JPH058637B2 - - Google Patents
Info
- Publication number
- JPH058637B2 JPH058637B2 JP59207809A JP20780984A JPH058637B2 JP H058637 B2 JPH058637 B2 JP H058637B2 JP 59207809 A JP59207809 A JP 59207809A JP 20780984 A JP20780984 A JP 20780984A JP H058637 B2 JPH058637 B2 JP H058637B2
- Authority
- JP
- Japan
- Prior art keywords
- center cap
- filler
- polypropylene
- potassium titanate
- fibers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000835 fiber Substances 0.000 claims description 21
- -1 polypropylene Polymers 0.000 claims description 15
- 239000004743 Polypropylene Substances 0.000 claims description 12
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 claims description 12
- 229920001155 polypropylene Polymers 0.000 claims description 12
- 239000000945 filler Substances 0.000 claims description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 7
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 7
- 239000010439 graphite Substances 0.000 claims description 7
- 229910002804 graphite Inorganic materials 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 7
- 239000010445 mica Substances 0.000 claims description 6
- 229910052618 mica group Inorganic materials 0.000 claims description 6
- 239000010936 titanium Substances 0.000 claims description 6
- 229910052719 titanium Inorganic materials 0.000 claims description 6
- 238000002156 mixing Methods 0.000 claims description 5
- 229920001577 copolymer Polymers 0.000 claims description 3
- 229920003002 synthetic resin Polymers 0.000 claims description 3
- 239000000057 synthetic resin Substances 0.000 claims description 3
- 239000000463 material Substances 0.000 description 8
- 230000000704 physical effect Effects 0.000 description 5
- 238000000465 moulding Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 239000002759 woven fabric Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R7/00—Diaphragms for electromechanical transducers; Cones
- H04R7/02—Diaphragms for electromechanical transducers; Cones characterised by the construction
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Signal Processing (AREA)
- Diaphragms For Electromechanical Transducers (AREA)
Description
技術分野
本発明は音響振動板用センターキヤツプに関す
る。
背景技術
一般に音響振動板用センターキヤツプとして用
いられるものは軽量で剛性が高く適度な内部損失
があり、かつヤング率Eと密度ρとの比√
の大きいことが必要とされている。従来の材料と
しては紙、フエノール樹脂含浸織布、ポリエチレ
ンテレフタレートフイルム及び金属板等が用いら
れてきた。音響振動板用センターキヤツプは振動
板自体の周波数特性、特に高周波数帯域に大きな
影響をもつ為、振動板と同様に高比弾性率、低密
度、高内部損失などの物理特性が要求される。
しかし、紙は内部損失が大きく平坦な特性が得
られる反面、剛性が小さいために低周波数帯域か
ら分割制動を生じ、過渡特性、歪特性等が悪化す
るだけでなく吸湿しやすいために音質変化を生
じ、軽年変化により音質の劣化も起こりやすい。
また、紙の場合は一枚づつ抄紙し、乾燥プレス工
程を必要とし材質、生産上の点で形状により厚さ
密度が不均一となり、物理特性が不安定で、安定
した特性を得るには高度な熟練と経験が必要であ
る。ポリエチレンテレフタレートフイルムは熱成
形可能で耐水性も優れているが、内部損失が小さ
く、比弾性率も小さい欠点をもつ。また、100℃
程度の高温雰囲気においては変形を起きしやすい
問題がある。金属板については高剛性ではあるが
内部損失が小さいため高域共振を制動するのは難
しく、また、材料が非常に硬く脆いため加工性が
悪い欠点がある。フエノール樹脂含浸織布は低密
度ではあるが通気性があるため能率が低下すると
いう欠点がある。
上記したことから明らかな如く、紙、フエノー
ル樹脂含浸織布、ポリエチレンテレフタレートル
イルム及び金属板は必ずしも音響振動板用センタ
ーキヤツプ材料としては満足するものではなかつ
た。
発明に概要
そこで本発明の目的は、上記問題点を解決すべ
くなされたものであり、内部損失が大きく密度の
小さい音響振動板用センターキヤツプを提供する
ことである。
本発明の音響振動板用センターキヤツプは、高
分子系熱可塑性樹脂例えば、ポリプロピレン、ポ
リプロピレンを主体とした共重合体またはこれら
の混合物に、チタン繊維またはチタン酸カリウム
繊維とグラフアイト及び/又はマイカ等のりん片
状が充填剤とを混在してなる材料から形成されて
いることを特徴としている。
実施例
以下、本発明の一実施例を表及び図に基づいて
説明する。
原料としてポリプロピレン、ポリプロピレンを
主体とした共重合体またはこれらの混合物とチタ
ン繊維またはチタン酸カリウム繊維とグラフアイ
ト及び/又はマイカのりん片状の充填剤とを混合
した材料からフイルム状に成形するには、まず、
第1表の如きvol%の割合(体積混合比)にて原
料を混合しペレツト化した材料を用意する。その
後、該ペレツト材料を押し出し成型機によつて
230〜260℃のシート化温度に加熱しながらフイル
ム成形して、数段の圧延用冷却ロールに通すこと
で任意の厚みのフイルムを得る。その後、150℃
程度の熱板によりフイルムを加熱軟化させ、所定
の形状の加熱された成形かな型を用いて真空また
は圧力雰囲気中で230℃〜260℃のシート化温度を
成形し所望のセンターキヤツプを得る。
得られたセンターキヤツプの特性を第2表に示
す。なお、比較例としてポリプロピレンとチタン
酸カリウム繊維との混合物、及びポリプロピレン
とマイカ粉との混合物から各々本発明の製造方法
にてセンターキヤツプを製造し、第1表にそれら
混合割合を示す。さらに、第2表においては従来
例として本実施例と同等の形状の従来のセンター
キヤツプの特性も併記する。
TECHNICAL FIELD The present invention relates to a center cap for an acoustic diaphragm. BACKGROUND TECHNOLOGY Generally, center caps used for acoustic diaphragms are lightweight, have high rigidity, have a moderate internal loss, and have a ratio of Young's modulus E to density ρ√
