JP2004235118A - Low pressure mercury vapor discharge lamp - Google Patents

Low pressure mercury vapor discharge lamp Download PDF

Info

Publication number
JP2004235118A
JP2004235118A JP2003025474A JP2003025474A JP2004235118A JP 2004235118 A JP2004235118 A JP 2004235118A JP 2003025474 A JP2003025474 A JP 2003025474A JP 2003025474 A JP2003025474 A JP 2003025474A JP 2004235118 A JP2004235118 A JP 2004235118A
Authority
JP
Japan
Prior art keywords
mercury vapor
discharge lamp
vapor discharge
low
quartz glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003025474A
Other languages
Japanese (ja)
Inventor
Shinichi Endo
真一 遠藤
Fumio Suzuki
史生 鈴木
Yoshihisa Shibata
好久 柴田
Akihisa Kaneko
晃久 金子
Takashi Ito
孝志 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwasaki Denki KK
Original Assignee
Iwasaki Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwasaki Denki KK filed Critical Iwasaki Denki KK
Priority to JP2003025474A priority Critical patent/JP2004235118A/en
Publication of JP2004235118A publication Critical patent/JP2004235118A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low pressure mercury vapor discharge lamp in which the start up time is made short and the stable time is made not to change during the lifetime of the lamp. <P>SOLUTION: This is a low pressure mercury discharge lamp having an arc tube which is constituted of a light-emitting part 11 made of synthetic fused quartz provided with a metal oxide layer on the inner face, a mercury vapor pressure control part 12 made of fused quartz, and an electrode housing part 13 made of fused quartz. The fused quartz tube constituting the electrode housing part 13 has a smaller diameter than the fused quartz tube constituting the mercury vapor pressure control part 12, and its inner diameter is 15-21 mm, and the end part of the electrode housing part 13 is constituted of direct pinch sealing. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は半導体や液晶用ガラス基盤の表面洗浄に利用される低圧水銀蒸気放電灯に関する。
【0002】
【従来の技術】
半導体や液晶用ガラス基盤の表面洗浄に紫外線を利用したUVオゾン洗浄技術が利用されている。UVオゾン洗浄とは低圧水銀蒸気放電灯が発する185nmの短波長紫外線によりオゾンを発生させ、次に254nmの紫外線でオゾンを分解するときに発生する活性酸素が物質の表面の有機物(汚れ)に作用し、これを気化して洗浄する技術である。
【0003】
UVオゾン洗浄には光源として低圧水銀蒸気放電灯が使用されるが、洗浄速度の向上のため、光源は一般の蛍光ランプに代表される低圧水銀蒸気放電灯に比較して紫外線出力の高出力化が講じられている。具体的には、発光管に短波長紫外線の透過特性のよい合成石英ガラスを使用したり、フィラメントおよびアノードを大型化し大電流での点灯を可能にしたり、紫外線の放射効率アップと安定化のため水銀蒸気圧を制御する機能が備わっている。電極部材が大型化したことと水銀蒸気圧制御機能のため放電灯端部は発光部より太く設計されており、封止部にはステムが利用されてきた(例えば、特許文献1参照)。
【0004】
図5は、従来の低圧水銀蒸気放電灯の構成を示す図である。発光管は発光部11と水銀蒸気圧制御部12と電極収容部13が同一の管で構成されている(例えば、特許文献1または2参照)。冷却用の金属ブロック3が接しているが、水銀蒸気圧制御部12と電極収容部13の境界は明確ではない。さらにフィラメント21から管内壁までの距離があるので温度勾配はなだらかであり、管内壁の温度は低くなる。発光管端部はステム6が用いられ、ステム6と石英管の封着部はフィラメントからも遠いため、さらに温度は低くなる。
【0005】
こうした構造のため、点灯時は水銀蒸気が充満しており、消灯後には水銀蒸気が温度の低い電極収容部13、特にステム6と石英管の封着部付近で凝集して水銀粒となる。再点灯後は、フィラメント21の熱で電極収容部13に凝集した水銀は蒸発するが、温度が上がりにくいため完全に蒸発するまで時間がかかる。放電灯の安定時には水銀蒸気圧制御部12で水銀蒸気圧が制御されるのであるが、発光管の端部構造が最冷部機能に近いので金属ブロック3を備えている部位とそうでない部位の温度分布が明確に分かれていないため、水銀の蒸発・凝集が緩慢なので、立ち上がり時間が長くかかっていた。
【0006】
【特許文献1】
特開昭63−53853号公報(4頁、図1)
【特許文献2】
特開昭60−3847号公報(3頁、図1)
【0007】
【発明が解決しようとする課題】
産業用としては、効率のため、立ち上がり時間が短いことが必要である。しかし、このような構成の低圧水銀蒸気放電灯では電極収容部に凝縮した水銀が完全に蒸発するまでに時間がかかるため、点灯直後から紫外線出力が安定するまで数十分必要であり、立ち上がり時間が長くかかり、紫外線処理装置の待機時間が長い欠点があった。
さらに封入した水銀量の変化によって、寿命中に安定時間が変化するので紫外線処理装置の操作性が悪い欠点があった。
【課題を解決するための手段】
【0008】
請求項1の発明は、内面に金属酸化物層を設けた合成石英ガラス製の発光部と石英ガラス製水銀蒸気圧制御部と石英ガラス製電極収容部で構成される発光管を有してなる低圧水銀蒸気放電灯において、該電極収容部を構成する石英ガラス管の径は水銀蒸気圧制御部を構成する石英ガラス管の径より細く構成する。
【0009】
請求項2の発明は、請求項1記載の低圧水銀蒸気放電灯において、前記電極収容部を構成する石英ガラス管の内径は15〜21mmであることを特徴とする。
【0010】
請求項3の発明は、請求項1及び請求項2に記載の低圧水銀蒸気放電灯において、電極収容部端はダイレクトピンチシールで構成されることを特徴とする。
【0011】
請求項4の発明は、請求項1乃至請求項3記載の低圧水銀蒸気放電灯において、発光部内面積あたりの水銀封入量は0.02〜0.2mg/cmである事を特徴とする。
【0012】
【発明の実施の形態】
以下、本発明に係る低圧水銀蒸気放電灯の実施の形態を図1乃至図4に基づき説明する。図1は、本発明の低圧水銀蒸気放電灯の構成を示す図である。発光管は略U字形状を成しており、発光部11と外側に熱交換のための金属ブロック3をそなえた水銀蒸気圧制御部12、そして、フィラメント21、アノード22および支柱25からなる電極マウントを収容する電極収容部13とで構成されている。
【0013】
具体的に、発光部11を形成する合成石英ガラスはOH基を約800ppm含有するもので内径17.5mm、肉厚1.5mmで内面には約200nmの酸化アルミニウム層が形成されている。略U字型の発光部は全長500mmであり、内面積は550cmである。発光部11の端部には内径27mm、肉厚1.4mmの石英ガラス管で構成された水銀蒸気圧制御部12が接続されており、その外部にはアルミニウム製の金属ブロック3が設けられている。金属ブロック3は20℃の冷却水が通じている水冷ベースブロックに密着して使用され、発光管の一部を冷却して水銀の蒸気圧を制御し、かつ発光管を保持する役割がある。冷却ブロックがないと、低圧水銀蒸気放電灯は発光管の温度が上昇してしまい、水銀の蒸気圧が高くなり185nmや254nmの短波長紫外線の放射効率が低下してしまう。
【0014】
