JPH0586432A - Activation treatment for surface amorphous alloy for electrode for solution electrolysis - Google Patents

Activation treatment for surface amorphous alloy for electrode for solution electrolysis

Info

Publication number
JPH0586432A
JPH0586432A JP3237921A JP23792191A JPH0586432A JP H0586432 A JPH0586432 A JP H0586432A JP 3237921 A JP3237921 A JP 3237921A JP 23792191 A JP23792191 A JP 23792191A JP H0586432 A JPH0586432 A JP H0586432A
Authority
JP
Japan
Prior art keywords
amorphous alloy
platinum group
electrode
electrolysis
activation treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3237921A
Other languages
Japanese (ja)
Other versions
JPH0726211B2 (en
Inventor
Koji Hashimoto
功二 橋本
Naokazu Kumagai
直和 熊谷
Katsuhiko Asami
勝彦 浅見
Asahi Kawashima
朝日 川嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiki Rubber Industry Co Ltd
Original Assignee
Daiki Rubber Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP60169764A external-priority patent/JPS6296633A/en
Application filed by Daiki Rubber Industry Co Ltd filed Critical Daiki Rubber Industry Co Ltd
Priority to JP23792191A priority Critical patent/JPH0726211B2/en
Publication of JPH0586432A publication Critical patent/JPH0586432A/en
Publication of JPH0726211B2 publication Critical patent/JPH0726211B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

PURPOSE:To provide surface activation treatment method for an amorphous alloy reduced in the concentration of expensive platinum group elements and having superior properties required of an energy saving and highly corrosion resistant electrode, such as capacity for generating large amount of chlorine gas by means of low voltage when used as anode for the electrolysis of aqueous solution of sodium chloride, capacity for minimizing the amount of oxygen as contaminant, and usability as a long-life electrode. CONSTITUTION:An amorphous alloy having a composition consisting of one or >=2 kinds among valve metals, one or >=2 kinds among platinum group metals, and the balance essentially nickel is immersed into hydrofluoric acid, by which the platinum group metals can be concentrated in the surface.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は例えば種々の濃度、温
度、pHの塩化ナトリウム水溶液の電解のため電極材料
として好適である非晶質合金の活性化処理法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for activating an amorphous alloy which is suitable as an electrode material for electrolysis of an aqueous sodium chloride solution having various concentrations, temperatures and pHs.

【0002】[0002]

【従来の技術】従来、チタンなどの耐食性金属上に貴金
属あるいは貴金属酸化物を被覆した電極が塩化ナトリウ
ム水溶液電解のために工業的に用いられている。また、
本発明者らは、同様な目的のための材料として、白金族
非晶質合金を用いる特許第1153531号および同第
1213069号を登録し、また特願昭58−1711
62号として出願した。
2. Description of the Related Art Conventionally, an electrode in which a corrosion-resistant metal such as titanium is coated with a noble metal or a noble metal oxide has been industrially used for electrolysis of an aqueous sodium chloride solution. Also,
The present inventors have registered Japanese Patent Nos. 1153531 and 1213069 using a platinum group amorphous alloy as materials for the same purpose, and Japanese Patent Application No. 58-1711.
Filed as No. 62.

【0003】[0003]

【発明が解決しようとする問題点】現在工業的に用いら
れている耐食性金属に貴金属を被覆した電極は、例えば
海水中で陽極として用いると剥離しやすく、また耐食性
が低く寿命が短いなどの欠点がある。一方、耐食性金属
上に貴金属酸化物を被覆した電極も、使用中に酸化物が
剥離したり、塩素イオンの酸化と併せて酸素が比較的多
量に発生して、エネルギー効率が低いことなどの欠点が
ある。更に貴金属被覆電極、貴金属酸化物被覆電極、お
よび非晶質白金族合金電極の共通の問題点は高価な貴金
属を主原料とすることである。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention Electrodes which are currently used industrially and which are coated with a noble metal on a corrosion-resistant metal are liable to peel off when used as an anode in seawater, and have low corrosion resistance and a short life. There is. On the other hand, electrodes with a corrosion-resistant metal coated with a noble metal oxide also have drawbacks such as oxide peeling during use, and a relatively large amount of oxygen generated along with oxidation of chlorine ions, resulting in low energy efficiency. There is. Further, a common problem of the noble metal-coated electrode, the noble metal oxide-coated electrode, and the amorphous platinum group alloy electrode is that an expensive noble metal is used as a main raw material.

