductor substrate, 5... Boron nitride plate, 6...
...Gas controller, 7, 8, 9...Gas inlet, 10
……Flowmeter.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体基板に隣接配置された固体拡散源か
ら、硼素を導入するにあたり、水素処理条件とし
て、水素の体積比を、910℃の拡散温度のとき、
0.6%〜1.7%にし、950℃の拡散温度のとき、0.6
%〜1.2%にしたことを特徴とする半導体への硼
素拡散方法。
1. When introducing boron from a solid diffusion source placed adjacent to the semiconductor substrate, the hydrogen treatment conditions are such that the volume ratio of hydrogen is at a diffusion temperature of 910°C,
0.6% to 1.7% and when the diffusion temperature is 950℃, 0.6
% to 1.2%. A method for diffusing boron into a semiconductor.
JP5207983A 1983-03-28 1983-03-28 Boron diffusion to semiconductor Granted JPS59177923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5207983A JPS59177923A (en) 1983-03-28 1983-03-28 Boron diffusion to semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5207983A JPS59177923A (en) 1983-03-28 1983-03-28 Boron diffusion to semiconductor

Publications (2)

Publication Number Publication Date
JPS59177923A JPS59177923A (en) 1984-10-08
JPH0586650B2 true JPH0586650B2 (en) 1993-12-13

Family

ID=12904808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5207983A Granted JPS59177923A (en) 1983-03-28 1983-03-28 Boron diffusion to semiconductor

Country Status (1)

Country Link
JP (1) JPS59177923A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1244969A (en) * 1986-10-29 1988-11-15 Mitel Corporation Method for diffusing p-type material using boron disks
JP2583681B2 (en) * 1991-03-20 1997-02-19 信越半導体株式会社 Method for boron diffusion into semiconductor wafer
JP4827131B2 (en) * 2006-07-24 2011-11-30 タカオカ化成工業株式会社 Molded transformer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5538046A (en) * 1978-09-12 1980-03-17 Toshiba Corp Transformer for condenser type meter
JPS56169322A (en) * 1980-05-30 1981-12-26 Fujikura Ltd Selective diffusion of boron into silicon

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5538046A (en) * 1978-09-12 1980-03-17 Toshiba Corp Transformer for condenser type meter
JPS56169322A (en) * 1980-05-30 1981-12-26 Fujikura Ltd Selective diffusion of boron into silicon

Also Published As

Publication number Publication date
JPS59177923A (en) 1984-10-08

Similar Documents

Publication Publication Date Title
US4791005A (en) Method for the manufacture of silicon oxide layers doped with boron and phosphorus
US3940506A (en) Selective plasma etching and deposition
ES344946A1 (en) Method of conducting chemical reactions in a glow discharge
KR900008970B1 (en) Process vapor growth of phosphosilicate glass coating
US3503798A (en) Silicon nitride film deposition method
US4513026A (en) Method for coating a semiconductor device with a phosphosilicate glass
JPH0586650B2 (en)
GB2034113A (en) Open tube aluminium diffusion
JP3970411B2 (en) Method for forming thin film oxide film using wet oxidation
US3501336A (en) Method for etching single crystal silicon substrates and depositing silicon thereon
US3540871A (en) Method for maintaining the uniformity of vapor grown polycrystalline silicon
US3734770A (en) Nitrogen nucleation process for the chemical vapor deposition of polycrystalline silicon from sici4
US3477887A (en) Gaseous diffusion method
US5208185A (en) Process for diffusing boron into semiconductor wafers
US3152932A (en) Reduction in situ of a dipolar molecular gas adhering to a substrate
Frosch et al. Diffusion control in silicon by carrier gas composition
US4098924A (en) Gate fabrication method for mnos memory devices
US5489446A (en) Device for forming silicon oxide film
US4217154A (en) Method for control of an open gallium diffusion
JP2727106B2 (en) Film formation method
EP0279406A2 (en) Device for forming silicon oxide film
JPS60107840A (en) Manufacture of semiconductor element
JP2617486B2 (en) (III) Heat treatment method for -V compound semiconductor
JPH05152236A (en) Manufacture of semiconductor device
SU1093175A1 (en) Method of producing structures silicon - silicon dioxide - silicon nitride