さらに水銀蒸気圧制御部12の端部には内径17.5mm、厚さ1.5mm、長さ85mmの電極収容部13を形成する石英ガラス管が接続されており、その端部には幅5mm、厚さ35μm、長さ15mmのモリブデン製の2枚の金属箔導体26a,26bが構成されている。そして、この金属箔導体26a,26bを介し、導電性を有しながら外気との気密シールがとられている。この実施例の場合、電極収容部全長は、大型のアノードとフィラメントを電気的・機械的に保持できる最短に構成され85mmとなっている。
【0015】
上記のように構成された発光管は、真空ポンプに接続され内部のガスを排気した後、発光管1cmあたり0.02〜0.2mgの水銀、望ましくは0.10mgの水銀(本実施例の場合、発光管内面積は550cmであるので総量で55mgを封入する)と、始動補助として50〜100Pa(望ましくは70Pa)のアルゴンガスが封入される。
【0016】
上記気密シールをとるには、不活性ガスを流しながら大気圧下でシール部位を火炎バーナーで加熱し、モールドを用いて瞬間的に圧潰するダイレクトピンチシール法によってシールされる。また、従来の低圧水銀蒸気放電灯にみられるステムは使用しない。ダイレクトピンチシール法では石英ガラス管の管径を電極マウントが通過できる最小限にすることができるので、電極収容部をコンパクトに設計することができる。また、ダイレクトピンチシール法は圧潰部の発光管端側が電極収容部の端部になるので、フィラメントからの距離が短く、熱放射を受けやすい。そのため水銀蒸気制御部との温度差が大きくなり、消灯後に水銀粒が凝集することがない。
【0017】
放電灯の点灯に当たっては、略U字管の両端に備えられた各2本のリード線間に数ボルトの電圧が印可されてフィラメントを熱し、熱電子を発生させた後、両フィラメント間に400Vの交流電圧を印可することによって、ランプ電圧160V、ランプ電流5A、ランプ電力380Wで放電が開始される。放電開始と同時に発光管の温度があがり水銀蒸気圧は上昇するが、水銀蒸気圧制御部12が最冷部となって紫外線出力を効率よく安定に保つ。この時、電極収容部13付近は約800℃になるフィラメントの影響により動作時の温度が高温になり、水銀蒸気は部分的に希薄になっている。放電灯の消灯時には水銀蒸気は水銀蒸気圧制御部12に凝集し、電極収容部13にほとんど残らないため、次回の点灯直後も水銀は電極収容部13付近から放出されることはない。
【0018】
そのため、図2に示すように、本発明と従来技術とでは低圧水銀蒸気放電灯の紫外線出力の時間的変化に違いが現れる。図中曲線Aは本発明に係る低圧水銀蒸気放電灯の立ち上がり曲線であり、始動後紫外線出力の安定まで2分以内と立ち上がり時間が短い。曲線Bは従来の低圧水銀蒸気放電灯の立ち上がり曲線であり、紫外線出力の安定まで約30分かかる。
【0019】
図3は、本発明にかかる低圧水銀蒸気放電灯の電極収容部内径と点灯2分後の紫外線出力の関係を示す図である。電極収容部内径が21mmを超える場合は、立ち上がり2分後の紫外線出力は安定時の80%未満であり実用的でない。また、15mmの場合は、紫外線出力は安定時のほぼ100%に達するが、15mm未満の内径では大型のアノードやフィラメントを収容できなくなる。しかし、電極を小さくすると、点灯中の荷電粒子の衝撃により、損耗が激しくなり寿命特性を損なってしまう。また、電極マウントの長尺化は、紫外線照射装置の大型化を伴うので現実的でない。
【0020】
よって、電極収容部内径を15〜21mmにすれば、点灯2分後の紫外線出力が安定時の80%以上になり、立ち上がり時間が短くなり効率が良くなる。
【0021】
図4は、本発明に係る低圧水銀蒸気放電灯の寿命における立ち上がり時間の変化を示す図である。図中で曲線Cは本発明に係る低圧水銀蒸気放電灯の特性曲線で、曲線Dは従来の低圧水銀蒸気放電灯の特性曲線である。従来の低圧水銀蒸気放電灯は水銀が点灯中に合成石英ガラス内に分散固着して、封入された水銀が少なくなり、不活性になってしまうので、ランプ製造時に多くの水銀を封入する必要があった。
【0022】
発明者らの実験によると、内面に金属酸化物層を設けていない従来の低圧水銀蒸気放電灯の水銀の消費量は1000時間で1mg/cmに達するので、従来の低圧水銀蒸気放電灯は数百mgの水銀を封入する必要があった。これは、一般的な石英ガラスとは異なる合成石英ガラスの特性によるものであることが発明者らの実験により明らかになった。すなわち、合成石英ガラスは、OH基やCl基といった電気的に陰性な成分を多く含有しており、ランプの点灯中に紫外線により活性化してイオン化(OH−、Cl−)し、放電プラズマ中で生成した水銀イオン(Hg+)を石英ガラス内部に引き寄せる作用がある。ガラス内部に取り込まれた水銀原子は陰性基と結合するため不活性となってしまう。そのため、金属酸化物層を設けていない低圧水銀蒸気放電灯では寿命中の水銀消費量が多いので水銀封入量を多くする必要があった。
【0023】
一方、本発明に係る低圧水銀蒸気放電灯は、合成石英ガラス製発光部の内面に酸化アルミニウムによる金属酸化物層が形成されているので、水銀イオンが合成石英ガラス内へ侵入するのを抑制することが出来るので、水銀の消費量は極めて小さくなる。
【0024】
実験によると、酸化物層10nmの場合、1000時間では水銀消費量は0.2mg/cmで、酸化物層1000nm以上の場合は0.02mg/cmであることが発明者らの実験で明らかになった。また、酸化物層1000nm以上の厚さの金属酸化物層は形成するのが困難になるので低圧水銀蒸気放電灯を製作するにはコストアップにつながり、10nm以下の場合は水銀イオンの侵入を抑制する効果がほとんどなくなるため、寿命期間における立ち上がり特性の変化を安定化する作用が無くなってしまう。
【0025】
本発明の実施の形態では、水銀蒸気圧制御部を形成するガラスは一般の石英ガラスで説明したが、この部位を内面に金属酸化物層を形成した合成石英ガラスで構成してもよい。また、電極収容部は水銀蒸気がほとんど存在していないので金属酸化物層は必要ない。いずれの部位も、低圧水銀蒸気放電灯の紫外線放射を得る部分ではないので、高価な合成石英ガラスを使用するのはコストアップにつながる。
【0026】
本発明の実施の形態では、金属酸化物層の材質に酸化アルミニウムの事例で説明したが、金属酸化物層は酸化イットリウム、酸化チタンでも同様な効果を得ることができる。
【0027】
【発明の効果】
請求項1記載の発明によると、始動後紫外線出力の安定までの時間が2分以内と立ち上がりが短くなり効率が良くなる。
【0028】
請求項2記載の発明によると、点灯2分後の紫外線出力が安定時の80%以上になり、紫外線処理装置の待機時間を短くすることができる。また、電極が小さくなると、点灯中の荷電粒子の衝撃により、損耗が激しくなり、寿命特性を損なってしまうが、本発明では、電極を小さくすることなく、電極収容部をコンパクトに構成する事が出来る。
【0029】
請求項3記載の発明によると、電極収容部をコンパクトに構成する事が出来る。
【0030】
請求項4記載の発明によると、発光部内面積あたりの水銀封入量が0.02〜0.2mg/cmと少なく、寿命中に安定時間が変化しないので紫外線処理装置の操作性を向上させ、ランニングコストを下げることができる。また封入する水銀量が少ないため、環境にも配慮される。
【図面の簡単な説明】
【図1】本発明に係る低圧水銀蒸気放電灯の構成を示す図である。
【図2】本発明に係る低圧水銀蒸気放電灯の立ち上がり特性を示す図である。
【図3】電極収容部の径と点灯2分後の紫外線出力を示す図である。
【図4】本発明に係る低圧水銀蒸気放電灯の寿命における安定時間の変化を表す図である。
【図5】従来の低圧水銀蒸気放電灯の構成を示す図である。
【符号の説明】
11 発光部(合成石英ガラス製)
12 水銀蒸気圧制御部(石英ガラス製)
13 電極収容部(石英ガラス製)
21 フィラメント
22 アノード
3 金属ブロック
4 金属酸化物層
5 ピンチシール部
6 ステム
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a low-pressure mercury vapor discharge lamp used for cleaning the surface of a semiconductor or a glass substrate for liquid crystal.
[0002]
[Prior art]
2. Description of the Related Art UV ozone cleaning technology using ultraviolet light is used for cleaning the surface of a semiconductor or a glass substrate for liquid crystal. UV ozone cleaning is the generation of ozone by short-wavelength ultraviolet light of 185 nm emitted from a low-pressure mercury vapor discharge lamp, and the active oxygen generated when decomposing ozone with ultraviolet light of 254 nm acts on organic substances (dirt) on the surface of the substance. Then, it is a technology of vaporizing and cleaning the same.
[0003]