【0004】[0004]

【問題を解決するための手段】本発明は、例えば各種塩
化ナトリウム水溶液の電解に陽極として用いた場合、低
い電圧で多量の塩素ガスを発生し、混入する酸素量が低
く、かつ長寿命電極として使用し得るなど、省エネルギ
ー高耐食性電極として優れた性能を備え、しかも高価な
白金族元素濃度が低い非晶質合金の表面活性化処理法を
提供することを目的とするものである。
When the present invention is used, for example, as an anode for electrolysis of various sodium chloride aqueous solutions, a large amount of chlorine gas is generated at a low voltage, the amount of mixed oxygen is low, and the electrode has a long life. It is an object of the present invention to provide a surface activation treatment method for an amorphous alloy which has excellent performance as an energy-saving and highly corrosion-resistant electrode and can be used, and which is expensive and has a low platinum group element concentration.

【0005】通常、合金は固体状態では結晶化している
が、合金組成を限定して溶融状態から超急冷凝固させる
など、固体形成の過程で原子配列に長周期的規則性を形
成させない方法を適用すると、結晶構造を持たず、液体
に類似した非晶質構造が得られ、このような合金を非晶
質合金という。非晶質合金は、従来の実用金属に比べて
著しく高い強度を保有し、かつ組成に応じて異常に高い
耐食性をはじめ種々の特性を示す。
Normally, alloys are crystallized in the solid state, but a method that does not form long-periodic regularity in the atomic arrangement in the process of solid formation, such as limiting the alloy composition and solidifying from the molten state by rapid quenching, is applied. Then, an amorphous structure that does not have a crystal structure and is similar to a liquid is obtained, and such an alloy is called an amorphous alloy. Amorphous alloys have remarkably high strength as compared with conventional practical metals, and exhibit various properties such as unusually high corrosion resistance depending on the composition.

【0006】一方、本発明者らの2人は先に特許第11
53531号および第1213069号により白金族金
属と半金属を主成分とする電解用非晶質合金電極材料を
発明して出願し、これらの材料は高温濃厚水溶液の電解
用陽極として使用した場合、塩素ガスの製造には、きわ
めて高い電極触媒活性を示すが、競合する妨害反応であ
る酸素の発生には不活性であって、効率の高い省エネル
ギー材料であると共に高耐食性を備えていることをこれ
らの特許により開示した。
On the other hand, two of the inventors of the present invention have previously described the patent No. 11
No. 5,353,1 and No. 1213069, the inventors applied for inventing an amorphous alloy electrode material for electrolysis mainly containing a platinum group metal and a semimetal, and when these materials were used as an anode for electrolysis of a high temperature concentrated aqueous solution, chlorine It has extremely high electrocatalytic activity for gas production, but is inactive for the generation of competing interfering reaction, oxygen, which is a highly efficient energy-saving material and has high corrosion resistance. Disclosed by patent.

【0007】更に、本発明者らは、特願昭58−171
162号により、白金族金属と半金属を主成分とする溶
液電解の電極用表面活性化非晶質合金を発明して出願し
た。これは、優れた電極触媒活性を示す上述の合金に本
発明者らの2人が先に特願昭56−84413号により
出願した非晶質金属表面の活性化方法を適用して作製す
るものである。これは海水程度の濃度で、かつ加熱して
いない希薄NaCl溶液のように塩素発生が困難な溶液
の電解によって塩素を発生し、次亜塩素酸ナトリウムを
製造するための陽極として優れた電極触媒活性を備えた
材料を提供したものである。これらの発明は、それぞれ
優れた特性を備えた電極材料を提供するものであるが、
いずれも主成分が、白金族金属であるために高価であっ
た。
Furthermore, the inventors of the present invention have disclosed in Japanese Patent Application No. 58-171.
No. 162 has invented and filed a surface activated amorphous alloy for electrodes for solution electrolysis, which is mainly composed of a platinum group metal and a semimetal. This is produced by applying the method for activating the surface of an amorphous metal, which was previously filed by Japanese Patent Application No. 56-84413 by the two inventors of the present invention, to the above-mentioned alloy exhibiting excellent electrocatalytic activity. Is. It has an electrocatalytic activity excellent as an anode for producing sodium hypochlorite, which generates chlorine by electrolysis of a solution that is difficult to generate chlorine, such as dilute NaCl solution that is not heated and has a concentration of seawater. It is a material provided with. Although these inventions each provide an electrode material having excellent properties,
All of them were expensive because their main components were platinum group metals.

