JPH0579737B2 - - Google Patents

Info

Publication number
JPH0579737B2
JPH0579737B2 JP60169764A JP16976485A JPH0579737B2 JP H0579737 B2 JPH0579737 B2 JP H0579737B2 JP 60169764 A JP60169764 A JP 60169764A JP 16976485 A JP16976485 A JP 16976485A JP H0579737 B2 JPH0579737 B2 JP H0579737B2
Authority
JP
Japan
Prior art keywords
electrode
atomic
amorphous alloy
amorphous
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60169764A
Other languages
Japanese (ja)
Other versions
JPS6296633A (en
Inventor
Koji Hashimoto
Naokazu Kumagai
Katsuhiko Asami
Asahi Kawashima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiki Engineering Co Ltd
Original Assignee
Daiki Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiki Engineering Co Ltd filed Critical Daiki Engineering Co Ltd
Priority to JP60169764A priority Critical patent/JPS6296633A/en
Priority to DE86305531T priority patent/DE3689059T2/en
Priority to EP86305531A priority patent/EP0213708B1/en
Priority to US06/892,827 priority patent/US4770949A/en
Publication of JPS6296633A publication Critical patent/JPS6296633A/en
Priority to JP23792191A priority patent/JPH0726211B2/en
Publication of JPH0579737B2 publication Critical patent/JPH0579737B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は例えば種々の濃度、温度、PHの塩化ナ
トリウム水溶液の電解のため電極材料として好適
である表面を活性化した非晶質合金からなる溶液
電解用電極に関するものである。 従来の技術 従来、チタンなどの耐食性金属上に貴金属ある
いは貴金属酸化物を被覆した電極が塩化ナトリウ
ム水溶液電解のために工業的に用いられている。
また、本発明者らは、同様な目的のための材料と
して、白金族非晶質合金を用いる特許第1153531
号および同第1213069号を登録し、また特願昭58
−171162号として出願した。 発明が解決しようとする問題点 現在工業的に用いられている耐食性金属に貴金
属を被覆した電極は、例えば海水中で陽極として
用いる剥離しやすく、また耐食性が低く寿命が短
いなどの欠点がある。一方、耐食性金属上に貴金
属酸化物を被覆した電極も、使用中に酸化物が剥
離したり、塩素イオンの酸化と併せて酸素が比較
的多量に発生して、エネルギー効率が低いことな
どの欠点がある。更に貴金属被覆電極、貴金属酸
化物被覆電極、および非晶質白金族合金電極の共
通の問題点は高価な貴金属を主原料とすることで
ある。 問題点を解決するための手段 本発明は、例えば各種塩化ナトリウム水溶液の
電解に陽極として用いた場合、低い電圧で多量の
塩素ガスを発生し、混入する酸素量が低く、かつ
長寿命電極として使用し得るなど、省エネルギー
高耐食性電極として優れた性能を備え、しかも高
価な白金族元素濃度が低い非晶質合金からなる溶
液電解用電極を提供することを目的とするもので
ある。 本発明はNb,Niおよび白金族金属を必須成分
とする特定組成の溶液電解用電極である。 通常、合金は固体状態では結晶化しているが、
合金組成を限定して溶融状態から超急冷凝固させ
るなど、固成形成の過程で原子配列に長周期的規
則性を形成させない方法を適用すると、結晶構造
を持たず、液体に類似した非晶質構造が得られ、
このような合金を非晶質合金という。非晶質合金
は、従来の実用金属に比べて著しく高い強度を保
有し、かつ組成に応じて異常に高い耐食性をはじ
め種々の特性を示す。 一方、本発明者らの2人は先に特許第1153531
号および第1213069号により白金族金属と半金属
を主成分とする電解用非晶質合金電極材料を発明
して出願し、これらの材料は高温濃厚水溶液の電
解用陽極として使用した場合、塩素ガスの製造に
は、きわめて高い電極触媒活性を示すが、競合す
る妨害反応である酸素の発生には不活性であつ
て、効率の高い省エネルギー材料であると共に高
耐食性を備えていることをこれらの特許により開
示した。 更に、本発明者らは、特願昭58−171162号によ
り、白金族金属と半金属を主成分とする溶液電解
の電極用表面活性化非晶質合金を発明して出願し
た。これは、優れた電極触媒活性を示す上述の合
金に本発明者らの2人が先に特願昭56−84413号
により出願した非晶質合金表面の活性化方法を適
用して作製するものである。これは海水程度の濃
度で、かつ加熱していない希薄NaCl溶液のよう
に塩素発生が困難な溶液の電解によつて塩素を発
生し、次亜塩素酸ナトリウムを製造するための陽
極として優れた電極触媒活性を備えた材料を提供
したものである。これらの発明は、それぞれ優れ
た特性を備えた電極材料を提供するものである
が、いずれも主成分が、白金族金属であるために
高価であつた。 本発明者らは、非晶質合金がもつこのような優
れた特性に着目して更に研究を行つた結果、安定
な電極材料に必要な高耐食性を備えかつ表面活性
化処理を施すことによつて、十分に高い電極触媒
活性を保有した材料が、高価な白金族元素濃度が
低くても得られることを見出し本発明を達成し
た。 本発明は、特許請求の範囲第1項ないし第4項
に示す第1ないし第4の発明からなるものであ
り、いずれも、所定元素からなる溶液電解用電極
である。次の第1表にこれら第1ないし第4の発
明の構成元素および含有率を示す。
INDUSTRIAL APPLICATION FIELD The present invention relates to an electrode for solution electrolysis made of a surface-activated amorphous alloy, which is suitable as an electrode material for the electrolysis of aqueous sodium chloride solutions of various concentrations, temperatures, and PHs, for example. BACKGROUND ART Conventionally, electrodes in which a corrosion-resistant metal such as titanium is coated with a noble metal or a noble metal oxide have been used industrially for sodium chloride aqueous solution electrolysis.
In addition, the present inventors have also disclosed patent No. 1153531 using a platinum group amorphous alloy as a material for the same purpose.
No. 1213069 and patent application No. 1213069.