A low-pressure mercury vapor discharge lamp is used as a light source for UV ozone cleaning. In order to improve the cleaning speed, the light source has a higher ultraviolet output than a low-pressure mercury vapor discharge lamp represented by a general fluorescent lamp. Has been taken. Specifically, for the arc tube, use synthetic quartz glass with good transmission characteristics of short-wavelength ultraviolet rays, increase the size of the filament and anode to enable lighting with a large current, and increase and stabilize the radiation efficiency of ultraviolet rays. It has a function to control the mercury vapor pressure. Due to the increase in the size of the electrode member and the function of controlling the mercury vapor pressure, the end of the discharge lamp is designed to be thicker than the light-emitting portion, and a stem has been used for the sealing portion (for example, see Patent Document 1).
[0004]
FIG. 5 is a diagram showing a configuration of a conventional low-pressure mercury vapor discharge lamp. The light emitting tube has a light emitting unit 11, a mercury vapor pressure control unit 12, and an electrode accommodating unit 13 formed of the same tube (for example, see Patent Document 1 or 2). Although the cooling metal block 3 is in contact, the boundary between the mercury vapor pressure controller 12 and the electrode housing 13 is not clear. Further, since there is a distance from the filament 21 to the inner wall of the tube, the temperature gradient is gentle, and the temperature of the inner wall of the tube becomes low. The stem 6 is used at the end of the arc tube, and the temperature is further reduced because the sealing portion between the stem 6 and the quartz tube is far from the filament.
[0005]
Due to such a structure, the mercury vapor is full at the time of lighting, and after the light is turned off, the mercury vapor aggregates near the low temperature electrode accommodating portion 13, particularly around the sealing portion between the stem 6 and the quartz tube to form mercury particles. After relighting, the mercury agglomerated in the electrode housing 13 due to the heat of the filament 21 evaporates, but it takes time to evaporate completely because the temperature is hard to rise. When the discharge lamp is stable, the mercury vapor pressure controller 12 controls the mercury vapor pressure. However, since the end structure of the arc tube is close to the function of the coldest part, the mercury vapor pressure is controlled between the part having the metal block 3 and the part not having the metal block 3. Since the temperature distribution was not clearly separated, the evaporation and aggregation of mercury were slow, and the rise time was long.
[0006]
[Patent Document 1]
JP-A-63-53853 (4 pages, FIG. 1)
[Patent Document 2]
JP-A-60-3847 (3 pages, FIG. 1)
[0007]
[Problems to be solved by the invention]
For industrial use, a short rise time is required for efficiency. However, in the low-pressure mercury vapor discharge lamp having such a configuration, it takes time until the mercury condensed in the electrode housing completely evaporates. However, there is a drawback that the standby time of the ultraviolet processing apparatus is long.
Further, there is a disadvantage that the operability of the ultraviolet treatment apparatus is poor because the stable time changes during the life due to the change in the amount of the enclosed mercury.
[Means for Solving the Problems]
[0008]
The invention according to claim 1 has a light emitting tube composed of a light emitting part made of synthetic quartz glass having a metal oxide layer on the inner surface, a mercury vapor pressure control part made of quartz glass, and an electrode housing part made of quartz glass. In the low-pressure mercury vapor discharge lamp, the diameter of the quartz glass tube forming the electrode housing is smaller than the diameter of the quartz glass tube forming the mercury vapor pressure controller.
[0009]
According to a second aspect of the present invention, in the low-pressure mercury vapor discharge lamp according to the first aspect, an inner diameter of a quartz glass tube constituting the electrode housing is 15 to 21 mm.
