JPH0586464B2 - - Google Patents

Info

Publication number
JPH0586464B2
JPH0586464B2 JP26773985A JP26773985A JPH0586464B2 JP H0586464 B2 JPH0586464 B2 JP H0586464B2 JP 26773985 A JP26773985 A JP 26773985A JP 26773985 A JP26773985 A JP 26773985A JP H0586464 B2 JPH0586464 B2 JP H0586464B2
Authority
JP
Japan
Prior art keywords
temperature
solution treatment
alloy
hot rolling
ingot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26773985A
Other languages
Japanese (ja)
Other versions
JPS62127455A (en
Inventor
Toshio Komatsubara
Mamoru Matsuo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sky Aluminium Co Ltd
Original Assignee
Sky Aluminium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sky Aluminium Co Ltd filed Critical Sky Aluminium Co Ltd
Priority to JP26773985A priority Critical patent/JPS62127455A/en
Publication of JPS62127455A publication Critical patent/JPS62127455A/en
Publication of JPH0586464B2 publication Critical patent/JPH0586464B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 この発明はJIS2000番系、6000番系あるいは
7000番系等で代表される熱処理型アルミニウム合
金圧延板を製造する方法に関するものである。 従来の技術 周知のようにJIS規格の2014合金、2017合金、
2219合金等の2000番系合金や6061合金等の6000番
系合金、あるいは7075合金、7NO1合金等の7000
番系合金で代表される熱処理型アルミニウム合金
圧延板の製造方法としては、熱間圧延を行なつた
後、必要に応じて冷間圧延を施し、その後溶体化
処理を行なつた後、常温時効あるいは100〜200℃
の加熱処理により人工時効するのが一般的であ
る。ここせ溶体化処理は、強化に寄与する元素を
一旦充分に固溶させ、これを急冷により常温に持
ち来たらすことにより過飽和固溶体とするのが目
的であり、その後の常温時効あるいは人工時効に
よつて過飽和固溶体が分解され、微細なGPゾー
ンもしくは析出物を析出させることにより強靭化
が達成される。 このように溶体化処理後の析出によつて強靭化
を達成するためには、鋳造時あるいは鋳塊の予備
加熱等において粗大に析出した強化寄与元素の析
出物もしくは晶出物を、溶体化処理において充分
に固溶させることが必要である。この溶体化処理
の加熱温度は、対象とする合金のα相領域におけ
る固相線温度と溶解度直線との間の温度とされ、
具体的な最適温度域は合金組成によつて異なるが
典型的にはMILL規格あるいはJIS規格に代表的
な合金の液体化処理温度が示されている。例えば
2014合金においては493〜505℃、2017合金は495
〜510℃、2024合金板材は490〜500℃、6061合金
は515〜550℃、7075合金板材は460〜500℃、
7NO1合金は約450℃がそれぞれ最適とされてい
る。 ところで溶体化処理は従来は一般には塩浴炉、
空気炉等のバツチ炉で行なうのが通常であり、こ
のようなバツチ炉において前述のような溶体化処
理温度域で充分に均熱して粗大な析出物を充分に
固溶させるためには、板厚によつても異なるが、
例えば板厚1.0mmの場合塩浴炉で20分以上、空気
炉で30分以上の保持が望まれる。 一方最近では板厚3mm以下の薄板の場合、連続
的にコイルを巻き戻しながら連続的に溶体化−焼
入れを施す方法が実施されるようになつている。
そのための連続炉は、一般には昇温帯と保持帯と
冷却帯とからなり、薄板材料は保持帯を通過中に
溶体化処理される。このような連続炉を用いた場
合には、バツチ炉方式の場合と比較すれば溶体化
処理時間はかなり短縮されるが、それでも少なく
とも4〜5分間の保持が必要とされている。 発明が解決すべき問題点 前述のように連続炉方式の溶体化−焼入れにお
いても溶体化のための保持時間は少なくとも4〜
5分は必要とされ、このような保持時間を確保す
るためには連続炉のライン速度をある程度以上高
くすることはできず、これが生産性向上のための
ネツクとなつていた。また上述のような保持時間
を確保するためには連続炉の保持帯の長さをある
程度以上短くすることはできず、したがつて設備
コスト低減のためのネツクともなつている。さら
に一般の連続焼鈍炉としては保持帯のないものも
あるが、このような連続炉を溶体化処理に利用し
ようとした場合、前述の温度域での4〜5分以上