【0008】そこで本発明者らは、更に研究を行った結
果、白金族金属を10原子%以下とし、残部をバルブメ
タルの1種又は2種以上及びNiからなり、場合によっ
ては少量のPを含有する非晶質合金をフッ化水素酸に浸
漬することによって、十分に高い電極触媒活性を保有し
た材料が、高価な白金族元素濃度が低くても得られるこ
とを見出し本発明を達成した。
Therefore, as a result of further studies, the inventors of the present invention set the platinum group metal to 10 atomic% or less, and the balance consisting of one or more valve metals and Ni, and in some cases a small amount of P. By immersing the contained amorphous alloy in hydrofluoric acid, it was found that a material having a sufficiently high electrocatalytic activity can be obtained even if the expensive platinum group element concentration is low, and the present invention has been accomplished.

【0009】[0009]

【作用】電解用電極としての触媒活性を更に高めるため
には、電気化学的に有効な表面積を増すと共に電極反応
の活性点として作用する白金族金属を表面に集める必要
がある。しかし、Cu−Ti、Cu−Zr、Fe−Zr
等の非晶質合金がフッ化水素酸によってTiまたはZr
が選択溶解するが、Ni−Ta及びNi−Nb等が選択
溶解しないことが知られている。
In order to further enhance the catalytic activity as the electrode for electrolysis, it is necessary to increase the electrochemically effective surface area and collect the platinum group metal acting as the active site of the electrode reaction on the surface. However, Cu-Ti, Cu-Zr, Fe-Zr
Amorphous alloys such as Ti or Zr by hydrofluoric acid
Is selectively dissolved, but Ni-Ta and Ni-Nb are not known to be selectively dissolved.

【0010】これに対し、本発明者らは、Ni−バルブ
メタル系合金に白金族金属が加わった場合に、バルブメ
タルを1種または2種以上と白金族金属を1種または2
種以上を含み、実質的に残部がニッケルからなる非晶質
合金をフッ化水素酸に浸漬することによって、ニッケル
及びバルブメタルが選択溶解することを見出した。前記
フッ化水素酸の濃度と温度は、対象となる非晶質合金の
組成に応じて適当に選ぶことができ、市販濃フッ化水素
酸をそのまま使用することもできる。Ni−バルブメタ
ル−白金族金属の非晶質合金をフッ化水素酸に浸漬する
と合金を構成するNiおよびNb,Ta,Ti,Zrの
一部が、優先的に合金表面から均一に溶解し、合金表面
が微細化するため黒色を帯びると共に電極活性を担う白
金族金属が表面に濃縮される。したがって表面活性化処
理は、表面が黒色を帯びた時をもって終了とすればよ
い。なお表面活性化処理を本発明非晶質合金と平均組成
が等しい結晶質合金に適用しても結晶質合金は多相構造
でかつ化合物相を含むため、NiおよびNb,Ta,T
i,Zrなどの溶解が均一に起こりにくいため、表面活
性化処理が有効ではない。これに対し本発明の非晶質合
金は成分元素が均一に分布しているためフッ化水素酸中
にNiおよびNb,Ta,Ti,Zrなどが均一に溶解
し、有効表面積が著しく増大すると共に、電極活性を担
う白金族金属が表面に濃縮され、合金表面全体を十分に
活性化することができる。
On the other hand, the present inventors have found that when a platinum group metal is added to a Ni-valve metal alloy, one or more valve metals and one or two platinum group metals are used.
It has been found that nickel and valve metal are selectively dissolved by immersing an amorphous alloy containing at least one kind and substantially consisting of nickel in hydrofluoric acid. The concentration and temperature of the hydrofluoric acid can be appropriately selected according to the composition of the target amorphous alloy, and commercially available concentrated hydrofluoric acid can be used as it is. When an amorphous alloy of Ni-valve metal-platinum group metal is immersed in hydrofluoric acid, some of Ni and Nb, Ta, Ti, and Zr forming the alloy preferentially dissolve uniformly from the alloy surface, Since the alloy surface becomes finer, it becomes black and the platinum group metal that plays a role of electrode activity is concentrated on the surface. Therefore, the surface activation treatment may be terminated when the surface becomes black. Even if the surface activation treatment is applied to a crystalline alloy having the same average composition as the amorphous alloy of the present invention, since the crystalline alloy has a multiphase structure and contains a compound phase, Ni and Nb, Ta, T
The surface activation treatment is not effective because it is difficult to uniformly dissolve i, Zr and the like. On the other hand, in the amorphous alloy of the present invention, since the constituent elements are uniformly distributed, Ni and Nb, Ta, Ti, Zr, etc. are uniformly dissolved in hydrofluoric acid, and the effective surface area is remarkably increased. The platinum group metal responsible for the electrode activity is concentrated on the surface, and the entire alloy surface can be sufficiently activated.