[0010]
According to a third aspect of the present invention, in the low-pressure mercury vapor discharge lamp according to the first or second aspect, the end of the electrode accommodating portion is formed of a direct pinch seal.
[0011]
According to a fourth aspect of the present invention, in the low-pressure mercury vapor discharge lamp according to any one of the first to third aspects, the amount of mercury sealed per area in the light emitting portion is 0.02 to 0.2 mg / cm 2 .
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of a low-pressure mercury vapor discharge lamp according to the present invention will be described below with reference to FIGS. FIG. 1 is a diagram showing a configuration of a low-pressure mercury vapor discharge lamp of the present invention. The arc tube has a substantially U-shape, and has a light emitting portion 11, a mercury vapor pressure control portion 12 having a metal block 3 for heat exchange on the outside, and an electrode comprising a filament 21, an anode 22 and a support 25. And an electrode accommodating portion 13 accommodating the mount.
[0013]
Specifically, the synthetic quartz glass forming the light emitting section 11 contains about 800 ppm of OH groups, and has an inner diameter of 17.5 mm, a thickness of 1.5 mm, and an aluminum oxide layer of about 200 nm formed on the inner surface. The substantially U-shaped light emitting portion has a total length of 500 mm and an inner area of 550 cm 2 . A mercury vapor pressure control unit 12 composed of a quartz glass tube having an inner diameter of 27 mm and a thickness of 1.4 mm is connected to an end of the light emitting unit 11, and an aluminum metal block 3 is provided outside the mercury vapor pressure control unit 12. I have. The metal block 3 is used in close contact with a water-cooled base block through which cooling water of 20 ° C. passes, and has a role of cooling a part of the arc tube, controlling the vapor pressure of mercury, and holding the arc tube. Without the cooling block, the temperature of the arc tube of the low-pressure mercury vapor discharge lamp rises, the vapor pressure of mercury increases, and the radiation efficiency of short-wavelength ultraviolet rays of 185 nm and 254 nm decreases.
[0014]
Further, a quartz glass tube forming an electrode accommodating portion 13 having an inner diameter of 17.5 mm, a thickness of 1.5 mm, and a length of 85 mm is connected to an end of the mercury vapor pressure controller 12, and a width of 5 mm is connected to the end. And two metal foil conductors 26a and 26b made of molybdenum and having a thickness of 35 μm and a length of 15 mm. Then, the metal foil conductors 26a and 26b are hermetically sealed with the outside air while having conductivity. In the case of this embodiment, the entire length of the electrode accommodating portion is 85 mm, which is the shortest configured to hold the large anode and the filament electrically and mechanically.
[0015]
The arc tube configured as described above is connected to a vacuum pump to exhaust the gas inside, and then 0.02 to 0.2 mg of mercury, preferably 0.10 mg of mercury per cm 2 of the arc tube (this embodiment) In the case of (1), since the area inside the arc tube is 550 cm 2 , a total amount of 55 mg is enclosed), and 50 to 100 Pa (preferably 70 Pa) of argon gas is enclosed as a starting aid.
[0016]
In order to obtain the hermetic seal, the seal portion is heated by a flame burner under atmospheric pressure while flowing an inert gas, and sealed by a direct pinch seal method in which the mold is crushed instantaneously. Also, the stem used in conventional low-pressure mercury vapor discharge lamps is not used. In the direct pinch seal method, the diameter of the quartz glass tube can be minimized so that the electrode mount can pass through, so that the electrode housing can be designed compact. Further, in the direct pinch seal method, the arc tube end side of the crushed portion is the end of the electrode accommodating portion, so that the distance from the filament is short and heat radiation is easily received. Therefore, the temperature difference from the mercury vapor control unit becomes large, and the mercury particles do not aggregate after the light is turned off.