の加熱を行なうためにはライン速度を著しく遅く
せざるを得ず、経済性を著しく損う問題が生じて
いた。 この発明は以上の事情を背景としてなされたも
ので、連続炉を用いて溶体化−焼入れを行なうに
あたつて、連続炉のライン速度を従来よりも格段
に高めて生産性を向上させ得るようにするととも
に、連続炉の保持帯の長さを短縮して設備コスト
を引下げ、かつまた保持帯を持たない連続炉にお
いても経済的なライン速度で溶体化を行ない得る
ようにした方法を提供することを目的とするもの
である。すなわちこの発明は、極く短時間の溶体
化処理温度域保持で溶体化を完了させるようにし
て上述の目的を達成しようとするものである。 問題点を解決するための手段 圧延後の溶体化処理において溶体化処理温度域
での保持時間を短くしてしかも強化に寄与する元
素の晶出物、析出物を充分に固溶させるために
は、溶体化処理までの過程におけるそれらの元素
の析出を可及的に抑制し、また析出してもそのサ
イズを可及的に小さくする必要がある。そこでこ
の発明では、先ず鋳塊中の強化に寄与する金属間
化合物を、熱間圧延前の鋳塊加熱時において充分
に固溶させ、かつ鋳塊加熱から熱間圧延までの
間、熱間圧延中、および熱間圧延後の冷却過程に
おける析出を可及的に抑制し、また析出してもそ
のサイズが小さくなるようにし、これにより圧延
後の溶体化処理において短時間で充分な溶体化が
行なえるようにしたのである。 具体的には、この発明は、熱処理型アルミニウ
ム合金鋳塊を熱間圧延し、さらに必要に応じて冷
間圧延し、その後コイルを連続的に巻戻しながら
溶体化処理して熱処理型アルミニウム合金圧延板
を製造するにあたり、前記熱間圧延直前の鋳塊加
熱を、溶体化処理温度の9割以上の温度において
0.5時間以上の保持で行ない、引続きその溶体化
処理温度の9割の温度よりも低温まで冷却するこ
となく直ちに熱間圧延を開始し、300℃以下の温
度で熱間圧延を終了させ、前記溶体化処理の保持
時間を180秒以下とすることを特徴とするもので
ある。 作 用 熱間圧延前の鋳塊加熱において溶体化処理温度
の9割以上の温度(但しここでは摂氏温度で9割
以上を意味する)で0.5時間以上加熱保持するこ
とにより、鋳塊中の強化に寄与すべき金属間化合
物が大部分α−Al基地中に固溶される。また同
時に、その温度で鋳塊加熱を行なうことによつて
鋳塊加熱時に粗大な析出物が生成されることが防
止され、引続き直ちにその温度(溶体化処理温度
の9割以上の温度)で熱間圧延を開始することに
より、鋳塊加熱から熱間圧延開始までの間で粗大
な析出物が生成されることが防止される。すなわ
ち、従来一般に熱間圧延直前の加熱温度は例えば
7075合金の場合400℃前後であつて溶体化処理温
度(通常は前述のように460〜500℃)より相当に
低く、この場合はその鋳塊加熱により鋳塊中の晶
出物を充分に固溶させることが困難なことはもち
ろん、逆に粗大な析出物が生成されてしまう傾向
にあり、また熱間圧延直前の鋳塊加熱とは別に、
その前に鋳塊均質化のための加熱をより高温で行
なうこともあるが、この場合は均質化熱処理中に
鋳塊中の晶出物を固溶させることは必ずしも不可
能ではないものの、均質化熱処理後の冷却過程で
粗大な析出物が生じてしまうのであり、これに対
しこの発明の方法では溶体化処理温度の9割以上
の温度での鋳塊加熱と引続くその温度での熱間圧
延の開始とによつて、鋳塊中の金属間化合物の固
溶と熱間圧延開始までの間の粗大析出防止とを同
時に達成することができるのである。 ここで、熱間圧延直前の鋳塊加熱温度が溶体化
処理温度の9割に満たない温度では鋳塊中の金属
間化合物を充分に固溶させることが困難であり、
また粗大な析出物が生じてしまうおそれがあるか
ら、その鋳塊加熱温度は溶体化処理温度の9割以
上の温度とする必要がある。但し実際には既に述
べたようなそれぞれの合金に最適な溶体化処理温
度範囲内で鋳塊加熱を行なうことが最も望まし
い。またその鋳塊加熱温度の上限は特に規定しな
いが、高過ぎれば共晶融解や高温酸化が生じるこ
とから、それぞれの合金の溶体化処理温度範囲の
上限以下とすることが好ましい。一方上記温度で
の鋳塊加熱の保持時間は、0.5時間未満では鋳塊
加熱中の晶出物を充分に固溶させることが困難で
あり、したがつてその保持時間は0.5時間以上と
した。また保持時間の上限は特に規定しないが、
通常は経済性の点から24時間程度以下とすること
が好ましい。 さらに、前述のように溶体化処理温度の9割以
上の温度で開始した熱間圧延は、300℃以下の低
温で終了させて巻取るから、熱間圧延後の熱延上
りコイルの冷却過程ではもはや粗大な析出物の生
成は殆どみられず、また仮に析出してもそのサイ
ズは微細となる。また前記温度で熱間圧延を開始
して300℃以下の低温で熱間圧延を終了させるこ
とは、粗大な析出物が比較的生成され易い温度域
で熱間圧延することを意味するが、熱間圧延に要
する時間は、熱間圧延を高温で終了させた場合の
熱延上りコイルの冷却に要する時間よりも格段に
短く、したがつて熱延中および熱延後の冷却過程
でのトータルとしての粗大析出物の析出程度は、
高温で熱間圧延を終了させた場合よりも格段に少
なくなり、また析出してもそのサイズは微細化さ
れる。但し、実際には前記温度域での熱間圧延を
可及的にすみやかに終了させるべく、熱延中の冷
却を強めることが望ましい。 ここで、熱間圧延終了温度が300℃を越える高
温では上記の効果が得られないから、熱間圧延終
了温度は300℃以下に限定した。 以上のように溶体化処理温度の9割以上の温度
で0.5時間以上の鋳塊加熱を行なつて引続きその
温度で熱間圧延を開始し、300℃以上の温度で熱
