JPH0586617B2 - - Google Patents

Info

Publication number
JPH0586617B2
JPH0586617B2 JP11350186A JP11350186A JPH0586617B2 JP H0586617 B2 JPH0586617 B2 JP H0586617B2 JP 11350186 A JP11350186 A JP 11350186A JP 11350186 A JP11350186 A JP 11350186A JP H0586617 B2 JPH0586617 B2 JP H0586617B2
Authority
JP
Japan
Prior art keywords
low
mercury lamp
pressure mercury
arc tube
mercury
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11350186A
Other languages
Japanese (ja)
Other versions
JPS62271340A (en
Inventor
Takamitsu Kuroba
Katsuhiro Kawai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwasaki Denki KK
Original Assignee
Iwasaki Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwasaki Denki KK filed Critical Iwasaki Denki KK
Priority to JP11350186A priority Critical patent/JPS62271340A/en
Publication of JPS62271340A publication Critical patent/JPS62271340A/en
Publication of JPH0586617B2 publication Critical patent/JPH0586617B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Vessels And Coating Films For Discharge Lamps (AREA)

Description

【発明の詳細な説明】 [発明の属する技術分野] 本発明は、半導体製造用純水の製造に用いられ
る水処理装置あるいは清涼飲料水の製造及びその
容器の清浄用等の殺菌に用いられる低圧水銀灯の
改良に関する。
Detailed description of the invention [Technical field to which the invention pertains] The present invention relates to a water treatment device used in the production of pure water for semiconductor manufacturing or a low-pressure sterilization device used in the production of soft drinks and for cleaning containers thereof. Concerning improvements to mercury lamps.

[従来技術とその問題点] 近年、処理水の殺菌あるいは紫外線による被処
理水の有機物分解を行なう水処理装置に用いる紫
外線照射用光源として、従来の高圧水銀灯に変
え、放射効率のよい短波長(例えば、254,248,
240,236,230,194,185nm等)の紫外線を放射
する低圧水銀灯を用いることが提案されている。
[Prior art and its problems] In recent years, conventional high-pressure mercury lamps have been replaced with short wavelength ( For example, 254, 248,
It has been proposed to use a low-pressure mercury lamp that emits ultraviolet light (240, 236, 230, 194, 185 nm, etc.).

従来、被処理水等の液体の殺菌を行なう場合、
液体に紫外線を照射するために第1図に示すよう
な内照式と称する装置が用いられている。同図に
おいて、1は直管状の石英ガラスよりなる低圧水
銀灯であり、両端には電極3a,3bが封着さ
れ、内部には水銀及び希ガスが封入されている。
そして、この低圧水銀灯は水処理装置本体(図示
せず)内に嵌着される。一例として、第1図に示
すように、内部に水等の被処理水6を循環させる
紫外線透過性の筒体5内に装着される。
Conventionally, when sterilizing liquids such as water to be treated,
In order to irradiate a liquid with ultraviolet rays, a device called an internal illumination type as shown in FIG. 1 is used. In the figure, reference numeral 1 denotes a low-pressure mercury lamp made of straight quartz glass, electrodes 3a and 3b are sealed at both ends, and mercury and rare gas are sealed inside.
This low-pressure mercury lamp is fitted into the main body of the water treatment apparatus (not shown). As an example, as shown in FIG. 1, it is installed in an ultraviolet-transparent cylindrical body 5 in which water to be treated 6 such as water is circulated.

ところが、前記純水製造等の高速化あるいは高
能力化の必要性から、従来の電極間距離1cm当り
0.7W程度のものより、より高出力形の低圧水銀
灯を用いることが要求されてきた。
However, due to the need to speed up or increase the capacity of pure water production, etc., the conventional distance between electrodes per cm
There has been a demand for the use of higher output low-pressure mercury lamps than those of about 0.7W.

かかる高出力化した低圧水銀灯の一例として、
第1図に示すように高出力化に伴う冷却手段とし
て、紫外線透過性の筒体5に直接低圧水銀灯を接
触させて冷却するように構成した低圧水銀灯が提
案されている。
As an example of such a high-output low-pressure mercury lamp,
As shown in FIG. 1, a low-pressure mercury lamp has been proposed as a cooling means for increasing output, which is configured to bring the low-pressure mercury lamp into direct contact with an ultraviolet-transparent cylinder 5 for cooling.