- Filed as No. 171162. Problems to be Solved by the Invention The electrodes currently used industrially, which are corrosion-resistant metals coated with noble metals, have drawbacks such as, for example, being easily peeled off when used as anodes in seawater, and having low corrosion resistance and short lifespan. On the other hand, electrodes in which noble metal oxides are coated on corrosion-resistant metals also have drawbacks such as the oxide peeling off during use and the generation of relatively large amounts of oxygen along with the oxidation of chlorine ions, resulting in low energy efficiency. There is. Furthermore, a common problem with noble metal coated electrodes, noble metal oxide coated electrodes, and amorphous platinum group alloy electrodes is that they are based on expensive noble metals. Means for Solving the Problems The present invention, when used as an anode for the electrolysis of various sodium chloride aqueous solutions, generates a large amount of chlorine gas at a low voltage, has a low amount of mixed oxygen, and can be used as a long-life electrode. It is an object of the present invention to provide an electrode for solution electrolysis that is made of an amorphous alloy with a low concentration of expensive platinum group elements and has excellent performance as an energy-saving and highly corrosion-resistant electrode. The present invention is an electrode for solution electrolysis with a specific composition containing Nb, Ni, and platinum group metals as essential components. Usually, alloys are crystallized in the solid state, but
If we apply a method that does not create long-period regularity in the atomic arrangement during the solidification process, such as by limiting the alloy composition and solidifying it from a molten state by ultra-rapid cooling, we can create an amorphous material that does not have a crystalline structure and resembles a liquid. structure is obtained,
Such alloys are called amorphous alloys. Amorphous alloys have significantly higher strength than conventional practical metals, and exhibit various properties, including unusually high corrosion resistance, depending on their composition. On the other hand, two of the present inventors previously obtained patent No. 1153531.
No. 1 and No. 1213069, he invented and applied for an amorphous alloy electrode material for electrolysis that mainly consists of platinum group metals and semimetals. These patents demonstrate that these materials exhibit extremely high electrocatalytic activity in the production of carbon dioxide, but are inert to the generation of oxygen, a competing interfering reaction, and are highly efficient, energy-saving materials with high corrosion resistance. Disclosed by. Further, the present inventors have invented and applied for a surface-activated amorphous alloy for electrodes in solution electrolysis, the main components of which are platinum group metals and semimetals, in Japanese Patent Application No. 171162/1982. This is fabricated by applying a method for activating the surface of an amorphous alloy, which was previously filed by the two inventors in Japanese Patent Application No. 84413/1983, to the above-mentioned alloy that exhibits excellent electrocatalytic activity. It is. This electrode generates chlorine by electrolyzing a solution that has a concentration similar to seawater and is difficult to generate chlorine, such as unheated dilute NaCl solution, and is an excellent electrode for producing sodium hypochlorite. This provides a material with catalytic activity. Although each of these inventions provides electrode materials with excellent properties, all of them are expensive because their main component is a platinum group metal. The present inventors focused on these excellent properties of amorphous alloys and conducted further research. As a result, the inventors discovered that amorphous alloys have the high corrosion resistance necessary for stable electrode materials and can be treated with surface activation treatment. The inventors have now discovered that a material with sufficiently high electrocatalytic activity can be obtained even with a low concentration of expensive platinum group elements, and the present invention has been achieved. The present invention consists of the first to fourth inventions set forth in Claims 1 to 4, each of which is an electrode for solution electrolysis comprising a predetermined element. The following Table 1 shows the constituent elements and content rates of these first to fourth inventions.