間圧延を終了させることにより、溶体化処理前ま
での過程での粗大な析出物の析出が抑制され、ま
た析出してもそのサイズが微細となる。しがつて
連続炉による溶体化処理の保持時間が180秒以下
の短時間でも充分に析出物、晶出物を固溶させる
ことが可能となり、ひいては最終的に常温時効あ
るいは人工時効により充分に強靭化を達成するこ
とが可能となる。 ここで溶体化処理の保持時間が180秒を越える
場合はライン速度を高くして生産性を向上させる
効果が充分に得られないから、その保持時間は
180秒以下と規定した。但し実際には60秒以下の
保持とすることが好ましく、このような60秒以下
の極短時間保持でもこの発明の方法では相当程度
まで析出物を固溶化させ、その後の常温時効もし
くは人工時効により相当程度の強靭化を達成する
ことができる。 なお溶体化処理における加熱速度は、結晶粒の
粗大化を防止するために5℃/sec以上とするこ
とが望ましい。また溶体化処理の加熱保持後の冷
却(焼入れ)における冷却速度は少なくとも5
℃/sec以上が好ましいが、合金種類によつて焼
入れ感受性は異なるから、合金の種類に応じて適
切な冷却方法を選択することが望ましい。例えば
6061合金や7NO1合金においては強制空冷で焼入
れが可能であるが、2024合金や7075合金において
はスプレー水冷による焼入れが必要である。また
溶体化処理温度、すなわち溶体化処理における保
持温度は、既に述べたような合金種類に応じた最
適範囲内に設定すれば良い。 このようにして溶体化−焼入れした後には、通
常は必要に応じてスキンパスロール、レベリン
グ、ストレツチ等により歪を矯正し、あるいは残
留応力を除去し、常温時効させて所謂T4テンパ
ー材とするか、あるいは人工時効処理を施して所
謂T6テンパー材とし、製品板とする。ここで人
工時効処理は各合金種類に応じて常法に従つて行
なえは良い。 なお熱間圧延終了後、溶体化処理までの間に必
要に応じて冷間圧延を施しても良いことは勿論で
ある。また薄板の製造過程においては、冷間圧延
の間において中間焼鈍を施したり、また熱間圧延
後の熱延コイルに対して焼鈍を施すことがある
が、この発明の方法の場合は溶体化処理前までの
粗大析出物の析出を抑制する観点から、これらの
焼鈍は避けることが望ましく、またやむを得ずこ
れらの焼鈍を施す場合でも可及的に低温(例えば
300℃以下)で短時間保持とし、かつ焼鈍後の冷
却速度を高めることが望ましい。 実施例 第1表に示す5種類の合金について、DC鋳造
にて500mm×1000mm×4000mmのスラブ鋳塊を鋳造
し、次いで第2表中に示す条件で鋳塊を均熱し、
熱間圧延を施して板厚3mmの熱延板とした。但し
ここで第2表中における6061合金の比較法、およ
び7075合金の比較法では、鋳塊を均熱後、表中の
最加熱保持欄に示すように加熱保持してから熱間
圧延を開始し、それ以外ではすべて均熱後、直ち
に熱間圧延を開始した。 その後、第2表の本発明法による熱延板および
比較法による熱延板について、中間焼鈍なしで板
厚1.5mmまで冷間圧延し、連続炉を用いてコイル
を連続的に巻戻しながら第3表中に示す条件で溶
体化−焼入れを行ない、さらに7NO1合金、6061
合金、2017合金については1ケ月の常温時効によ
つてT4テンパー材とし、2219合金および7075合
金についてはそれぞれ177℃×18時間、120℃×24
時間の人工時効処理を施してT6テンパー材とし
た。 一方、第1表の各合金について第2表の本発明
法の条件と同じ条件で板厚3.0mmの熱延材とし、
さらに前記同様に中間焼鈍なしで板厚1.5mmまで
冷間圧延した後、「従来法」としてバツチ式溶体
化焼入れを第4表に示す条件で施し、さらに前記
同様にT4テンパー材もしくはT6テンパー材とし
た。 これらにより得られた各合金の本発明法、比較
法、従来法によるT4レンパー材もしくはT6テン
パー材について機械的特性および耐粒界腐食性に
ついて調べた結果を第5表に示す。
Industrial Application Field This invention is applicable to JIS2000 series, 6000 series or
This invention relates to a method for manufacturing heat-treated aluminum alloy rolled plates, such as No. 7000 series. Conventional technology As is well known, JIS standard 2014 alloy, 2017 alloy,
2000 series alloys such as 2219 alloy, 6000 series alloys such as 6061 alloy, or 7000 series alloys such as 7075 alloy and 7NO1 alloy
The manufacturing method for heat-treated aluminum alloy rolled sheets, which is represented by number series alloys, involves hot rolling, cold rolling if necessary, solution treatment, and room temperature aging. Or 100-200℃