しかしながら、このような構成の水処理装置で
は、低圧水銀灯に早期に発光ムラや低圧水銀灯の
管壁の黒化が発生しやすいことがことが判明し
た。
However, it has been found that in a water treatment apparatus having such a configuration, uneven light emission and blackening of the tube wall of the low-pressure mercury lamp tend to occur early in the low-pressure mercury lamp.

この発光ムラは次のようにして生じるものと考
えられる。
This uneven light emission is thought to occur as follows.

すなわち、低圧水銀灯を点灯すると管内におけ
る初期の水銀の状態に起因し、水銀が存在してい
る部分においては水銀の発光が大きい反面、水銀
が存在していない部分では希ガスのみの放電とな
り全体として発光ムラが生じるものである。この
ことより発光ムラは当初に管内に水銀を均一に分
布させておけば生じないものと思われるが、直管
形の低圧水銀灯1と管状の筒体5とを水銀灯の発
光部全体にわたつて面ないし線接触させることは
困難であり、点接触及び接触点の制御が不可能と
なつてしまう。その結果、点灯中点接触している
部分例えばC点が最冷点となるためにそこに水銀
が凝縮してしまう。
In other words, when a low-pressure mercury lamp is turned on, due to the initial state of mercury in the tube, the mercury emits a large amount of light in the areas where mercury is present, but in the areas where mercury is not present, only rare gas is discharged, resulting in an overall This causes uneven light emission. From this, it seems that uneven light emission will not occur if the mercury is uniformly distributed in the tube at the beginning, but if the straight tube-shaped low-pressure mercury lamp 1 and the tubular body 5 are spread over the entire light-emitting part of the mercury lamp, It is difficult to make surface or line contact, and point contact and control of the contact point become impossible. As a result, the part that is in contact with the lighting center point, for example, point C, becomes the coldest point, and mercury condenses there.

そして、接触している部分の水銀の発光が大き
い反面、接触している部分から離れるにしたがつ
て希ガスのみの放電となり発光ムラが生じる原因
となる。
Then, while the mercury emits a large amount of light at the contacting part, as the distance from the contacting part increases, only the rare gas is discharged, which causes uneven light emission.

また、管壁の黒化は電極周辺部付近に水銀が存
在しないことによつて生じる。すなわち、かかる
場合電極周辺部分における放電は希ガスのみの放
電となり、その結果電極物質が激しく飛散して管
壁に付着するのである。この現象が進むと放電灯
の始動電圧が上昇し遂には点灯不能となる。この
ことはいずれかの電極のうち一方の電極に飛散が
発生しても同様の結果となる。
Further, the blackening of the tube wall is caused by the absence of mercury near the electrode periphery. That is, in such a case, the discharge in the area around the electrode is a discharge of only the rare gas, and as a result, the electrode material is violently scattered and attached to the tube wall. As this phenomenon progresses, the starting voltage of the discharge lamp increases and eventually the lamp cannot be lit. The same result will occur even if scattering occurs on one of the electrodes.

[発明の目的] 本発明は以上の点に鑑みてなされたもので点灯
期間を通じて発光管全体にわたつて発光ムラが少
なくかつ発光管壁の黒化ひいては紫外線出力の低
下が少ない高出力形の低圧水銀灯を提供すること
を目的とする。
[Objective of the Invention] The present invention has been made in view of the above points, and provides a high-output type low-pressure light source with less uneven luminescence over the entire arc tube throughout the lighting period, less blackening of the arc tube wall, and less decrease in ultraviolet output. The purpose is to provide mercury lamps.

[発明の構成及び作用] 以下、本発明に係る高出力形の低圧水銀灯の一
実施例を従来例と比較しながら説明する。
[Structure and operation of the invention] Hereinafter, one embodiment of a high-output low-pressure mercury lamp according to the present invention will be described while comparing it with a conventional example.