[0017]
When lighting the discharge lamp, a voltage of several volts is applied between each of two lead wires provided at both ends of the substantially U-shaped tube to heat the filament and generate thermoelectrons, and then 400 V is applied between both filaments. , Discharge is started at a lamp voltage of 160 V, a lamp current of 5 A, and a lamp power of 380 W. At the same time as the discharge starts, the temperature of the arc tube rises and the mercury vapor pressure rises. However, the mercury vapor pressure control unit 12 becomes the coldest part and efficiently and stably maintains the ultraviolet output. At this time, the temperature during operation becomes high due to the effect of the filament at about 800 ° C. in the vicinity of the electrode accommodating portion 13, and the mercury vapor is partially diluted. When the discharge lamp is turned off, mercury vapor condenses on the mercury vapor pressure controller 12 and hardly remains in the electrode housing 13, so that mercury is not released from the vicinity of the electrode housing 13 immediately after the next lighting.
[0018]
Therefore, as shown in FIG. 2, there is a difference between the present invention and the prior art in the temporal change of the ultraviolet output of the low-pressure mercury vapor discharge lamp. The curve A in the figure is a rise curve of the low-pressure mercury vapor discharge lamp according to the present invention, and the rise time is short, within 2 minutes, until the ultraviolet output is stabilized after the start. Curve B is a rising curve of a conventional low-pressure mercury vapor discharge lamp, and it takes about 30 minutes for the ultraviolet output to stabilize.
[0019]
FIG. 3 is a view showing the relationship between the inner diameter of the electrode housing of the low-pressure mercury vapor discharge lamp according to the present invention and the ultraviolet output two minutes after lighting. When the inner diameter of the electrode housing portion exceeds 21 mm, the ultraviolet output 2 minutes after the rise is less than 80% of the stable state, which is not practical. In the case of 15 mm, the ultraviolet output reaches almost 100% of the stable state, but if the inner diameter is less than 15 mm, a large anode or filament cannot be accommodated. However, when the electrodes are made small, the impact of charged particles during lighting causes severe wear and impairs the life characteristics. Further, lengthening the length of the electrode mount is not practical because the size of the ultraviolet irradiation device is increased.
[0020]
Therefore, if the inner diameter of the electrode housing is 15 to 21 mm, the ultraviolet output after two minutes of lighting is 80% or more of that at the time of stability, and the rise time is shortened and the efficiency is improved.
[0021]
FIG. 4 is a diagram showing a change in rise time in the life of the low-pressure mercury vapor discharge lamp according to the present invention. In the figure, curve C is a characteristic curve of the low-pressure mercury vapor discharge lamp according to the present invention, and curve D is a characteristic curve of a conventional low-pressure mercury vapor discharge lamp. In conventional low-pressure mercury vapor discharge lamps, the mercury is dispersed and fixed in the synthetic quartz glass during lighting, reducing the amount of enclosed mercury and making it inactive. there were.
[0022]
According to the experiments by the inventors, the mercury consumption of the conventional low-pressure mercury vapor discharge lamp having no metal oxide layer on the inner surface reaches 1 mg / cm 2 in 1000 hours. Several hundred mg of mercury had to be enclosed. The inventors' experiments have revealed that this is due to the characteristics of synthetic quartz glass different from general quartz glass. In other words, synthetic quartz glass contains many electrically negative components such as OH groups and Cl groups, and is activated by ultraviolet rays during the operation of the lamp to be ionized (OH−, Cl−), and to be generated in the discharge plasma. It has an action of attracting the generated mercury ions (Hg +) into the quartz glass. Mercury atoms incorporated into the glass become inactive because they are bonded to negative groups. For this reason, in a low-pressure mercury vapor discharge lamp having no metal oxide layer, the amount of mercury consumed during the life is large, so that the amount of enclosed mercury must be increased.