Artificial aging is generally performed by heat treatment. The purpose of the solution treatment is to sufficiently dissolve the elements that contribute to strengthening into a supersaturated solid solution by rapidly cooling them to room temperature. The supersaturated solid solution is then decomposed and toughening is achieved by precipitating fine GP zones or precipitates. In order to achieve toughening by precipitation after solution treatment, the precipitates or crystallized substances of elements that contribute to strengthening, which are coarsely precipitated during casting or during preheating of the ingot, are removed by solution treatment. It is necessary to form a sufficient solid solution in the solid solution. The heating temperature for this solution treatment is a temperature between the solidus temperature and the solubility line in the α phase region of the target alloy,
Although the specific optimum temperature range varies depending on the alloy composition, the liquefaction treatment temperature of typical alloys is typically indicated in the MILL standard or the JIS standard. for example
493-505℃ for 2014 alloy, 495℃ for 2017 alloy
~510℃, 2024 alloy plate 490~500℃, 6061 alloy 515~550℃, 7075 alloy plate 460~500℃,
The optimum temperature for 7NO1 alloy is approximately 450℃. By the way, solution treatment has traditionally been carried out using salt bath furnaces,
Usually, the process is carried out in a batch furnace such as an air furnace. Although it varies depending on the thickness,
For example, if the plate thickness is 1.0 mm, it is desirable to hold the plate for at least 20 minutes in a salt bath furnace and for at least 30 minutes in an air furnace. On the other hand, recently, in the case of thin plates with a thickness of 3 mm or less, a method of continuously solution-hardening the coil while continuously unwinding the coil has been practiced.
Continuous furnaces for this purpose generally consist of a heating zone, a holding zone, and a cooling zone, and the sheet material is solution-treated while passing through the holding zone. When such a continuous furnace is used, the solution treatment time is considerably shortened compared to the case of a batch furnace system, but a holding time of at least 4 to 5 minutes is still required. Problems to be Solved by the Invention As mentioned above, even in continuous furnace solution treatment and quenching, the holding time for solution treatment is at least 4 to 30 minutes.