【表】 作 用 本発明において、前記組成の合金を溶融超急冷
凝固させたり、前記平均組成の混合物をターゲツ
トとしてスパツターデポジシヨンを行うなど、非
晶質合金を作製する種々の方法によつて得られる
非晶質合金は、前記元素が均一に固溶した単相合
金である。 元来、特定の電気化学反応に対する選択的電極
触媒活性とその反応条件に耐える高耐食性を金属
電極に付与するためには、有効元素を必要量含む
合金を作る必要がある。しかし、結晶質金属の場
合、多種多量の合金元素を添加すると、しばし
ば、化学的性質の異なる多相構造となり、またこ
のために機械的強度を得がたいことが多い。これ
に対し、本発明の非晶質合金は、構成元素が局在
することを許さない非晶質構造の固相であるた
め、常に均一な単相固溶体となり、優れた機械的
性質ならびに耐食性を有する。 次に本発明における各成分組成を限定する理由
を述べる。 Niは本発明の基礎となる元素であつて、Nb,
Ti,Zr,Taと共存して非晶質構造を形成する元
素であり、本発明の第3,第4の発明においても
20原子%以上添加する必要がある。Nbは、塩素
を発生させる激しい酸化力と発生期の塩素に曝さ
れる激しい腐食性環境でも安定な不働態皮膜を形
成する元素であり、かつ、上述のようにニツケル
と共存して非晶質構造を形成する元素であつて、
本発明の第2,第4の発明において、十分な耐食
性を保証するため、10原子%以上添加する必要が
ある。 Ru,Rh,Pd,Ir,Ptはいずれも、電極触媒活
性を直接担う元素であつて、これらの1種あるい
は2種以上を0.01原子%以上含む必要がある。但
し、多量の添加は耐食性に必ずしも有効ではな
く、後に述べる表面活性化処理を施すため、多量
添加する必要がなく、10原子%以下添加すれば十
分である。 Ti,Zr,TaはいずれもNbに代つて、Niと共
存して非晶質構造を形成する元素である。このう
ち多量のTaを含む合金は、Ni−Ta−白金族元素
を主成分とする同様な特許として別に出願するの
で、ここでは20原子%未満とする。またTi,Zr
は酸化力が高く発生期の塩素に曝される条件で、
不働態皮膜を形成する能力を有する元素である。
しかし、Ti,Zrは耐食性におよぼす効果はNbに
比べて劣るため、耐食性を保証するためにはこれ
らの元素でNbを全量置換することはできない。
但し、Nbを10原子%以上含む場合は、Ti,Zr,
Taのいずれか1種または2種以上とNbとの合計
で25原子%以上であれば良い。また非晶質を容易
にするため、Niを十分に添加する必要からNbの
みあるいはNbとTi,Zr,Taのいずれか1種ま
たは2種以上の合計を65原子%以下とする。 Pは酸化力が強く発生期の塩素が生成する環境
でNb,Ta,Ti,Zrなどの安定な不働態皮膜の
形成を促す効果をもち、更に非晶質構造の形成を
容易にする元素である。しかし、多量添加は非晶
質構造の形成を困難にするので7原子%以下とす
る必要がある。 なお、本発明の非晶質合金が3原子%以下のV
およびMo,20原子%以下のHf,Cr、10原子%以
下のFe,Coを不純物として含んでも本発明の目
的には支障がない。B,Si,Cなどの半金属は、
元来非晶質構造の形成に有効な元素として知られ
ている。しかし、酸化力の高い環境においてはこ
れら半金属を多量に添加すると不働態皮膜の安定
性が低下する。そのため、これらの元素は特に有
効元素とは指定しがたい。但し、7原子%程度ま
でのこれら元素を不純物として含有していても耐
食性に有害でなく、かつ非晶質構造の形成を助け
るので支障はない。 一方、電解用電極としての触媒活性を更に高め
るためには、電気化学的に有効な表面層を増すと
共に電極反応の活性点として作用する白金族金属
を表面に集める必要がある。このために、本発明
の非晶質合金をフツ酸に浸漬する処理を行う。フ
ツ酸の濃度と温度は、対象となる非晶質合金の組
成に応じて適当に選ぶことができ、市販濃フツ酸
をそのまま使用することもできる。本発明の非晶
質合金をフツ酸に浸漬すると合金を構成するNi
およびNb,Ta,Ti,Zrの一部が、優先的に合
金表面から均一に溶解し、合金表面が微細化する
ため黒色を帯びると共に電極活性を担う白金族金
属が表面に濃縮される。したがつて表面活性化処
理は、表面が黒色を帯びた時をもつて終了とすれ
ばよい。なお表面活性化処理を本発明の非晶質合
金からなる電極と平均組成が等しい非晶質合金か
らなる電極に適用しても結晶質合金からなる電極
は多相構造でかつ化合物相を含むため、Niおよ
びNb,Ta,Ti,Zrなどの溶解が均一に起こり
にくいため、表面活性化処理が有効ではない。こ
れに対し本発明の非晶質合金からなる電極は成分
元素が均一に分布しているためフツ酸中にNiお
よびNb,Ta,Ti,Zrなどが均一に溶解し、有
効表面層が著しく増大すると共に、電極活性を担
う白金族金属が表面に濃縮され、電極表面全体を
十分に活性化することができる。 これが本発明の表面を活性化した電極が水溶液
電解の電極材料として優れた特性を保有する理由
である。 本発明の非晶質合金からなる電極の作製は、既
に広く用いられている種々の方法、即ち、液体合
金を超急冷凝固させる種々の方法、気相を経て非
晶質合金を形成させる種々の方法、イオン注入な
どによつて固体表面の長周期構造を破壊すると共
に必要元素を合金化させる方法など非晶質合金を
作製するいずれの方法でもよい。 実施例 1 自家製のリン化ニツケルおよび市販金属を原料
として用い、第2表に示す組成となるように原料
金属を混合し、アルゴン雰囲気中の高周波誘導加
熱により溶融し原料合金を作製した。これらの合
金をアルゴン雰囲気中で再溶融し、単ロール法を
用いて超急冷凝固させることにより、厚さ0.01〜
0.05mm、幅1−5mm、長さ3−20mの非晶質合金
薄板を得た。アモルフアス構造形成の確認はX線
解折により行つた。これら合金試料表面をシリコ
ンカーバイド紙1000番までシクロヘキサン中で研
磨した。これらの合金の耐食性が十分に高いこと
を確認するため、これらすべての合金のアノード
分極曲線を30℃の0.5M NaCl溶液中で測定した。
第1図に例を示すようにこれらの合金の分極曲線
はNi−Nb系非晶質合金に共通のものであつて、
ほとんど区別しがたいほど類似している。これら
の合金はいずれも自己不働態化しており、アノー
ド分極すると、1.0〜1.1V(SCE)まで2×
10-2A・m-2以下の低い不働態保持電流を示す。
更に電位が上ると、ほぼ1.2V(SCE)附近から、
塩素および酸素の発生による電流の上昇が観察さ
れる。
[Table] Effects In the present invention, various methods for producing an amorphous alloy can be used, such as melting an alloy having the above-mentioned composition and solidifying it by ultra-rapid cooling, or performing sputter deposition using a mixture having the above-mentioned average composition as a target. The resulting amorphous alloy is a single-phase alloy in which the above elements are uniformly dissolved in solid solution. Originally, in order to provide a metal electrode with selective electrocatalytic activity for a specific electrochemical reaction and high corrosion resistance that can withstand the reaction conditions, it is necessary to create an alloy containing a necessary amount of effective elements. However, in the case of crystalline metals, adding a large amount of various alloying elements often results in a multiphase structure with different chemical properties, and for this reason, it is often difficult to obtain mechanical strength. In contrast, the amorphous alloy of the present invention has a solid phase with an amorphous structure that does not allow the constituent elements to be localized, so it is always a uniform single-phase solid solution and has excellent mechanical properties and corrosion resistance. have Next, the reason for limiting the composition of each component in the present invention will be described. Ni is the basic element of the present invention, and Nb,