A great deal is needed. Conventional materials used include paper, phenolic resin-impregnated woven fabric, polyethylene terephthalate film, and metal plates. The center cap for an acoustic diaphragm has a large effect on the frequency characteristics of the diaphragm itself, especially in high frequency bands, so it is required to have the same physical properties as the diaphragm, such as high specific modulus, low density, and high internal loss. However, while paper has a large internal loss and can provide flat characteristics, its low rigidity causes split damping from low frequency bands, which not only deteriorates transient characteristics and distortion characteristics, but also causes changes in sound quality because it easily absorbs moisture. The sound quality is also likely to deteriorate due to slight age changes.
In addition, in the case of paper, paper is made one sheet at a time and requires a dry pressing process, which results in uneven thickness and density depending on the material and shape of the production process.The physical properties are unstable, and it takes a long time to obtain stable properties. This requires considerable skill and experience. Although polyethylene terephthalate film is thermoformable and has excellent water resistance, it has the drawbacks of low internal loss and low specific modulus. Also, 100℃
There is a problem that deformation easily occurs in a high temperature atmosphere. Although metal plates have high rigidity, they have low internal loss, making it difficult to damp high-frequency resonance, and the material is extremely hard and brittle, making them difficult to work with. Although the phenolic resin-impregnated woven fabric has a low density, it has a disadvantage of low efficiency due to its air permeability. As is clear from the above, paper, woven fabric impregnated with phenol resin, polyethylene terephthalate film, and metal plates are not necessarily satisfactory as center cap materials for acoustic diaphragms. SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems, and to provide a center cap for an acoustic diaphragm with high internal loss and low density. The center cap for an acoustic diaphragm of the present invention includes a polymeric thermoplastic resin such as polypropylene, a copolymer mainly composed of polypropylene, or a mixture thereof, titanium fibers or potassium titanate fibers, graphite and/or mica, etc. It is characterized by being formed from a material in which the scales are mixed with a filler. Example Hereinafter, an example of the present invention will be described based on tables and figures. To form a film from a material in which polypropylene, a copolymer mainly composed of polypropylene, or a mixture thereof, titanium fiber or potassium titanate fiber, and graphite and/or mica flake-like filler are mixed as raw materials. First,
A pelletized material is prepared by mixing raw materials at a vol% ratio (volume mixing ratio) as shown in Table 1. After that, the pellet material is extruded into a molding machine.
A film of any desired thickness is obtained by forming the film while heating it to a sheeting temperature of 230 to 260°C and passing it through several stages of cooling rolls. Then 150℃
The film is heated and softened using a hot plate of about 100 mL, and then molded into a sheet at a temperature of 230°C to 260°C in a vacuum or pressure atmosphere using a heated mold of a predetermined shape to obtain a desired center cap. The characteristics of the obtained center cap are shown in Table 2. As a comparative example, center caps were manufactured from a mixture of polypropylene and potassium titanate fibers and a mixture of polypropylene and mica powder by the manufacturing method of the present invention, and Table 1 shows their mixing ratios. Furthermore, in Table 2, the characteristics of a conventional center cap having a shape similar to that of this embodiment are also listed as a conventional example.