5 minutes is required, and in order to ensure such a holding time, the line speed of the continuous furnace cannot be increased beyond a certain level, and this has been a bottleneck for improving productivity. Furthermore, in order to secure the above-mentioned holding time, the length of the holding zone of the continuous furnace cannot be reduced beyond a certain level, and this is also a bottleneck for reducing equipment costs. Furthermore, some general continuous annealing furnaces do not have a holding zone, but if such a continuous furnace is to be used for solution treatment, it is necessary to heat the furnace for more than 4 to 5 minutes in the temperature range mentioned above. In this case, the line speed had to be significantly slowed down, resulting in a problem that significantly reduced economic efficiency. This invention was made against the background of the above-mentioned circumstances, and is intended to improve productivity by significantly increasing the line speed of the continuous furnace compared to conventional methods when performing solution heat treatment and hardening using a continuous furnace. In addition, to provide a method that reduces equipment costs by shortening the length of a holding zone in a continuous furnace, and also allows solution treatment to be carried out at an economical line speed even in a continuous furnace that does not have a holding zone. The purpose is to That is, the present invention attempts to achieve the above-mentioned object by completing solution treatment by maintaining the solution treatment temperature range for a very short time. Means to solve the problem In order to shorten the holding time in the solution treatment temperature range during post-rolling solution treatment and to sufficiently dissolve crystallized substances and precipitates of elements that contribute to strengthening, it is necessary to It is necessary to suppress the precipitation of these elements as much as possible during the process up to solution treatment, and even if they do precipitate, it is necessary to make the size of the precipitation as small as possible. Therefore, in this invention, first, the intermetallic compounds that contribute to the strengthening of the ingot are sufficiently dissolved in solid solution during the heating of the ingot before hot rolling, and then the Precipitation during the cooling process after medium and hot rolling is suppressed as much as possible, and even if precipitation occurs, the size of the precipitation is reduced, thereby achieving sufficient solution treatment in a short period of time during post-rolling solution treatment. I made it possible to do so. Specifically, the present invention hot-rolls a heat-treated aluminum alloy ingot, further cold-rolls it if necessary, and then solution-treats the coil while continuously unwinding it to form a heat-treated aluminum alloy ingot. In manufacturing the plate, the ingot is heated immediately before the hot rolling at a temperature of 90% or more of the solution treatment temperature.
After holding the solution for 0.5 hours or more, hot rolling is immediately started without cooling to a temperature lower than 90% of the solution treatment temperature, hot rolling is finished at a temperature of 300°C or less, and the solution treatment temperature is It is characterized in that the holding time of the oxidation treatment is 180 seconds or less. Effect When heating the ingot before hot rolling, the ingot is strengthened by heating and holding at a temperature of 90% or more of the solution treatment temperature (here, 90% or more in degrees Celsius) for 0.5 hours or more. Most of the intermetallic compounds that should contribute to this are dissolved in the α-Al base. At the same time, heating the ingot at that temperature prevents the formation of coarse precipitates during heating of the ingot, and immediately heats the ingot at that temperature (90% or more of the solution treatment temperature). By starting inter-rolling, coarse precipitates are prevented from being generated between the heating of the ingot and the start of hot rolling. In other words, conventionally, the heating temperature immediately before hot rolling was, for example,
In the case of 7075 alloy, the temperature is around 400℃, which is considerably lower than the solution treatment temperature (usually 460 to 500℃ as mentioned above), and in this case, the crystallized substances in the ingot are sufficiently solidified by heating the ingot. Not only is it difficult to melt, but it also tends to produce coarse precipitates, and apart from heating the ingot immediately before hot rolling,
Before that, heating may be performed at a higher temperature to homogenize the ingot, but in this case, although it is not necessarily impossible to dissolve the crystallized substances in the ingot during the homogenization heat treatment, Coarse precipitates are formed during the cooling process after chemical heat treatment.In contrast, the method of this invention involves heating the ingot at a temperature of 90% or more of the solution heat treatment temperature, followed by hot heating at that temperature. By starting rolling, it is possible to simultaneously achieve solid solution of intermetallic compounds in the ingot and prevention of coarse precipitation until the start of hot rolling. Here, if the ingot heating temperature immediately before hot rolling is less than 90% of the solution treatment temperature, it is difficult to sufficiently dissolve the intermetallic compounds in the ingot,