第1図は従来例の一部縦断側面図であり、同図
において2は紫外線を放射する低圧水銀灯1の発
光管であつて、両端に電極3a,3bを封着する
とともに内部に適量の水銀4及び希ガスが封入さ
れてある。この発光管は、石英ガラス等の紫外線
透過性の筒体5の内面に接触するように設置され
ている。6は筒体5の外周に循環してある被処理
水である。
FIG. 1 is a partially vertical side view of a conventional example. In the same figure, 2 is an arc tube of a low-pressure mercury lamp 1 that emits ultraviolet rays, and electrodes 3a and 3b are sealed at both ends, and an appropriate amount of mercury is contained inside. 4 and a rare gas are sealed. This arc tube is installed so as to be in contact with the inner surface of an ultraviolet-transparent cylinder 5 made of quartz glass or the like. Reference numeral 6 indicates water to be treated that is circulated around the outer periphery of the cylindrical body 5.

かかる低圧水銀灯においては発光管に封入する
水銀は図示のように発光管中に偏在している。こ
のような低圧水銀灯を点灯した場合、発光管のう
ち水銀が偏在しているA部では1×102〜1×103
torrの水銀のもとにおける低圧水銀灯の様相を呈
する。一方B部においては供給される水銀がない
ために希ガスのみを封入した低圧放電灯の様相を
呈する。そしてそのまま点灯していると希ガスの
みの低圧放電灯の様相となつている側の電極3b
の電極物質の蒸発、飛散が進行し始動電圧の上
昇、発光管の黒化そして遂には点灯不能となつて
しまう。
In such a low-pressure mercury lamp, the mercury sealed in the arc tube is unevenly distributed in the arc tube as shown in the figure. When such a low-pressure mercury lamp is turned on, in the A part of the arc tube where mercury is unevenly distributed, 1×10 2 to 1×10 3
It exhibits the appearance of a low-pressure mercury lamp under torr of mercury. On the other hand, in part B, since there is no mercury supplied, it takes on the appearance of a low-pressure discharge lamp filled with only rare gas. Then, when the lamp is lit as it is, the electrode 3b on the side becomes like a low-pressure discharge lamp using only rare gas.
As the electrode material evaporates and scatters, the starting voltage increases, the arc tube becomes black, and eventually the lamp cannot be lit.

又、仮に発光管2内のB部に初期より水銀があ
つたとしても点灯中に該発光管2と筒体5との接
点C点が最冷部となるために点灯時間が数百時間
後にはC点に発光管に封入した水銀4は移動し、
凝縮してしまい上記と同じ結果となつてしまう。
Furthermore, even if there is mercury in part B of the arc tube 2 from the beginning, the contact point C between the arc tube 2 and the cylindrical body 5 will be the coldest part during lighting, so it will not be possible after several hundred hours of lighting time. The mercury 4 sealed in the arc tube moves to point C,
It will condense and give the same result as above.

このようにして従来の低圧水銀灯では筒体5と
発光管2を線接触させることは困難なために上述
のごとくの電極物質の蒸発、飛散、発光管壁の黒
化、始動電圧の上昇そして点灯不能となつてしま
うのである。
In this way, in conventional low-pressure mercury lamps, it is difficult to make line contact between the cylinder body 5 and the arc tube 2, resulting in evaporation and scattering of the electrode material as described above, blackening of the arc tube wall, increase in starting voltage, and lighting. It becomes impossible.

第2図は本発明に係る高出力形の低圧水銀灯の
一部縦断側面図である。該発光管22は第1図と
同様、紫外線透過性の筒体5の内面に接触するよ
うに配置されている。該発光管22は直管状に形
成され、少なくとも2個所以上の部分を大径とし
てある。このような形状の発光管を用いることに
より該発光管と紫外線透過性の筒体とは大径であ
る外径Dの部分C1点及びC2点の2点接触となる。
このことはC1及びC2点は同等の温度でありかつ
発光部の外径dの部分と比較して低温であるので
発光管に封入された水銀4は点灯期間を通じて発
光管全体に拡散され発光に寄与する水銀を供給で
きることとなる。なお、その他第1図と同一部分
は同一番号を付す。
FIG. 2 is a partially longitudinal side view of a high-output low-pressure mercury lamp according to the present invention. As in FIG. 1, the arc tube 22 is arranged so as to be in contact with the inner surface of the ultraviolet-transparent cylindrical body 5. The arc tube 22 is formed into a straight tube shape, and has a large diameter in at least two portions. By using an arc tube having such a shape, the arc tube and the ultraviolet-transparent cylindrical body come into contact at two points , point C1 and point C2 , of the large outer diameter D.
This means that points C1 and C2 are at the same temperature and are lower in temperature than the part with the outer diameter d of the light emitting part, so the mercury 4 sealed in the arc tube is diffused throughout the arc tube during the lighting period. This makes it possible to supply mercury that contributes to luminescence. Other parts that are the same as those in Figure 1 are given the same numbers.