It is an element that forms an amorphous structure in coexistence with Ti, Zr, and Ta, and also in the third and fourth inventions of the present invention.
It is necessary to add 20 atomic percent or more. Nb is an element that forms a stable passive film even in a highly corrosive environment where it is exposed to the intense oxidizing power that generates chlorine and chlorine during its generation, and as mentioned above, it coexists with nickel and forms an amorphous layer. An element that forms a structure,
In the second and fourth aspects of the present invention, in order to ensure sufficient corrosion resistance, it is necessary to add 10 atomic % or more. Ru, Rh, Pd, Ir, and Pt are all elements that directly play a role in electrode catalytic activity, and it is necessary to contain one or more of these at 0.01 atomic % or more. However, adding a large amount is not necessarily effective for corrosion resistance, and since surface activation treatment described later is performed, there is no need to add a large amount, and it is sufficient to add 10 atomic % or less. Ti, Zr, and Ta are all elements that coexist with Ni to form an amorphous structure in place of Nb. Among these, alloys containing a large amount of Ta will be filed separately as similar patents containing Ni-Ta-platinum group elements as main components, so the content will be less than 20 atomic % here. Also, Ti, Zr
is exposed to nascent chlorine with high oxidizing power,
It is an element that has the ability to form a passive film.
However, since Ti and Zr have less effect on corrosion resistance than Nb, it is not possible to completely replace Nb with these elements in order to guarantee corrosion resistance.
However, if Nb is contained at 10 atomic % or more, Ti, Zr,
It is sufficient that the total amount of one or more Ta and Nb is 25 atomic % or more. In addition, in order to facilitate amorphous formation, it is necessary to add sufficient Ni, so the total amount of Nb alone or of Nb and one or more of Ti, Zr, and Ta is 65 atomic % or less. P is an element that has strong oxidizing power and has the effect of promoting the formation of stable passive films such as Nb, Ta, Ti, and Zr in an environment where nascent chlorine is generated, and also facilitates the formation of an amorphous structure. be. However, since adding a large amount makes it difficult to form an amorphous structure, it is necessary to limit the amount to 7 at % or less. It should be noted that the amorphous alloy of the present invention contains V of 3 atomic % or less.
The object of the present invention is not hindered even if Mo, 20 atomic % or less of Hf, Cr, and 10 atomic % or less of Fe, Co are contained as impurities. Metalloids such as B, Si, and C are