Furthermore, since there is a possibility that coarse precipitates may be formed, the heating temperature of the ingot needs to be 90% or more of the solution treatment temperature. However, in reality, it is most desirable to heat the ingot within the optimal solution treatment temperature range for each alloy as described above. The upper limit of the ingot heating temperature is not particularly specified, but if it is too high, eutectic melting and high temperature oxidation will occur, so it is preferably set to below the upper limit of the solution treatment temperature range for each alloy. On the other hand, if the holding time for heating the ingot at the above temperature is less than 0.5 hours, it is difficult to sufficiently dissolve the crystallized substances during the heating of the ingot, so the holding time was set to 0.5 hours or more. There is no particular upper limit to the retention time; however,
Normally, from the point of view of economy, it is preferable to set the time period to about 24 hours or less. Furthermore, as mentioned above, hot rolling started at 90% or more of the solution treatment temperature is finished at a low temperature of 300°C or less before winding. The formation of coarse precipitates is almost no longer observed, and even if they do precipitate, their size will be fine. In addition, starting hot rolling at the above temperature and finishing hot rolling at a low temperature of 300°C or less means hot rolling in a temperature range where coarse precipitates are relatively likely to be generated. The time required for inter-rolling is much shorter than the time required for cooling the hot-rolled coil when hot rolling is finished at a high temperature, so the total time required for the cooling process during and after hot rolling is The degree of precipitation of coarse precipitates is
The amount is much smaller than when hot rolling is finished at a high temperature, and even if it precipitates, its size is finer. However, in reality, it is desirable to strengthen cooling during hot rolling in order to finish hot rolling in the above temperature range as quickly as possible. Here, since the above effect cannot be obtained at a high temperature where the hot rolling end temperature exceeds 300°C, the hot rolling end temperature was limited to 300°C or less. As mentioned above, the ingot is heated for 0.5 hours or more at a temperature of 90% or more of the solution treatment temperature, then hot rolling is started at that temperature, and hot rolling is finished at a temperature of 300°C or more. This suppresses the precipitation of coarse precipitates in the process before solution treatment, and even if they do precipitate, their size becomes fine. Therefore, even with a short holding time of 180 seconds or less during solution treatment in a continuous furnace, it is possible to sufficiently dissolve precipitates and crystallized substances into solid solution, and eventually the material becomes sufficiently strong through room temperature aging or artificial aging. It becomes possible to achieve this goal. If the holding time of solution treatment exceeds 180 seconds, the effect of increasing the line speed and improving productivity cannot be obtained sufficiently, so the holding time is
It was specified as 180 seconds or less. However, in reality, it is preferable to hold for 60 seconds or less, and even with such a short-term holding of 60 seconds or less, the method of this invention allows the precipitates to become a solid solution to a considerable extent, and the subsequent room temperature aging or artificial aging A considerable degree of toughening can be achieved. Note that the heating rate in the solution treatment is preferably 5° C./sec or more in order to prevent coarsening of crystal grains. In addition, the cooling rate during cooling (quenching) after heating and holding in solution treatment is at least 5
C/sec or more is preferred, but since the quenching sensitivity differs depending on the type of alloy, it is desirable to select an appropriate cooling method depending on the type of alloy. for example
Although 6061 alloy and 7NO1 alloy can be hardened by forced air cooling, 2024 alloy and 7075 alloy require hardening by spray water cooling. Further, the solution treatment temperature, that is, the holding temperature in the solution treatment, may be set within the optimum range according to the type of alloy as described above. After being solution-hardened in this way, the strain is usually corrected by skin pass rolls, leveling, stretching, etc. as necessary, or residual stress is removed, and the material is aged at room temperature to become a so-called T4 tempered material. Alternatively, it is subjected to artificial aging treatment to become so-called T6 tempered material and used as a product board. Here, the artificial aging treatment can be carried out according to a conventional method depending on the type of alloy. It goes without saying that cold rolling may be performed as necessary after the hot rolling is completed and before the solution treatment. In addition, in the manufacturing process of thin sheets, intermediate annealing may be performed during cold rolling, and hot rolled coils may be annealed after hot rolling, but in the case of the method of this invention, solution treatment is performed. From the perspective of suppressing the precipitation of the previous coarse precipitates, it is desirable to avoid these annealings, and even if these annealings are unavoidable, they should be performed at as low a temperature as possible (e.g.
It is desirable to hold the temperature at 300°C or less for a short time and to increase the cooling rate after annealing. Example For the five types of alloys shown in Table 1, slab ingots of 500 mm x 1000 mm x 4000 mm were cast by DC casting, and then the ingots were soaked under the conditions shown in Table 2.