[0023]
On the other hand, in the low-pressure mercury vapor discharge lamp according to the present invention, since the metal oxide layer of aluminum oxide is formed on the inner surface of the synthetic quartz glass light emitting section, mercury ions are suppressed from entering the synthetic quartz glass. So that the consumption of mercury is very low.
[0024]
According to an experiment, when the oxide layer 10 nm, the mercury consumption in 1000 hours at 0.2 mg / cm 2, it is not less than the oxide layer 1000nm is 0.02 mg / cm 2 is in our experiments It was revealed. In addition, it becomes difficult to form a metal oxide layer having a thickness of 1000 nm or more, which leads to an increase in cost for manufacturing a low-pressure mercury vapor discharge lamp. Therefore, the effect of stabilizing the change of the rising characteristic during the lifetime is lost.
[0025]
In the embodiment of the present invention, the glass forming the mercury vapor pressure control unit has been described as a general quartz glass, but this portion may be formed of a synthetic quartz glass having a metal oxide layer formed on the inner surface. In addition, since the electrode accommodating portion has almost no mercury vapor, a metal oxide layer is not required. Neither part is a part for obtaining the ultraviolet radiation of the low-pressure mercury vapor discharge lamp, and the use of expensive synthetic quartz glass leads to an increase in cost.
[0026]
In the embodiment of the present invention, the case where the material of the metal oxide layer is aluminum oxide has been described, but the same effect can be obtained by using a metal oxide layer of yttrium oxide or titanium oxide.
[0027]
【The invention's effect】
According to the first aspect of the present invention, when the time until the ultraviolet output is stabilized after the start is within 2 minutes, the rise is short and the efficiency is improved.
[0028]
According to the second aspect of the present invention, the ultraviolet output after two minutes of lighting is 80% or more of the stable state, and the standby time of the ultraviolet processing device can be shortened. In addition, when the size of the electrode is reduced, the impact of charged particles during lighting increases the wear and the life characteristics are impaired.However, in the present invention, it is possible to make the electrode housing portion compact without reducing the size of the electrode. I can do it.
[0029]
According to the third aspect of the invention, the electrode housing can be made compact.
[0030]
According to the invention described in claim 4, the amount of mercury enclosed per area in the light emitting portion is as small as 0.02 to 0.2 mg / cm 2, and the stability time does not change during the life, so that the operability of the ultraviolet treatment device is improved, Running costs can be reduced. Also, since the amount of mercury to be sealed is small, the environment is also considered.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a low-pressure mercury vapor discharge lamp according to the present invention.
FIG. 2 is a diagram showing the rising characteristics of the low-pressure mercury vapor discharge lamp according to the present invention.
FIG. 3 is a diagram showing a diameter of an electrode housing and an ultraviolet output two minutes after lighting.
FIG. 4 is a diagram showing a change in a stabilization time in the life of the low-pressure mercury vapor discharge lamp according to the present invention.
FIG. 5 is a diagram showing a configuration of a conventional low-pressure mercury vapor discharge lamp.
[Explanation of symbols]
11 Light-emitting part (made of synthetic quartz glass)
12 Mercury vapor pressure control unit (made of quartz glass)
13 Electrode housing (made of quartz glass)
21 Filament 22 Anode 3 Metal Block 4 Metal Oxide Layer 5 Pinch Seal 6 Stem