It is originally known as an element effective in forming an amorphous structure. However, in a highly oxidizing environment, adding a large amount of these metalloids reduces the stability of the passive film. Therefore, it is difficult to designate these elements as particularly effective elements. However, even if up to about 7 atomic % of these elements are contained as impurities, there is no problem because they are not harmful to corrosion resistance and help form an amorphous structure. On the other hand, in order to further enhance the catalytic activity as an electrode for electrolysis, it is necessary to increase the electrochemically effective surface layer and collect platinum group metals that act as active sites for electrode reactions on the surface. For this purpose, the amorphous alloy of the present invention is immersed in hydrofluoric acid. The concentration and temperature of hydrofluoric acid can be appropriately selected depending on the composition of the target amorphous alloy, and commercially available concentrated hydrofluoric acid can be used as is. When the amorphous alloy of the present invention is immersed in hydrofluoric acid, the Ni constituting the alloy
In addition, some of Nb, Ta, Ti, and Zr are preferentially and uniformly dissolved from the alloy surface, and the alloy surface becomes finer, giving it a black tinge, and the platinum group metals responsible for electrode activity are concentrated on the surface. Therefore, the surface activation treatment may be completed when the surface becomes blackish. Note that even if the surface activation treatment is applied to an electrode made of an amorphous alloy having the same average composition as the electrode made of an amorphous alloy of the present invention, the electrode made of a crystalline alloy has a multiphase structure and contains a compound phase. , Ni, Nb, Ta, Ti, Zr, etc. are difficult to uniformly dissolve, so surface activation treatment is not effective. In contrast, in the electrode made of the amorphous alloy of the present invention, the constituent elements are uniformly distributed, so Ni, Nb, Ta, Ti, Zr, etc. are uniformly dissolved in hydrofluoric acid, and the effective surface layer is significantly increased. At the same time, the platinum group metal responsible for electrode activity is concentrated on the surface, and the entire electrode surface can be sufficiently activated. This is the reason why the surface-activated electrode of the present invention has excellent properties as an electrode material for aqueous electrolysis. The electrode made of the amorphous alloy of the present invention can be produced by various methods that are already widely used, namely, various methods in which a liquid alloy is ultra-rapidly solidified, and various methods in which an amorphous alloy is formed through a gas phase. Any method for producing an amorphous alloy may be used, such as a method in which the long-period structure of the solid surface is destroyed by ion implantation, etc., and necessary elements are alloyed. Example 1 Using homemade nickel phosphide and commercially available metals as raw materials, the raw metals were mixed to have the compositions shown in Table 2, and melted by high frequency induction heating in an argon atmosphere to produce raw material alloys. By remelting these alloys in an argon atmosphere and ultra-rapidly solidifying them using a single roll method, thicknesses of 0.01~
An amorphous alloy thin plate of 0.05 mm, width 1-5 mm, and length 3-20 m was obtained. The formation of an amorphous structure was confirmed by X-ray analysis. The surfaces of these alloy samples were polished to No. 1000 silicon carbide paper in cyclohexane. To confirm that the corrosion resistance of these alloys is sufficiently high, the anodic polarization curves of all these alloys were measured in 0.5 M NaCl solution at 30 °C.
As shown in Figure 1, the polarization curves of these alloys are common to Ni-Nb amorphous alloys.
They are so similar that they are almost indistinguishable. All of these alloys are self-passivating, and when polarized anodically, they exhibit a 2×
Shows a low passivity current of less than 10 -2 A m -2 .
As the potential increases further, from around 1.2V (SCE),
An increase in current due to the evolution of chlorine and oxygen is observed.