【表】【table】
【表】【table】
【表】
第2表から明らかなように、本実施例のセンタ
ーキヤツプは従来例のものより特性値が高く、チ
タン酸カリウム繊維とグラフアイトとを合せて全
体の30vol%含むものではヤング率で紙コーン、
ポリプロピレン100%の3倍程度、内部損失では
紙コーン以上、[Table] As is clear from Table 2, the center cap of this example has higher characteristic values than the conventional example, and the Young's modulus of the center cap containing 30 vol% of the total of potassium titanate fibers and graphite. paper cone,
About 3 times as much as 100% polypropylene, internal loss more than paper cone,
【式】ではポリプロピレン
100%の1.5倍以上の値を得ている。しかし、ポリ
プロピレンにチタン酸カリウム繊維のみを混合し
た比較例1と比較する物性的には大差はないが、
比較例1の場合、チタン酸カリウム繊維のみの充
填剤であるため、縦と横の方向性が出るため、分
割共振を起こし易く周波数特性において歪みを生
じる。本発明においては、チタン繊維又はチタン
酸カリウム繊維だけの充填剤では方向性が出るた
め、その改善を目的としてりん片状のグラフアイ
トマイカ又はこれらの混合物をさらに添加したこ
とにある。グラフアイト、マイカ等の充填剤を添
加することにより物性においては、大差はないが
周波数特性において歪みの少ない平坦な特性が得
られた。
本実施例に用いたグラフアイトは粒径1〜
15μm(平均粒径5μm)が好ましく、チタン酸カリ
ウム繊維は大塚化学薬品(株)製のテイスモ(商標)
であつて平均繊維長が20〜30μm、平均繊維径が
0.1〜0.3μmのものである。
さらに、本発明のセンターキヤツプと従来のも
のとの音圧周波数特性を同じ測定条件で比較する
と、第1図のようになる。Aに示す特性が本発明
のセンターキヤツプのものであり、Bに示す特性
が従来のものである。本発明のセンターキヤツプ
は、高周波波数域での周波数特性が平坦なことが
わかる。
また、本発明のセンターキヤツプは吸湿性が殆
どなく耐熱性の優れたものであり、大量生産が可
能である。
発明の効果
以上の如く、本発明によれば、ポリプロピレン
等の合成樹脂にチタン繊維またはチタン酸カリウ
ム繊維とりん片状の充填剤とを混合して形成され
ているので、低密度、高比弾性率、高内部損失で
あるというセンターキヤツプに要求されるの各物
理特性を満し、分割共振を防ぎ、高能率、広帯
域、高域での周数特性の平坦な音響振動板用セン
ターキヤツプが得られる。
また、該センターキヤツプは、吸湿性がほとん
どなく軟化温度も高いために経年変化が少なく信
頼性に優れている。さらに、高分子系熱可塑性樹
脂に微細なチタン酸繊維をが含まれていることに
より、その製造工程においても、成形かな型の微
細な変化にも忠実で成形表面が平滑になり、かつ
該樹脂内部の充填効果が均一であり、細部におい
ても未強化部分が発生しにくく成形時のひけ、そ
り等が少なくなる。[Formula] yields a value that is more than 1.5 times that of 100% polypropylene. However, although there is no significant difference in physical properties compared to Comparative Example 1, in which only potassium titanate fibers were mixed with polypropylene,
In the case of Comparative Example 1, since the filler is only potassium titanate fibers, the filler exhibits vertical and horizontal directionality, which tends to cause split resonance and cause distortion in frequency characteristics. In the present invention, since a filler consisting only of titanium fibers or potassium titanate fibers exhibits directionality, flaky graphite mica or a mixture thereof is further added in order to improve the directionality. By adding fillers such as graphite and mica, there was no significant difference in physical properties, but flat frequency characteristics with less distortion were obtained. The graphite used in this example had a particle size of 1 to
The potassium titanate fiber is preferably 15 μm (average particle size 5 μm), and the potassium titanate fiber is Teismo (trademark) manufactured by Otsuka Chemical Co., Ltd.
and the average fiber length is 20 to 30 μm and the average fiber diameter is
It is 0.1 to 0.3 μm. Furthermore, when the sound pressure frequency characteristics of the center cap of the present invention and the conventional one are compared under the same measurement conditions, the results are as shown in FIG. The characteristics shown in A are those of the center cap of the present invention, and the characteristics shown in B are those of the conventional one. It can be seen that the center cap of the present invention has flat frequency characteristics in the high frequency range. Furthermore, the center cap of the present invention has almost no moisture absorption and excellent heat resistance, and can be mass-produced. Effects of the Invention As described above, according to the present invention, it is formed by mixing titanium fibers or potassium titanate fibers with a flaky filler in a synthetic resin such as polypropylene, so it has low density and high specific elasticity. A center cap for an acoustic diaphragm that satisfies the physical properties required for a center cap such as low frequency and high internal loss, prevents split resonance, and has high efficiency, a wide band, and a flat frequency response in the high frequency range. It will be done. In addition, the center cap has almost no hygroscopicity and has a high softening temperature, so it has little deterioration over time and is excellent in reliability. Furthermore, because the polymeric thermoplastic resin contains fine titanate fibers, the molding surface is smooth and faithful to minute changes in the molding pinion mold during the manufacturing process, and the resin The internal filling effect is uniform, and unreinforced parts are less likely to occur even in small details, reducing sink marks and warpage during molding.