そして、本発明においては、以下に記載する実
施態様をとりうる。
The present invention can take the embodiments described below.

まず、発光管の電極間距離1cm当りの入力を、
3〜12Wとするのが好ましい。3W未満であると
発光管の温度が上がらないために本発明に係るよ
うな冷却構造をとる必要はなく、12W以上である
と発光管と筒体とが接触している部分においても
発光管内面においては低圧水銀灯における最適な
水銀蒸気圧を得る温度よりも高温となるために前
記のような目的に有効な放射が少なくなるためで
ある。
First, the input per 1 cm of the distance between the electrodes of the arc tube is
It is preferable to set it as 3-12W. If it is less than 3W, the temperature of the arc tube will not rise, so there is no need to adopt a cooling structure as in the present invention. This is because the temperature is higher than the temperature at which the optimal mercury vapor pressure is obtained in a low-pressure mercury lamp, and therefore less radiation is effective for the above purpose.

次に、発光管の発光長が500mm以上である低圧
水銀灯の場合本発明の効果が認められる。
Next, the effects of the present invention are recognized in the case of a low-pressure mercury lamp whose arc tube has a light emission length of 500 mm or more.

なぜなら、発光長が500mm以下の場合には発光
管と筒体との接触している部分が1点であつても
十分に水銀を供給することができるからである。
This is because when the emission length is 500 mm or less, a sufficient amount of mercury can be supplied even if the arc tube and the cylindrical body are in contact at only one point.

又、大径部の外径Dと小径部の外径dとの差
(D−d)は1〜4mmとする。1mm以下の場合は
発光管と筒体との接触点、C1点とC2点の温度バ
ランスが縦点灯等によつて多少のずれが生じた場
合には、大径部と小径部の温度差が少ないため大
径部から小径部への水銀の拡散が良くなるため
に、C1あるいはC2のいずれか低温となつた方へ
移動が起こり、従来の低圧水銀灯と同様、発光ム
ラ、及び管壁の黒化が生じる。
Further, the difference (D-d) between the outer diameter D of the large diameter portion and the outer diameter d of the small diameter portion is 1 to 4 mm. If the temperature is 1 mm or less, the temperature balance between the arc tube and the cylindrical body is slightly different due to vertical lighting, etc., the temperature at the large diameter part and the small diameter part. Because the difference is small, mercury diffuses better from the large-diameter part to the small-diameter part, so migration occurs to either C 1 or C 2 , whichever is cooler, and as with conventional low-pressure mercury lamps, uneven light emission and Darkening of the tube wall occurs.

反対に、4mmを超えた場合には、第3図に示す
ように発光管管軸方向における出力が接触してい
る大径部よりも極端に下がつてしまうからであ
る。また、第4図は発光管管軸方向の配光の最大
値に対する発光管の小径部の出力を外径差(D−
d)をパラメータとした出力比である。第3図及
び第4図に示すように、D−dが4mmを超えると
全体としての出力が減つてしまう。これは発光管
大径部と小径部の管壁の温度差が大きいため、水
銀蒸気が拡散していかないためと思われる。
On the other hand, if it exceeds 4 mm, the output in the axial direction of the arc tube will be extremely lower than that of the large diameter portion in contact, as shown in FIG. In addition, Fig. 4 shows the output of the small diameter portion of the arc tube with respect to the maximum value of light distribution in the axial direction of the arc tube.
It is the output ratio with d) as a parameter. As shown in FIGS. 3 and 4, when D-d exceeds 4 mm, the overall output decreases. This is thought to be because the temperature difference between the large-diameter and small-diameter walls of the arc tube is large, which prevents mercury vapor from diffusing.