【表】【table】

【表】 これらの合金を常温の46%HFに数分ないし数
10分表面が黒変するまで浸漬し、表面活性化処理
を施した。表面活性化処理後、30℃、0.5N
NaCl溶液中で2度繰り返して測定したアノード
分極曲線を第2図に示す。本発明非晶質合金の活
性化処理後の分極曲線はいずれも第2図と同様で
あつて、1つの図に重ねるといずれの合金の分極
曲線か区別が困難である。活性化処理後1回目の
分極曲線では0.4〜0.8V(SCE)附近にわたり約
10゜A・m-2程度の電流密度が観察される。これは
活性化処理の際に完全にはHF中に溶け出さなか
つた表面の成分が溶解することに対応する。しか
し、更に高い電位に分極したあと電位を戻し活性
化処理後2度目の分極曲線測定を行うと0.4〜
0.8V(SCE)附近の電流密度はもはや観察されな
くなる。したがつて一度塩素発生の高い電位に分
極して表面から溶解する成分をすべて溶解させて
しまうと2度目以降は合金が溶解しないことを示
す。1.0V(SCE)附近より高い電位は1回目、2
回目とも差がなく塩素発生の電流が観察される。
例えば、1.2V(SCE)附近で活性化処理前後の電
流密度を比較すると活性化処理は実に4桁以上に
塩素発生電流を向上させる。 電解時の耐食性を調べるためまず1.25V(SCE)
で12時間定電流電解したのち、蒸溜水およびアセ
トンで洗浄し、12時間デシケーター中で乾燥し
た。この試料をマイクロバランスで秤量したの
ち、24時間1.25V(SCE)で電解し、前述と同様
にして洗浄、乾燥、秤量して24時間定常的電解を
行つた際の腐食減量を定量した。このような測定
を本発明合金の典型である活性化処理を施した試
料No.3,13,18,21,24,32,36について行つた
ところ、24時間の定電位電解前後の試料重量変化
が検出できなかつた。したがつて、これらの電極
は塩素発生のための電極として0.5N NaCl溶液
中で使用しても、全く腐食されないことが判明し
た。また本発明合金の代表的合金の幾つかを用
い、種々の電流密度で定電流電解を行い1000クロ
ーン/の電解時において発生した塩素をヨード
メトリーで測定した。結果を表3に示す。このよ
うな条件の電解用実用電極として最も活性である
Pt−Ir/Ti電極より、本発明の非晶質合金電極
はほとんどがより活性である。またいずれの合金
も白金族金属含量が低いため安価である。
[Table] Add these alloys to 46% HF at room temperature for a few minutes.
The surface was immersed for 10 minutes until the surface turned black to perform surface activation treatment. After surface activation treatment, 30℃, 0.5N
The anodic polarization curve measured twice in NaCl solution is shown in FIG. The polarization curves of the amorphous alloys of the present invention after the activation treatment are all similar to those shown in FIG. 2, and when they are superimposed on one figure, it is difficult to distinguish which alloy the polarization curves are for. The first polarization curve after activation treatment shows a range of about 0.4 to 0.8V (SCE).
A current density of about 10゜A・m -2 is observed. This corresponds to the dissolution of surface components that were not completely dissolved into HF during the activation process. However, when the polarization curve was measured a second time after the activation treatment after polarizing to a higher potential and returning the potential, 0.4~
Current densities around 0.8V (SCE) are no longer observed. Therefore, once polarized to a high potential that generates chlorine and all the components that dissolve from the surface are dissolved, the alloy will not dissolve from the second time onwards. The potential higher than around 1.0V (SCE) is the first and second
The same current for chlorine generation is observed each time.
For example, when comparing the current density before and after activation treatment around 1.2V (SCE), activation treatment actually improves the chlorine generation current by more than four orders of magnitude. To check corrosion resistance during electrolysis, first 1.25V (SCE)
After constant current electrolysis for 12 hours, the sample was washed with distilled water and acetone, and dried in a desiccator for 12 hours. After weighing this sample with a microbalance, it was electrolyzed at 1.25V (SCE) for 24 hours, washed, dried, and weighed in the same manner as described above, and the corrosion loss during constant electrolysis for 24 hours was quantified. When such measurements were carried out on samples Nos. 3, 13, 18, 21, 24, 32, and 36, which were subjected to activation treatment and are typical of the alloys of the present invention, changes in sample weight before and after 24 hours of constant potential electrolysis were observed. could not be detected. Therefore, it was found that these electrodes were not corroded at all even when used in a 0.5N NaCl solution as an electrode for chlorine generation. Furthermore, using some representative alloys of the present invention, constant current electrolysis was performed at various current densities, and chlorine generated during electrolysis at 1000 clones was measured by iodometry. The results are shown in Table 3. It is the most active as a practical electrode for electrolysis under these conditions.
Most of the amorphous alloy electrodes of the present invention are more active than Pt-Ir/Ti electrodes. Furthermore, both alloys are inexpensive due to their low content of platinum group metals.