図は、本発明のセンターキヤツプと従来のもの
を比較する音圧周波数特性のグラフである。
The figure is a graph of sound pressure frequency characteristics comparing the center cap of the present invention with a conventional one.
Claims (1)
る共重合体又はこれらの混合物からなる合成樹脂
に、チタン繊維若しくはチタン酸カリウム繊維と
りん片状の充填剤とを混在せしめてなる音響振動
板用センターキヤツプ。 2 前記りん片状の充填剤はグラフアイト、マイ
カ又はこれらの混合物からなる充填剤であること
を特徴とする特許請求の範囲第1項記載のセンタ
ーキヤツプ。 3 前記合成樹脂と、前記チタン繊維または前記
チタン酸カリウム繊維及び前記りん片状の充填剤
との体積混合比が70:30であることを特徴とする
特許請求の範囲第2項記載のセンターキヤツプ。[Scope of Claims] 1. An acoustic diaphragm made of a synthetic resin made of polypropylene, a copolymer mainly composed of polypropylene, or a mixture thereof, mixed with titanium fibers or potassium titanate fibers and a flaky filler. center cap. 2. The center cap according to claim 1, wherein the scale-like filler is a filler made of graphite, mica, or a mixture thereof. 3. The center cap according to claim 2, wherein the volume mixing ratio of the synthetic resin, the titanium fiber or the potassium titanate fiber, and the scale-like filler is 70:30. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20780984A JPS6184999A (en) | 1984-10-03 | 1984-10-03 | Center-cap for acoustic diaphragm |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20780984A JPS6184999A (en) | 1984-10-03 | 1984-10-03 | Center-cap for acoustic diaphragm |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6184999A JPS6184999A (en) | 1986-04-30 |
JPH058637B2 true JPH058637B2 (en) | 1993-02-02 |
Family
ID=16545856
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20780984A Granted JPS6184999A (en) | 1984-10-03 | 1984-10-03 | Center-cap for acoustic diaphragm |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6184999A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58139596A (en) * | 1982-02-13 | 1983-08-18 | Onkyo Corp | Dust cap of speaker |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58144995U (en) * | 1982-03-24 | 1983-09-29 | オンキヨー株式会社 | Dust cap for speaker |
-
1984
- 1984-10-03 JP JP20780984A patent/JPS6184999A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58139596A (en) * | 1982-02-13 | 1983-08-18 | Onkyo Corp | Dust cap of speaker |
Also Published As
Publication number | Publication date |
---|---|
JPS6184999A (en) | 1986-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4471085A (en) | Diaphragm material for loudspeakers | |
US4404315A (en) | Molding compositions and diaphragms, arm pipes and head shells molded therefrom | |
GB2240006A (en) | A process for preparing a substantially wholly carbonaceous diaphragm for use in acoustic equipment | |
JPH058637B2 (en) | ||
JPS6120494A (en) | Center cap for acoustic diaphragm | |
US4341838A (en) | Molding compositions and diaphragms, arm pipes and head shells molded therefrom | |
US4471084A (en) | Diaphragm for loudspeakers | |
US4366205A (en) | Tone-arm elements | |
JPS5857958B2 (en) | Diaphragm for audio equipment | |
JPS5912230B2 (en) | Speaker non-vibration system components | |
JPS58207793A (en) | Acoustic diaphragm and its manufacture | |
JPS5881399A (en) | Diaphragm for speaker | |
GB2046274A (en) | Molding compositions and acoustic articles molded therefrom | |
JPH01140897A (en) | Manufacture of diaphragm for speaker | |
JPS59135996A (en) | Diaphragm for acoustic use | |
JPH0732509B2 (en) | Vibration plate for electro-acoustic transducer | |
JPH02293000A (en) | Diaphragm for acoustic equipment | |
JPS58194496A (en) | Speaker diaphragm | |
JPH0156599B2 (en) | ||
JPS5875398A (en) | Loud speaker diaphragm | |
JPS6056360B2 (en) | Diaphragm for audio equipment | |
JPH028475Y2 (en) | ||
JPS6055796A (en) | Production of speaker diaphragm | |
JPH0251320B2 (en) | ||
JPS5853558B2 (en) | Diaphragm for speaker |