【0011】なお、本発明の活性化処理法に用いる非晶
質合金の作製は、既に広く用いられている種々の方法、
即ち、液体合金を超急冷凝固させる種々の方法、気相を
経て非晶質合金を形成させる種々の方法、イオン注入な
どによって固体表面の長周期構造を破壊すると共に必要
元素を合金化させる方法など非晶質合金を作製するいず
れの方法でもよい。
The amorphous alloy used in the activation treatment method of the present invention is prepared by various methods which have been widely used.
That is, various methods of rapidly quenching and solidifying a liquid alloy, various methods of forming an amorphous alloy through a gas phase, methods of destroying the long-period structure of a solid surface by ion implantation and alloying necessary elements, etc. Any method for producing an amorphous alloy may be used.

【0012】実施例1 自家製のリン化ニッケルおよび市販金属を原料として用
い、表1に示す組成となるように原料金属を混合し、ア
ルゴン雰囲気中の高周波誘導加熱により溶融し原料合金
を作製した。これらの合金をアルゴン雰囲気中で再溶融
し、単ロール法を用いて超急冷凝固させることにより、
厚さ0.01〜0.05mm、幅1−5mm、長さ3−
20mの非晶質合金薄板を得た。アモルフアス構造形成
の確認はX線回折により行った。これら合金試料表面を
シリコンカーバイド紙1000番までシクロヘキサン中
で研磨した。これらの合金の耐食性が十分に高いことを
確認するため、これらすべての合金のアノード分極曲線
を30℃の0.5M NaCl溶液中で測定した。図1
に例を示すようにこれらの合金の分極曲線はNi−Nb
系非晶質合金に共通のものであて、ほとんど区別しがた
いほど類似している。これらの合金はいずれも自己不働
態化しており、アノード分極すると、1.0〜1.1V
(SCE)まで2×10-2A−m-2以下の低い不働態保
持電流を示す。更に電位が上ると、ほぼ1.2V(SC
E)附近から、塩素および酸素の発生による電流の上昇
が観察される。
Example 1 Using homemade nickel phosphide and a commercially available metal as raw materials, the raw metal was mixed so as to have the composition shown in Table 1 and melted by high frequency induction heating in an argon atmosphere to prepare a raw alloy. By remelting these alloys in an argon atmosphere and solidifying rapidly by using the single roll method,
Thickness 0.01-0.05mm, width 1-5mm, length 3-
A 20 m amorphous alloy thin plate was obtained. The formation of amorphous structure was confirmed by X-ray diffraction. The surfaces of these alloy samples were polished in cyclohexane up to silicon carbide paper No. 1000. To confirm that the corrosion resistance of these alloys is sufficiently high, the anodic polarization curves of all these alloys were measured in 0.5M NaCl solution at 30 ° C. Figure 1
The polarization curves of these alloys are
It is common to amorphous alloys and is almost indistinguishable from each other. All of these alloys are self-passivated, and when anodic polarized, 1.0-1.1V
Up to (SCE), it shows a low passive state holding current of 2 × 10 −2 Am −2 or less. When the potential further rises, it is almost 1.2V (SC
E) From the vicinity, an increase in current due to generation of chlorine and oxygen is observed.