It was hot-rolled to obtain a hot-rolled plate with a thickness of 3 mm. However, in the comparison method for 6061 alloy and the comparison method for 7075 alloy in Table 2, after soaking the ingot, it is heated and held as shown in the maximum heating and holding column in the table before hot rolling is started. However, in all other cases, hot rolling was started immediately after soaking. Thereafter, the hot-rolled sheets according to the present invention method and the hot-rolled sheets according to the comparative method shown in Table 2 were cold rolled to a thickness of 1.5 mm without intermediate annealing, and the coils were continuously unwound using a continuous furnace. Solution treatment and quenching were performed under the conditions shown in Table 3, and further 7NO1 alloy and 6061
For the 2017 alloy, it was made into T4 tempered material by aging at room temperature for one month, and for the 2219 alloy and 7075 alloy, it was aged at 177℃ x 18 hours and 120℃ x 24 hours, respectively.
It was made into T6 tempered material by artificial aging treatment. On the other hand, each alloy in Table 1 was made into a hot-rolled material with a thickness of 3.0 mm under the same conditions as the conditions of the present invention method in Table 2.
Furthermore, after cold rolling the plate to a thickness of 1.5 mm without intermediate annealing in the same manner as above, batch solution quenching was performed under the conditions shown in Table 4 as a "conventional method", and then T4 tempered material or T6 tempered material was applied in the same manner as above. And so. Table 5 shows the results of examining the mechanical properties and intergranular corrosion resistance of the T4 tempered material or T6 tempered material of each alloy obtained by the present invention method, comparative method, and conventional method.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 第5表から明らかなように、本発明法の場合に
は、いずれも連続炉において溶体化処理の保持を
10〜30秒という短時間としたにもかかわらず、
T4テンパー材、T6テンパー材において従来法の
バツチ式溶体化−焼入れの場合と同程度の強度が
得られ、また耐粒界腐食性も良好であつた。これ
に対し熱延開始直前の加熱が溶体化処理温度の9
割未満の温度であつてその温度で熱延を開始した
比較例(6061合金の比較例および7075合金の比較
例)、および熱延終了温度が、300℃を越える350
℃とされ比較例(2017合金の比較例)では、いず
れも充分な強度が得られなかつた。 発明の効果 以上の実施例からも明らかなように、この発明
の方法によれば、熱処理型アルミニウム合金圧延
板の溶体化処理を連続炉で行なうにあたつて、溶
体化処理温度での保持時間を著しく短縮してしか
も従来のバツチ炉による溶体化処理の場合と同程
度の強度(時効後強度)を得ることが可能となつ
た。したがつてこの発明の方法を適用すれば、溶
体化−焼入れの連続ラインのライン速度を高め
て、生産性を著しく向上させることができるとと
もに、連続炉の保持帯の長さを短縮して設備コス
トを著しく低減することができ、さらには保持帯
を持たない連続焼鈍炉でも経済的なライン速度で
の溶体化処理が可能となる等、各種の効果が得ら
れる。
[Table] As is clear from Table 5, in the case of the method of the present invention, the solution treatment is not maintained in a continuous furnace.
Despite the short time of 10 to 30 seconds,
In the T4 tempered material and the T6 tempered material, strength comparable to that of the conventional batch solution-quenching method was obtained, and the intergranular corrosion resistance was also good. On the other hand, the heating immediately before the start of hot rolling is the solution treatment temperature of 9.
Comparative examples (6061 alloy comparative example and 7075 alloy comparative example) in which hot rolling was started at a temperature below
In all comparative examples (comparative examples of 2017 alloy), sufficient strength was not obtained. Effects of the Invention As is clear from the above embodiments, according to the method of the present invention, when solution treatment is performed on a heat-treated aluminum alloy rolled plate in a continuous furnace, the holding time at the solution treatment temperature is It has become possible to significantly shorten the time and obtain the same strength (strength after aging) as in the case of solution treatment using a conventional batch furnace. Therefore, by applying the method of the present invention, it is possible to increase the line speed of a continuous solution treatment-quenching line and significantly improve productivity, as well as shorten the length of the retaining zone of a continuous furnace and improve equipment efficiency. Various effects can be obtained, such as a significant reduction in cost and the ability to perform solution treatment at an economical line speed even in a continuous annealing furnace without a retaining zone.