Claims (4)

内面に金属酸化物層を設けた合成石英ガラス製の発光部と石英ガラス製水銀蒸気圧制御部と石英ガラス製電極収容部で構成される発光管を有してなる低圧水銀蒸気放電灯において、該電極収容部を構成する石英ガラス管は水銀蒸気圧制御部を構成する石英ガラス管より径が細いことを特徴とした低圧水銀蒸気放電灯。In a low-pressure mercury vapor discharge lamp having a light emitting portion composed of a synthetic quartz glass light emitting portion provided with a metal oxide layer on the inner surface, a quartz glass mercury vapor pressure control portion, and a quartz glass electrode housing portion, A low-pressure mercury vapor discharge lamp, characterized in that the quartz glass tube forming the electrode housing has a smaller diameter than the quartz glass tube forming the mercury vapor pressure control unit. 前記電極収容部を構成する石英ガラス管の内径は15〜21mmであることを特徴とする請求項1記載の低圧水銀蒸気放電灯。The low-pressure mercury vapor discharge lamp according to claim 1, wherein the inner diameter of the quartz glass tube constituting the electrode housing is 15 to 21 mm. 前記電極収容部端はダイレクトピンチシールで構成されていることを特徴とする請求項1又は請求項2記載の低圧水銀蒸気放電灯。3. The low-pressure mercury vapor discharge lamp according to claim 1, wherein the end of the electrode accommodating portion is formed by a direct pinch seal. 前記発光部内面積あたりの水銀封入量が0.02〜0.2mg/cmであることを特徴とする請求項1乃至請求項3記載の低圧水銀蒸気放電灯。The low-pressure mercury vapor discharge lamp according to claim 1, wherein a mercury sealing amount per area in the light emitting unit is 0.02 to 0.2 mg / cm 2 .
JP2003025474A 2003-02-03 2003-02-03 Low pressure mercury vapor discharge lamp Pending JP2004235118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003025474A JP2004235118A (en) 2003-02-03 2003-02-03 Low pressure mercury vapor discharge lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003025474A JP2004235118A (en) 2003-02-03 2003-02-03 Low pressure mercury vapor discharge lamp