【0013】[0013]

【表1】 [Table 1]

【0014】 [0014]

【0015】これらの合金を常温の46%フッ化水素酸
に数分ないし数10分表面が黒変するまで浸漬し、表面
活性化処理を施した表面活性化処理後、30℃0.5N
NaCl溶液中で2度繰り返して測定したアノード分
極曲線を図2に示す。本発明非晶質合金の活性化処理後
の分極曲線はいずれも図2と同様であって、1つの図に
重ねるといずれの合金の分極曲線か区別が困難である。
活性化処理後1回目の分極曲線では0.4〜0.8V
(SCE)附近にわたり約10°A・m-2程度の電流密
度が観察される。これは活性化処理の際に完全にはフッ
化水素酸中に溶け出さなかった表面の成分が溶解するこ
とに対応する。しかし、更に高い電位に分極したあと電
位を戻し活性化処理後2度目の分極曲線測定を行うと
0.4〜0.8V(SCE)附近の電流密度はもはや観
察されなくなる。したがって一度塩素発生の高い電位に
分極して表面から溶解する成分をすべて溶解させてしま
うと2度目以降は合金が溶解しないことを示す。1.0
V(SCE)附近より高い電位は1回目、2回目とも差
がなく塩素発生の電流が観察される。例えば1.2V
(SCE)附近で活性化処理前後の電流密度を比較する
と活性化処理は実に4桁以上に塩素発生電流を向上させ
る。
These alloys were immersed in 46% hydrofluoric acid at room temperature for a few minutes to a few tens of minutes until the surface turned black, and subjected to a surface activation treatment.
The anodic polarization curve measured twice in NaCl solution is shown in FIG. The polarization curves of the amorphous alloys of the present invention after the activation treatment are the same as those shown in FIG. 2, and it is difficult to distinguish which of the alloys has the polarization curve when superposed on one figure.
0.4-0.8V in the first polarization curve after activation treatment
A current density of about 10 ° A · m −2 is observed near (SCE). This corresponds to the dissolution of surface components that were not completely dissolved in hydrofluoric acid during the activation treatment. However, when the potential is returned to a higher potential and then the potential is returned and the polarization curve is measured a second time after the activation treatment, the current density around 0.4 to 0.8 V (SCE) is no longer observed. Therefore, it is shown that once polarized to a high potential for chlorine generation and all the components that are dissolved from the surface are dissolved, the alloy does not dissolve after the second time. 1.0
At a potential higher than the vicinity of V (SCE), there is no difference between the first and second times, and the chlorine generation current is observed. For example 1.2V
Comparing the current densities before and after the activation treatment near (SCE), the activation treatment actually improves the chlorine generation current by four digits or more.

【0016】電解時の耐食性を調べるためまず1.25
V(SCE)で12時間定電流電解したのち、蒸溜水お
よびアセトンで洗浄し、12時間デシケーター中で乾燥
した。この試料をマイクロバランスで秤量したのち、2
4時間1.25V(SCE)で電解し、前述と同様にし
て洗浄、乾燥、秤量して24時間定常的電解を行った際
の腐食減量を定量した。このような測定を本発明合金の
典型である活性化処理を施した試料No. 3,13,1
8,21,24,32,について行ったところ、24時
間の定電位電解前後の試料重量変化が検出できなかっ
た。したがって、これらの電極は塩素発生のための電極
として0.5N NaCl溶液中で使用しても、全く腐
食されないことが判明した。また本発明合金の代表的合
金の幾つかを用い、種々の電流密度で定電流電解を行い
1000クーロン/lの電解時において発生した塩素を
ヨードメトリーで測定した。結果を表2に示す。このよ
うな条件の電解用実用電極として最も活性であるPt−
Ir/Ti電極より、本発明の非晶質合金電極はほとん
どがより活性である。またいずれの合金も白金族金属含
量が低いため安価である。
In order to examine the corrosion resistance during electrolysis, 1.25
After carrying out constant current electrolysis with V (SCE) for 12 hours, it was washed with distilled water and acetone and dried in a desiccator for 12 hours. After weighing this sample with a microbalance, 2
Electrolysis was carried out for 4 hours at 1.25 V (SCE), and washing, drying and weighing were carried out in the same manner as described above, and the amount of corrosion loss when carrying out constant electrolysis for 24 hours was quantified. Such measurement was performed on sample No. 3, 13, 1 which has been subjected to an activation treatment typical of the alloy of the present invention.
No changes in sample weight before and after the constant potential electrolysis for 24 hours could not be detected. Therefore, it was revealed that these electrodes were not corroded at all even when used in 0.5N NaCl solution as electrodes for chlorine generation. Using some of the representative alloys of the present invention, constant current electrolysis was carried out at various current densities, and chlorine generated during electrolysis of 1000 coulomb / l was measured by iodometry. The results are shown in Table 2. Pt- which is most active as a practical electrode for electrolysis under these conditions
The amorphous alloy electrodes of the present invention are mostly more active than the Ir / Ti electrodes. Further, both alloys are inexpensive because they have a low platinum group metal content.