【表】【table】

【表】 実施例 2 実施例1と同様に作製し、表面活性化処理を施
した本発明の非晶質合金についてソーダ電解工業
において塩素製造に用いられるPH4、80℃の4M
NaCl溶液中における塩素発生特性を調べた。第
3図は分極曲線の1例であつて、本発明のように
安価な材料が十分に高い電極触媒活性をもつこと
を示している。 発明の効果 以上詳述したとおり、本発明の溶液電解の電極
用表面活性化非晶質合金は、高価な白金族元素量
がきわめて低濃度であるにもかかわらず、塩化ナ
トリウム水溶液の電解用電極としてきわめて高い
電極触媒能を有するとともに電解条件で腐食がマ
イクロバランスでも検出できない高い安定性を備
えた長寿命、省エネルギーでかつ安定な電極材料
である。 また本発明の合金の作製は既に広く用いられて
いる非晶質合金作製の技術のいずれをも適用でき
るため、特殊な装置を改めて必要とせず、本発明
は実用性に優れている。
[Table] Example 2 Regarding the amorphous alloy of the present invention produced in the same manner as in Example 1 and subjected to surface activation treatment, 4M at PH4 and 80°C used for chlorine production in the soda electrolysis industry
The chlorine generation characteristics in NaCl solution were investigated. FIG. 3 is an example of a polarization curve, showing that an inexpensive material like the one of the present invention has sufficiently high electrocatalytic activity. Effects of the Invention As detailed above, the surface-activated amorphous alloy for electrodes in solution electrolysis of the present invention has an extremely low concentration of expensive platinum group elements, but the surface-activated amorphous alloy for electrodes in solution electrolysis can be used in electrodes for electrolysis of aqueous sodium chloride solutions. It is a long-life, energy-saving, and stable electrode material that has an extremely high electrocatalytic ability and is highly stable under electrolytic conditions so that corrosion cannot be detected even with microbalance. Furthermore, since any of the already widely used techniques for producing amorphous alloys can be applied to the production of the alloy of the present invention, no special equipment is required, and the present invention is highly practical.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図および第3図は、本発明合金に
ついて測定した分極曲線の代表例である。第1図
は、30℃の0.5N NaCl溶液中で測定した急冷凝
固のままの非晶質合金の分極曲線(試料No.16,No.
17)、第2図は、30℃の0.5N NaCl溶液中で測定
した表面活性化処理を施した非晶質合金の分極曲
線(試料No.26)、第3図は80℃、PH4の4M NaCl
溶液中で測定した表面活性化処理を施した非晶質
合金の分極曲線(試料No.16)である。
Figures 1, 2 and 3 are representative examples of polarization curves measured for alloys of the present invention. Figure 1 shows the polarization curves of the amorphous alloy as rapidly solidified as measured in 0.5N NaCl solution at 30°C (Sample No. 16, No.
17), Figure 2 shows the polarization curve of the surface-activated amorphous alloy (sample No. 26) measured in 0.5N NaCl solution at 30°C, and Figure 3 shows the polarization curve of the amorphous alloy (sample No. 26) measured in 0.5N NaCl solution at 30°C. NaCl
This is a polarization curve of an amorphous alloy subjected to surface activation treatment (sample No. 16) measured in a solution.

Claims (1)

【特許請求の範囲】 1 基体がNbを25−65原子%とRu,Rh,Pd,
IrおよびPtの群から選ばれた1種または2種以上
の元素0.01−10原子%とを含み、残部はNiからな
る非晶質合金であつて、表面層が白金族金属であ
ることを特徴とする溶液電解用電極。 2 基体がTi,Zrおよび20原子%未満のTaとの
3種の金属の群から選ばれた1種または2種以上
と10原子%以上のNbとの合計で25−65原子%含
み、更にRu,Rh,Pd,IrおよびPtの群から選ば
れた1種または2種以上の元素0.01−10原子%を
含み、残部はNiからなる非晶質合金であつて、
表面層が白金族金属であることを特徴とする溶液
電解用電極。 3 基体がNbを25−65原子%とRu,Rh,Pd,
IrおよびPtの群から選ばれた1種または2種以上
の元素0.01−10原子%と7原子%以下のPを含
み、残部は20原子%以上のNiからなる非晶質合
金であつて、表面層が白金族金属であることを特
徴とする溶液電解用電極。 4 基体がTi,Zrおよび20原子%未満のTaとの
3種の金属の群から選ばれた1種または2種以上
と10原子%以上のNbとの合計で25−65原子%含
み、更に、Ru,Rh,Pd,IrおよびPtの群から選
ばれた1種または2種以上の元素0.01−10原子%
と7原子%以下のPを含み、残部は20原子%以上
のNiからなる非晶質合金であつて、表面層が白
金族金属であることを特徴とする溶液電解用電
極。
[Scope of Claims] 1. The substrate contains 25-65 atomic % of Nb and Ru, Rh, Pd,
It is an amorphous alloy containing 0.01-10 atom% of one or more elements selected from the group of Ir and Pt, and the balance is Ni, and the surface layer is a platinum group metal. Electrode for solution electrolysis. 2. The substrate contains a total of 25 to 65 atomic % of one or more selected from the group of three metals, Ti, Zr, and less than 20 atomic % of Ta, and 10 atomic % or more of Nb, and further An amorphous alloy containing 0.01 to 10 at% of one or more elements selected from the group of Ru, Rh, Pd, Ir and Pt, with the balance being Ni,
An electrode for solution electrolysis, characterized in that the surface layer is a platinum group metal. 3 The substrate contains 25-65 at% of Nb and Ru, Rh, Pd,
An amorphous alloy containing 0.01-10 at.% of one or more elements selected from the group of Ir and Pt and 7 at.% or less of P, with the balance consisting of 20 at.% or more of Ni, An electrode for solution electrolysis, characterized in that the surface layer is a platinum group metal. 4. The substrate contains a total of 25 to 65 atomic % of one or more selected from the group of three metals, Ti, Zr, and less than 20 atomic % of Ta, and 10 atomic % or more of Nb, and further , 0.01-10 atomic% of one or more elements selected from the group of Ru, Rh, Pd, Ir and Pt
An electrode for solution electrolysis, characterized in that it is an amorphous alloy consisting of 7 at % or less of P, and the balance is 20 at % or more of Ni, and the surface layer is a platinum group metal.
JP60169764A 1985-08-02 1985-08-02 Surface-activated amorphous alloy for use in electrode for solution electrolysis and activating treatment thereof Granted JPS6296633A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP60169764A JPS6296633A (en) 1985-08-02 1985-08-02 Surface-activated amorphous alloy for use in electrode for solution electrolysis and activating treatment thereof
DE86305531T DE3689059T2 (en) 1985-08-02 1986-07-18 Surface activated amorphous alloys and supersaturated alloys for electrodes, usable for the electrolysis of solutions and methods for the activation of the surfaces.
EP86305531A EP0213708B1 (en) 1985-08-02 1986-07-18 Surface activated amorphous and supersaturated solid solution alloys for electrodes in the electrolysis of solutions and the method for their surface activation
US06/892,827 US4770949A (en) 1985-08-02 1986-08-04 Surface activated amorphous and supersaturated solid solution alloys for electrodes in the electrolysis of solutions and the method for their surface activation
JP23792191A JPH0726211B2 (en) 1985-08-02 1991-09-18 Method of activating surface amorphous alloy for solution electrolysis electrodes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60169764A JPS6296633A (en) 1985-08-02 1985-08-02 Surface-activated amorphous alloy for use in electrode for solution electrolysis and activating treatment thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP23792191A Division JPH0726211B2 (en) 1985-08-02 1991-09-18 Method of activating surface amorphous alloy for solution electrolysis electrodes