更に、発光管の大径部の長さ(l)は5〜30cm
とするのがよい。5cm未満の場合は十分な冷却効
果が得られず有効な放射は減少してしまい、30cm
より長くした場合には冷却効果は得られるものの
点灯期間を通して水銀の位置コントロールが難し
くなり、発光管全体への水銀蒸気が拡散しなくな
る。
Furthermore, the length (l) of the large diameter part of the arc tube is 5 to 30 cm.
It is better to If the distance is less than 5 cm, sufficient cooling effect will not be obtained and the effective radiation will decrease;
If the length is longer, a cooling effect can be obtained, but it becomes difficult to control the position of mercury throughout the lighting period, and mercury vapor will not diffuse throughout the arc tube.

そして、少なくとも2個所以上の大径部の間隔
(L)を発光長の2/3以内とする。
The distance (L) between at least two or more large diameter portions is set to within 2/3 of the light emission length.

2/3より大きくした場合には大径部の冷却点に
ある水銀が冷却点より一番離れた部分まで拡散し
ていかないためである。
This is because if it is made larger than 2/3, the mercury at the cooling point in the large diameter portion will not diffuse to the part farthest from the cooling point.

[発明の効果] 以上の説明から明らかな様に本発明によれば、
発光長が500cm以上ある長尺状の低圧水銀灯の場
合においても発光管の両端に封着された電極付近
に水銀が点灯期間を通じて存在しうるため、発光
ムラ及び発光管管壁の黒化、それに伴う点灯不能
ということがなく、長寿命である。又、発光管と
筒体が接触している部分の出力が上昇するから全
体としての出力が増加することになる等の効果も
ある。
[Effect of the invention] As is clear from the above explanation, according to the present invention,
Even in the case of long low-pressure mercury lamps with a luminescence length of 500 cm or more, mercury may remain near the electrodes sealed at both ends of the arc tube throughout the lighting period, resulting in uneven light emission, blackening of the arc tube wall, and It has a long lifespan and there is no problem of not being able to turn it on. Further, since the output of the portion where the arc tube and the cylindrical body are in contact increases, the overall output also increases.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の低圧水銀灯を示す一部縦断側
面図、第2図は、本発明の一実施例を示す一部縦
断側面図、第3図は、低圧水銀灯の管軸方向にお
ける照度の相対出力を示す特性図、第4図は、発
光部の外径差(D−d)をパラメータとしたラン
プの相対出力を示す特性図である。
Fig. 1 is a partially longitudinal side view showing a conventional low-pressure mercury lamp, Fig. 2 is a partially longitudinal side view showing an embodiment of the present invention, and Fig. 3 shows the illuminance of the low-pressure mercury lamp in the tube axis direction. FIG. 4 is a characteristic diagram showing the relative output of the lamp using the difference in outer diameter (D-d) of the light emitting portion as a parameter.

Claims (1)