【0017】[0017]

【表2】 [Table 2]

【0018】実施例2 実施例1と同様に作製し、表面活性化処理を施した本発
明の非晶質合金についてソーダ電解工業において塩素製
造に用いられるpH4、80℃の4M NaCl溶液中
における塩素発生特性を調べた。図3は分極曲線の1例
であって、本発明のように安価な材料が十分に高い電極
触媒活性をもつことを示している。
Example 2 The amorphous alloy of the present invention prepared in the same manner as in Example 1 and subjected to the surface activation treatment is used for chlorine production in the soda electrolysis industry. Chlorine in a 4M NaCl solution at pH 4 and 80 ° C. The generation characteristics were investigated. FIG. 3 is an example of a polarization curve and shows that an inexpensive material like the present invention has a sufficiently high electrocatalytic activity.

【0019】[0019]

【発明の効果】以上詳述したとおり、高価な白金族元素
量がきわめて低濃度であるにもかかわらず、塩化ナトリ
ウム水溶液の電解用電極としてきわめて高い電極触媒能
を有するとともに電解条件で腐食がマイクロバランスで
も検出できない高い安定性を備えた長寿命、省エネルギ
ーでかつ安定な電極材料である。
Industrial Applicability As described above in detail, even though the amount of expensive platinum group element is extremely low, it has an extremely high electrocatalytic ability as an electrode for electrolysis of an aqueous sodium chloride solution and has a high corrosion resistance under electrolysis conditions. It is a long-life, energy-saving and stable electrode material with high stability that cannot be detected even in balance.

【図面の簡単な説明】[Brief description of drawings]

【図1】30℃の0.5N NaCl溶液中で測定した
急冷凝固のままの非晶質合金の分極曲線(試料No.1
6,No.17)、
1 is a polarization curve of an amorphous alloy as-solidified by quenching measured in a 0.5N NaCl solution at 30 ° C. (Sample No. 1)
6, No. 17),

【図2】30℃の0.5N NaCl溶液中で測定した
表面活性化処理を施した非晶質合金の分極曲線(試料N
o.26)、
2 is a polarization curve of a surface-activated amorphous alloy measured in a 0.5 N NaCl solution at 30 ° C. (Sample N
o. 26),

【図3】80℃、pH4の4M NaCl溶液中で測定
した表面活性化処理を施した非晶質合金の分極曲線(試
料No.16)である。
FIG. 3 is a polarization curve (Sample No. 16) of a surface-activated amorphous alloy measured in a 4M NaCl solution at 80 ° C. and pH 4.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川嶋 朝日 宮城県仙台市ひより台37−17 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Asahi Kawashima 37-17 Hiyoridai, Sendai City, Miyagi Prefecture

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 バルブメタルを1種または2種以上と白
金族金属を1種または2種以上を含み、実質的残部がニ
ッケルからなる溶液電解の電解用表面非晶質合金をフッ
化水素酸に浸漬することによって、白金族金属を表面に
濃縮させることを特徴とする溶液電解の電極用非晶質合
金の活性化処理方法。
1. A surface amorphous alloy for electrolysis in solution electrolysis, which comprises one or more valve metals and one or more platinum group metals, with the balance substantially nickel, and hydrofluoric acid. A method for activating an amorphous alloy for electrode in solution electrolysis, which comprises concentrating a platinum group metal on the surface by immersing in a solution.
〔請求項2〕 バルブメタルを1種または2種以上と白
金族金属を1種または2種以上及び燐を少量含有し、実
質的残部がニッケルからなる溶液電解の電解用表面非晶
質合金をフッ化水素酸に浸漬することによって、白金族
金属を表面に濃縮させることを特徴とする溶液電解の電
極用非晶質合金の活性化処理方法。
[Claim 2] A surface amorphous alloy for electrolysis in solution electrolysis, which comprises one or more valve metals, one or more platinum group metals, and a small amount of phosphorus, the balance being nickel. A method for activating an amorphous alloy for an electrode for solution electrolysis, which comprises concentrating a platinum group metal on the surface by immersing in a hydrofluoric acid.
JP23792191A 1985-08-02 1991-09-18 Method of activating surface amorphous alloy for solution electrolysis electrodes Expired - Fee Related JPH0726211B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23792191A JPH0726211B2 (en) 1985-08-02 1991-09-18 Method of activating surface amorphous alloy for solution electrolysis electrodes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP60169764A JPS6296633A (en) 1985-08-02 1985-08-02 Surface-activated amorphous alloy for use in electrode for solution electrolysis and activating treatment thereof
JP23792191A JPH0726211B2 (en) 1985-08-02 1991-09-18 Method of activating surface amorphous alloy for solution electrolysis electrodes