Publications (1)

Publication Number Publication Date
JP2004235118A true JP2004235118A (en) 2004-08-19

Family

ID=32953751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003025474A Pending JP2004235118A (en) 2003-02-03 2003-02-03 Low pressure mercury vapor discharge lamp

Country Status (1)

Country Link
JP (1) JP2004235118A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6096766U (en) * 1983-07-05 1985-07-02 日本電池株式会社 UV irradiation device
JPH04110153A (en) * 1990-08-31 1992-04-10 Toshiba Lighting & Technol Corp Ultraviolet-ray irradiator
JPH0586617B2 (en) * 1986-05-20 1993-12-13 Iwasaki Electric Co Ltd
JPH10208700A (en) * 1997-01-24 1998-08-07 Iwasaki Electric Co Ltd Mercury vapor discharge lamp
JP2001155680A (en) * 1999-11-30 2001-06-08 Iwasaki Electric Co Ltd Low pressure mercury vapor discharge lamp

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6096766U (en) * 1983-07-05 1985-07-02 日本電池株式会社 UV irradiation device
JPH0586617B2 (en) * 1986-05-20 1993-12-13 Iwasaki Electric Co Ltd
JPH04110153A (en) * 1990-08-31 1992-04-10 Toshiba Lighting & Technol Corp Ultraviolet-ray irradiator
JPH10208700A (en) * 1997-01-24 1998-08-07 Iwasaki Electric Co Ltd Mercury vapor discharge lamp
JP2001155680A (en) * 1999-11-30 2001-06-08 Iwasaki Electric Co Ltd Low pressure mercury vapor discharge lamp

Similar Documents

Publication Publication Date Title
US9318311B2 (en) Plasma cell for laser-sustained plasma light source
TWI383424B (en) High pressure discharge lamp and high pressure discharge lamp device
CN106252194A (en) Excimer lamp
JP2014154274A (en) Excimer lamp
JP4400125B2 (en) Short arc type discharge lamp lighting device
JP2005216647A (en) High radiance flash discharge lamp
JP2004235118A (en) Low pressure mercury vapor discharge lamp
JP2011258321A (en) Amalgam type low-pressure mercury lamp and power unit for lighting the same
JP2836315B2 (en) High pressure metal vapor discharge lamp and high pressure metal vapor discharge lamp device
CN105390366B (en) Long arc discharge lamp
JPH0750153A (en) Metallic vapor discharge lamp device
JP2000164171A (en) Discharge lamp
JP3458879B2 (en) Electrodeless discharge lamp, electrodeless discharge lamp lighting device and lighting device
JP2008027802A (en) Discharge lamp
JP2000090879A (en) Metal halide lamp
JP2005209397A (en) Dielectric barrier discharge lamp, and ultraviolet-ray irradiation device
JP2002237274A (en) Low-pressure discharge lamp
JP2022114093A (en) Low-voltage ultraviolet lamp unit
JP2005209457A (en) Discharge lamp and projector
JP2023095053A (en) Low-pressure uv lamp unit
JPH0745238A (en) Method and device for lighting low pressure mercury lamp and ultraviolet irradiating device using this low pressure mercury lamp
JP3591515B2 (en) Short arc type ultra-high pressure discharge lamp
JP2022111552A (en) Low-pressure discharge lamp and UV irradiation device
JP2000208100A (en) High-pressure mercury lamp and light source device using it
JPH1050251A (en) Fluorescent lamp, fluorescent lamp device, and lighting system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100302

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101130