【特許請求の範囲】 1 紫外線を放射する直管状の低圧水銀灯21の
周囲に紫外線透過性の管状の筒体5を設置し、該
筒体の外周内に液体を通過させて該液体に紫外線
を照射する水処理装置において、前記低圧水銀灯
は、直管状の発光部の少なくとも2個所以上を大
径とし、該大径部を前記筒体に接触させたことを
特徴とする低圧水銀灯。 2 前記低圧水銀灯の電極間距離1cm当りの入力
が3〜12W/cmである特許請求の範囲第1項記載
の低圧水銀灯。 3 前記低圧水銀灯の発光長が500mm以上である
特許請求の範囲第1項又は第2項記載の低圧水銀
灯。 4 前記低圧水銀灯の大径部と小径部との外径差
(D−d)が1〜4mmである特許請求の範囲第1
項乃至第3項のいずれかに記載の低圧水銀灯。 5 前記低圧水銀灯の大径部の管軸方向の長さ
(l)が5〜30cmである特許請求の範囲第1項乃
至第4項のいずれかに記載の低圧水銀灯。 6 前記低圧水銀灯の少なくとも2個所以上の大
径部の管軸方向の間隔(L)が発光長の2/3以内
である特許請求の範囲第1項乃至第5項のいずれ
かに記載の低圧水銀灯。
[Claims] 1. A UV-transparent tubular body 5 is installed around a straight low-pressure mercury lamp 21 that emits ultraviolet rays, and a liquid is passed through the outer periphery of the cylindrical body to emit ultraviolet rays into the liquid. The low-pressure mercury lamp is characterized in that the low-pressure mercury lamp has a straight tube-shaped light-emitting portion having a large diameter at least at two places, and the large-diameter portion is brought into contact with the cylindrical body. 2. The low-pressure mercury lamp according to claim 1, wherein the input power per 1 cm of distance between electrodes of the low-pressure mercury lamp is 3 to 12 W/cm. 3. The low-pressure mercury lamp according to claim 1 or 2, wherein the low-pressure mercury lamp has a light emission length of 500 mm or more. 4. Claim 1, wherein the difference in outer diameter (D-d) between the large diameter part and the small diameter part of the low pressure mercury lamp is 1 to 4 mm.
The low-pressure mercury lamp according to any one of items 1 to 3. 5. The low-pressure mercury lamp according to any one of claims 1 to 4, wherein the length (l) in the tube axis direction of the large diameter portion of the low-pressure mercury lamp is 5 to 30 cm. 6. The low pressure according to any one of claims 1 to 5, wherein the distance (L) in the tube axis direction of at least two large diameter parts of the low pressure mercury lamp is within 2/3 of the light emission length. Mercury lamp.
JP11350186A 1986-05-20 1986-05-20 Low pressure mercury-vapor lamp Granted JPS62271340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11350186A JPS62271340A (en) 1986-05-20 1986-05-20 Low pressure mercury-vapor lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11350186A JPS62271340A (en) 1986-05-20 1986-05-20 Low pressure mercury-vapor lamp

Publications (2)

Publication Number Publication Date
JPS62271340A JPS62271340A (en) 1987-11-25
JPH0586617B2 true JPH0586617B2 (en) 1993-12-13

Family

ID=14613923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11350186A Granted JPS62271340A (en) 1986-05-20 1986-05-20 Low pressure mercury-vapor lamp

Country Status (1)

Country Link
JP (1) JPS62271340A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004235118A (en) * 2003-02-03 2004-08-19 Iwasaki Electric Co Ltd Low pressure mercury vapor discharge lamp

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004235118A (en) * 2003-02-03 2004-08-19 Iwasaki Electric Co Ltd Low pressure mercury vapor discharge lamp

Also Published As

Publication number Publication date
JPS62271340A (en) 1987-11-25

Similar Documents

Publication Publication Date Title
JP4004590B2 (en) Excimer radiator, method for manufacturing the same, method for extending the lifetime and apparatus for carrying out the method
KR910004741B1 (en) Discharge lamp
KR100854564B1 (en) Discharge lamp and ultraviolet irradiation system and operation method therefor
US20030178924A1 (en) Treating apparatus utilizing ultraviolet ray
US6538378B1 (en) Low-pressure mercury vapor discharge lamp and ultraviolet-ray irradiating apparatus and method using the same
US4142125A (en) Fluorescent discharge lamp with inner hollow tube offset from envelope axis
JPH0586617B2 (en)
US20050179392A1 (en) Low-pressure mercury vapor discharge lamp
JPH10505197A (en) Low pressure mercury discharge lamp
JPH0137741Y2 (en)
JPH0436540Y2 (en)
US2362384A (en) Combined illuminating and germicidal lamp and method of making the same
NL8401030A (en) LOW-PRESSURE MERCURY DISCHARGE LAMP.
KR960002462A (en) Discharge lamp
JP2839251B2 (en) Lighting method of rare gas fluorescent lamp
JPS61260541A (en) High output type low pressure mercury-vapor lamp
JPH0533003Y2 (en)
CN1502563A (en) Ultraviolet ray device for treating liquid and method thereof
KR200144991Y1 (en) Electrodeless UV Discharge Tube for Microwave Oven
JPS62131457A (en) High-output low-pressure mercury vapor lamp
CN1298422C (en) Photochemical reaction device and process method thereof
JP2000279491A (en) Sterilization apparatus and sterilization system
JP2007109508A (en) Flash lamp lighting device
JPS63266759A (en) Water cooling type low-pressure mercury lamp
KR200303529Y1 (en) Ozone generating lamp for preventing blacking

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term