Claims (1)

【特許請求の範囲】 1 熱処理型アルミニウム合金鋳塊を熱間圧延
し、さらに必要に応じて冷間圧延し、その後コイ
ルを連続的に巻戻しながら溶体化処理して熱処理
型アルミニウム合金圧延板を製造するにあたり、 前記熱間圧延直前の鋳塊加熱を、溶体化処理温
度の9割以上の温度において0.5時間以上の保持
で行ない、引続きその溶体化処理温度の9割の温
度よりも低温まで冷却することなく直ちに熱間圧
延を開始し、300℃以下の温度で熱間圧延を終了
させ、前記溶体化処理の保持時間を180秒以下と
することを特徴とする熱処理型アルミニウム合金
圧延板の製造方法。
[Claims] 1. A heat-treated aluminum alloy ingot is hot-rolled, further cold-rolled if necessary, and then solution-treated while continuously unwinding the coil to produce a heat-treated aluminum alloy rolled plate. In manufacturing, the ingot is heated immediately before hot rolling for at least 0.5 hours at a temperature of 90% or more of the solution treatment temperature, and then cooled to a temperature lower than 90% of the solution treatment temperature. Production of a heat-treated aluminum alloy rolled sheet, characterized in that hot rolling is started immediately without any heating, hot rolling is finished at a temperature of 300°C or less, and the holding time of the solution treatment is 180 seconds or less. Method.
JP26773985A 1985-11-28 1985-11-28 Manufacture of heat treatment-type aluminum-alloy rolled sheet Granted JPS62127455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26773985A JPS62127455A (en) 1985-11-28 1985-11-28 Manufacture of heat treatment-type aluminum-alloy rolled sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26773985A JPS62127455A (en) 1985-11-28 1985-11-28 Manufacture of heat treatment-type aluminum-alloy rolled sheet

Publications (2)

Publication Number Publication Date
JPS62127455A JPS62127455A (en) 1987-06-09
JPH0586464B2 true JPH0586464B2 (en) 1993-12-13

Family

ID=17448897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26773985A Granted JPS62127455A (en) 1985-11-28 1985-11-28 Manufacture of heat treatment-type aluminum-alloy rolled sheet

Country Status (1)

Country Link
JP (1) JPS62127455A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4865174B2 (en) * 2001-09-28 2012-02-01 古河スカイ株式会社 Manufacturing method of aluminum alloy sheet with excellent bending workability and drawability
US20060000094A1 (en) * 2004-07-01 2006-01-05 Garesche Carl E Forged aluminum vehicle wheel and associated method of manufacture and alloy

Also Published As

Publication number Publication date
JPS62127455A (en) 1987-06-09

Similar Documents

Publication Publication Date Title
JP4577218B2 (en) Method for producing Al-Mg-Si alloy sheet excellent in bake hardness and hemmability
JP2008542526A (en) Aluminum alloy plate and manufacturing method thereof
US5098490A (en) Super position aluminum alloy can stock manufacturing process
WO2003066927A1 (en) Method and apparatus for producing a solution heat treated sheet
JPS5830937B2 (en) Manufacturing method of AI-killed cold-rolled steel sheet for deep drawing by short-time continuous annealing
JPH09111428A (en) Production of superplastic aluminum alloy
JPH1180913A (en) Manufacture of aluminum alloy sheet
US4528042A (en) Method for producing superplastic aluminum alloys
US4486242A (en) Method for producing superplastic aluminum alloys
JPS61133322A (en) Production of thin steel sheet having excellent formability
JPH0586464B2 (en)
JPS63125645A (en) Production of aluminum alloy material having fine crystal grain
KR20160012231A (en) Method for manufacturing of Al-Zn-Mg-Cu alloy sheet with refined crystal grains
JPH0365409B2 (en)
JPS61133323A (en) Production of thin steel sheet having excellent formability
JP2003328095A (en) Production method for aluminum alloy plate for forming
JP2652016B2 (en) Method for producing aluminum alloy material having fine crystal grains
JPH0588302B2 (en)
JPS5830934B2 (en) Manufacturing method of cold-rolled steel sheet with good formability by short-time continuous annealing
JP2626922B2 (en) Method for producing aluminum plate with uniform mechanical properties and ear ratio in plate width direction
JPS61170549A (en) Production of aluminium foil
KR100210411B1 (en) Cold reduced non-aging deep drawing steel and method for producing
JPH0369967B2 (en)
JPS6254017A (en) Production of thin-walled cr stainless steel slab
JPH0641644A (en) Manufacture of cr-ni series stainless steel thin sheet excellent in material and surface quality