Publications (2)

Publication Number Publication Date
JPS6296633A JPS6296633A (en) 1987-05-06
JPH0579737B2 true JPH0579737B2 (en) 1993-11-04

Family

ID=15892420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60169764A Granted JPS6296633A (en) 1985-08-02 1985-08-02 Surface-activated amorphous alloy for use in electrode for solution electrolysis and activating treatment thereof

Country Status (1)

Country Link
JP (1) JPS6296633A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0726211B2 (en) * 1985-08-02 1995-03-22 大機ゴム工業株式会社 Method of activating surface amorphous alloy for solution electrolysis electrodes
JPH0288785A (en) * 1988-09-26 1990-03-28 Raimuzu:Kk Production of electrolytic electrode material
WO1991004790A1 (en) * 1989-09-27 1991-04-18 Daiki Engineering Co., Ltd. Amorphous alloy catalyst for cleaning exhaust gas
JPH09279380A (en) * 1996-04-10 1997-10-28 Hiranuma Sangyo Kk Anode electrolysis electrode material using noble-metal-base amorphous alloy excellent in plastic workability and applicable to large-size member
US9642986B2 (en) 2006-11-08 2017-05-09 C. R. Bard, Inc. Resource information key for an insertable medical device
WO2011062750A1 (en) 2009-11-17 2011-05-26 C. R. Bard, Inc. Overmolded access port including anchoring and identification features
SG182825A1 (en) 2010-02-01 2012-09-27 Proteus Biomedical Inc Data gathering system
JP6406938B2 (en) * 2014-09-04 2018-10-17 キヤノン株式会社 Amorphous alloy, mold for molding, and method of manufacturing optical element
EP3862643A4 (en) 2018-10-05 2022-05-04 Hitachi-Johnson Controls Air Conditioning, Inc. Air conditioner, method for controlling air conditioner, and program

Also Published As

Publication number Publication date
JPS6296633A (en) 1987-05-06

Similar Documents

Publication Publication Date Title
US4609442A (en) Electrolysis of halide-containing solutions with amorphous metal alloys
US4288302A (en) Method for electrowinning metal
US4781803A (en) Electrolytic processes employing platinum based amorphous metal alloy oxygen anodes
US4560454A (en) Electrolysis of halide-containing solutions with platinum based amorphous metal alloy anodes
JPH036999B2 (en)
SE436897B (en) ELECTRONIC CELL CATHOD
JPH0465913B2 (en)
US4770949A (en) Surface activated amorphous and supersaturated solid solution alloys for electrodes in the electrolysis of solutions and the method for their surface activation
US4705610A (en) Anodes containing iridium based amorphous metal alloys and use thereof as halogen electrodes
JPH0579737B2 (en)
Hara et al. Anodic characteristics of amorphous ternary palladium-phosphorus alloys containing ruthenium, rhodium, iridium, or platinum in a hot concentrated sodium chloride solution
EP0164200A1 (en) Improved electrolytic processes employing platinum based amorphouse metal alloy oxygen anodes
JPH04231491A (en) Electric catalyzer cathode and its manufacture
US4746584A (en) Novel amorphous metal alloys as electrodes for hydrogen formation and oxidation
Hara et al. The anodic polarization behavior of amorphous Pd Ti P alloys in NaCl solutions
US20150096900A1 (en) Alloys of the type fe3aita(ru) and use thereof as electrode material for the synthesis of sodium chlorate or as corrosion resistant coatings
JPH0468394B2 (en)
JPH0579738B2 (en)
JPH0579739B2 (en)
JPS622038B2 (en)
US4702813A (en) Multi-layered amorphous metal-based oxygen anodes
JPH0379418B2 (en)
JPH0580558B2 (en)
US4189357A (en) Method of treating a substrate material to form an electrode
JPH0726211B2 (en) Method of activating surface amorphous alloy for solution electrolysis electrodes