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP60169764A Division JPS6296633A (en) 1985-08-02 1985-08-02 Surface-activated amorphous alloy for use in electrode for solution electrolysis and activating treatment thereof

Publications (2)

Publication Number Publication Date
JPH0586432A true JPH0586432A (en) 1993-04-06
JPH0726211B2 JPH0726211B2 (en) 1995-03-22

Family

ID=26493006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23792191A Expired - Fee Related JPH0726211B2 (en) 1985-08-02 1991-09-18 Method of activating surface amorphous alloy for solution electrolysis electrodes

Country Status (1)

Country Link
JP (1) JPH0726211B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009097962A1 (en) * 2008-02-04 2009-08-13 Uhde Gmbh Nickel alloy and nickel electrode having a concentration gradient in the edge zone
JP2016053206A (en) * 2014-09-04 2016-04-14 キヤノン株式会社 Amorphous alloy, molding die and method for producing optical element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6296633A (en) * 1985-08-02 1987-05-06 Daiki Rubber Kogyo Kk Surface-activated amorphous alloy for use in electrode for solution electrolysis and activating treatment thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6296633A (en) * 1985-08-02 1987-05-06 Daiki Rubber Kogyo Kk Surface-activated amorphous alloy for use in electrode for solution electrolysis and activating treatment thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009097962A1 (en) * 2008-02-04 2009-08-13 Uhde Gmbh Nickel alloy and nickel electrode having a concentration gradient in the edge zone
JP2016053206A (en) * 2014-09-04 2016-04-14 キヤノン株式会社 Amorphous alloy, molding die and method for producing optical element

Also Published As

Publication number Publication date
JPH0726211B2 (en) 1995-03-22

Similar Documents

Publication Publication Date Title
JPS6250491A (en) Electrolysis of halogen-containing solution using amorphous metal alloy
JPH036999B2 (en)
EP0163410B1 (en) Electrolysis of halide-containing solutions with platinum based amorphous metal alloy anodes
US4770949A (en) Surface activated amorphous and supersaturated solid solution alloys for electrodes in the electrolysis of solutions and the method for their surface activation
JPS6233790A (en) Activated amorphous alloy electrode
JPH0579737B2 (en)
Vuković Rotating ring–disc electrode study of the enhanced oxygen evolution on an activated ruthenium electrode
EP0164200A1 (en) Improved electrolytic processes employing platinum based amorphouse metal alloy oxygen anodes
JPS61110788A (en) Suspension bath and method for producing electrolytic manganese dioxide
US4746584A (en) Novel amorphous metal alloys as electrodes for hydrogen formation and oxidation
Shibata Electron-diffraction study of electrochemically and thermally treated platinum electrode surfaces
JPH0586432A (en) Activation treatment for surface amorphous alloy for electrode for solution electrolysis
US3129163A (en) Anode for electrolytic cell
JPH0468394B2 (en)
JPH0579738B2 (en)
JPH0579739B2 (en)
JP2016132813A (en) Insoluble electrode and method for manufacturing the same
JPH0580558B2 (en)
Farr et al. The exchange reaction Zn (II)/Zn (Hg) in alkali
JPS6296635A (en) Surface activate supersaturated solid solution alloy for electrode for solution electrolysis and activation treatment method thereof
JP2528294B2 (en) Electrode for electrolysis and method of manufacturing the same
Brookes et al. The electrochemical and electrocatalytic behaviour of glassy metals
US3574074A (en) Surface treated platinized anodes
dos Santos Andrade et al. Preliminary investigation of some commercial alloys for hydrogen evolution in alkaline water electrolysis
JPH0445572B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees