JPH0586342B2 - - Google Patents

Info

Publication number
JPH0586342B2
JPH0586342B2 JP59082608A JP8260884A JPH0586342B2 JP H0586342 B2 JPH0586342 B2 JP H0586342B2 JP 59082608 A JP59082608 A JP 59082608A JP 8260884 A JP8260884 A JP 8260884A JP H0586342 B2 JPH0586342 B2 JP H0586342B2
Authority
JP
Japan
Prior art keywords
signal
converter
inkjet recording
repolarization
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59082608A
Other languages
Japanese (ja)
Other versions
JPS60225761A (en
Inventor
Junji Shimoda
Sakiko Ishido
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP8260884A priority Critical patent/JPS60225761A/en
Publication of JPS60225761A publication Critical patent/JPS60225761A/en
Publication of JPH0586342B2 publication Critical patent/JPH0586342B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04581Control methods or devices therefor, e.g. driver circuits, control circuits controlling heads based on piezoelectric elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04541Specific driving circuit

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔技術分野〕 本発明はインクジエツト記録装置に関し、更に
詳しくは飛翔液滴を形成する為のエネルギーを発
生する為のエネルギー発生体に電気・機械変換体
を用いたインクジエツト記録装置に関する。 〔従来技術〕 従来よりインクジエツト記録方法は、所謂普通
紙に定着等の特別な手段を用いずに記録が出来る
という事、記録時における騒音が無視できる程に
極めて小さいという点から注目されている。 その様な記録方法の一つとして、電気・機械変
換体を用いて、該変換体の機械的変位を記録用液
体に付与することで吐出オリフイスより液滴を飛
翔させ記録を行う記録方法が知られている。 上記変換体としては、通常ジルコンチタン酸鉛
を主成分としたセラミツクスを材料とし、これを
分極処理したものが使用されている。ここで、分
極処理とは、材料に分極信号によつて大きな直流
電場を加えて、材料をマクロ的に中心対称性のな
い結晶構造にすることをいう。これにより、材料
は圧電性を示し、電圧を加えると歪を発生(機械
的変位)する。 上記した記録方法を達成するためのインクジエ
ツト記録装置は、通常、記録用液体で満たされ、
吐出オリフイスに連通しているエネルギー作用室
を構成する部材に高分子材料(例えば接着剤)や
低融点合金等の接着材料によつて接合されてい
る。 ところで、この様な構成において、電気・機械
変換体には該変換体自身の熱膨張係数と接着材料
エネルギー作用室を構成する部材等の熱膨張係数
が一般に異なることから装置の置かれる環境温度
や記録用液体の温度等によつて電気・機械変換体
に機械的な外力が加わる場合がある。特に、高
温、或いは低温の環境温度下に装置が長期間放置
された場合には、その放置の間中電気・機械変換
体に外力が加えられるので変換体内部に外部から
の応力が残留してしまい、その結果変換体の機械
的な変位量が減少する場合がある。電気・機械変
換体の変位量が低下したインクジエツト記録装置
は、液滴の吐出性能、即ち液滴の吐出速度や吐出
される液滴の大きさが夫々低下するので印字濃度
の低下の為画像記録の品質が劣化したり精度の高
い画像記録が行なえなくなる場合がある。 具体的に一例を示せば、上記構成から成る装置
を−30℃の温度環境に1ヶ月間放置したところ液
滴の吐出速度は初期吐出速度の約80%に低下し
た。又、インクジエツト記録装置を60℃の環境温
度に放置しておいたものを−30℃の環境温度中に
移動し4時間放置し、その後60℃の環境温度中に
移動し4時間放置するというのを1単位とした場
合、これを6単位繰り返した後、即ち12回熱衝撃
が加えられた後の液滴の吐出速度を測定した。そ
の結果、従来のインクジエツト記録装置では上記
の様な熱衝撃が加えられることで吐出速度は初期
吐出速度の約65%にまで低下した。 更に、液滴の吐出速度が低下した各装置を用い
て記録を行なつたところ、吐出速度の低下にとも
なつて記録濃度の低下が認められ、画像品質は低
下した。 〔目的〕 本発明は記録画像の品位の低下の原因となる。
電気・機械変換体の経時変化による機械的変位量
の低下を防止するとともに、装置の置かれる環境
に左右されず高品位の画像を記録できるインクジ
エツト記録装置を提供する事を目的とする。 本発明の目的は、インクを吐出するためのエネ
ルギーを発生するべく分極信号によつて分極処理
された電気・機械変換体を用いて記録を行なうイ
ンクジエツト記録装置において、前記電気・機械
変換体に対し、画像記録時に駆動信号を印加し、
非画像記録時に該駆動信号よりもエネルギーが大
きく該変換体の分極を強めるべく前記分極信号と
同極性の再分極信号を印加する駆動手段とを具備
することで達成される。 〔実施例〕 本発明を好適な実施例を用いて説明する。 第1図は本実施例に用いたインクジエツト記録
装置の記録ヘツドの模式的切断面図である。第1
図では液滴をオリフイスより吐出させるためのエ
ネルギーを発生するべく分極信号によつて分極処
理された電気・機械変換体11として円筒型圧電
素子を用いた例が示される。又、第1図において
12はオリフイスが形成された液流路形成部材
(以下ノズルと称す)、13は変換体11とノズル
12を接合するための接着剤、14は変換体11
の駆動時に液滴の吐出方向へのエネルギーと液体
の供給方向へのエネルギーのバランス調整及び/
又は不純物のノズルへの侵入を阻止するとともに
液体の供給流量を調整する為のフイルターであ
る。第1図に示される記録ヘツドは第2図のイン
クジエツト記録装置の記録ヘツド囲りの模式的切
断面図に示される様にサブタンク21内の液体中
に記録ヘツドのフイルター14側が浸漬されて設
置されている。又、22は不図示のメインタンク
と連結されたサブタンク21内に液体を供給する
為の供給チユーブ、23はサブタンク21内の液
面調整の為の吸引チユーブである。 第3図に示されるのは、インクジエツト記録装
置の変換体11を駆動する為の駆動回路の一例を
示す回路図である。第3図において、31は変換
体、32は該変換体31を駆動させるための電源
入力端子、33はパルス入力の切換スイツチ、3
4は変換体32に印加される電圧を変化させる為
の抵抗、35は液滴吐出の為のパルスを入力する
為の吐出パルスのトリガー入力端子である。 第4図に示されるのは夫々電気・機械変換体に
入力される入力パルスの波形の一例を示す波形図
でaは吐出パルスのトリガー波形図、bは再分極
パルスのトリガー波形図である。第5図に示され
夫々電気・機械変換体に入力される電圧の電圧波
形の一例を示す波形図でaは吐出パルスの電圧波
形図、bは再分極パルスの電圧波形図である。 本発明では、非画像記録時の任意の時間に電
気・機械変換体に電気・機械変換体が分極する方
向への上記分極信号と同極性の再分極信号(ここ
では、画像記録時の駆動信号と同極性の信号)を
印加する事で常に良好なインクジエツト記録装置
の性能を持続させる。 第3図乃至第5図を用いて本発明における画像
記録時及び再分極時の電気・機械変換体への電圧
の印加のされ方の一例を説明する。 通常は第3図の吐出パルスのトリガ入力端子3
5に吐出信号が入力され、変換体31に所望の電
圧が加えられることで変換体31は機械的変位を
生じる。そして、再分極時においては、再分極パ
ルスのトリガ入力端子36に再分極信号が入力さ
れる。このことで変換体31は記録時とは同極性
をもつた電圧が印加される。尚、変換体31に入
力される電圧は、端子32に入力される電圧又は
抵抗34を変更することで容易に変化させること
ができる。 本実施例では、第1図に示される様な構成の記
録ヘツドとして直径40μmのオリフイスを有する
ガラス管にエポキシ樹脂系接着剤を用いて電気・
機械変換体としてPZT(leadzirco−titanate)を
接合した後、ノズル12の液流入側にフイルター
14を取付けたものを使用した。そして、この記
録ヘツドは第2図に示される様にフイルター14
側をサブタンク21内に浸漬することでインクジ
エツト記録装置を作成した。 上記の通り作成されたインクジエツト記録装置
(以下装置と略記する)の液滴の初期吐出速度及
び初期紙上ドツト径を測定した後に、−30℃の温
度環境下に1ヶ月間放置した。その後、該装置を
室温に戻し、初期吐出速度及び初期紙上ドツト径
を測定した時と同様に液滴の吐出速度及び吐出さ
れた液滴による紙上ドツト径を測定した。次に、
本発明の直流電圧を変換体の分極を強める方向に
印加する為の手段を働らかせ電気・機械変換体に
該変換体の分極を強める方向に直流電源を印加し
た(再分極パルスを印加した)後の液滴の吐出速
度及び紙上ドツト径を測定した。この夫々の結果
を液滴の吐出速度を第1表に、紙上ドツト径を第
2表に示す。
[Technical Field] The present invention relates to an inkjet recording device, and more particularly to an inkjet recording device that uses an electromechanical converter as an energy generator for generating energy for forming flying droplets. [Prior Art] The inkjet recording method has been attracting attention because it can record on so-called plain paper without using any special means such as fixing, and because the noise during recording is so small that it can be ignored. As one such recording method, there is a known recording method in which a mechanical displacement of the converter is applied to the recording liquid using an electromechanical converter to cause droplets to fly from an ejection orifice and perform recording. It is being The converter is usually made of ceramics containing lead zirconate titanate as a main component and subjected to polarization treatment. Here, polarization processing refers to applying a large direct current electric field to a material using a polarization signal to transform the material into a crystalline structure without macroscopic central symmetry. As a result, the material exhibits piezoelectricity and generates strain (mechanical displacement) when a voltage is applied. An inkjet recording device for achieving the recording method described above is usually filled with a recording liquid.
It is bonded to a member constituting an energy action chamber communicating with the discharge orifice using an adhesive material such as a polymeric material (for example, adhesive) or a low melting point alloy. By the way, in such a configuration, the thermal expansion coefficient of the electrical/mechanical converter itself and the thermal expansion coefficients of the members constituting the adhesive material energy action chamber are generally different, so the environmental temperature in which the device is placed, An external mechanical force may be applied to the electrical/mechanical converter depending on the temperature of the recording liquid or the like. In particular, if the device is left in a high or low environmental temperature for a long period of time, an external force is applied to the electrical/mechanical converter during that time, and external stress may remain inside the converter. As a result, the amount of mechanical displacement of the converter may be reduced. An inkjet recording device in which the amount of displacement of the electromechanical transducer is reduced has a droplet ejection performance, that is, the droplet ejection speed and the size of the ejected droplets, which reduces the print density and makes it difficult to record images. The quality of images may deteriorate or highly accurate image recording may not be possible. To give a specific example, when the apparatus constructed as described above was left in a -30°C temperature environment for one month, the droplet ejection speed decreased to about 80% of the initial ejection speed. Also, an inkjet recording device that had been left at an environmental temperature of 60°C was moved to an environmental temperature of -30°C and left there for 4 hours, and then moved to an environmental temperature of 60°C and left there for 4 hours. When 1 unit is taken as 1 unit, the ejection speed of the droplet was measured after repeating this for 6 units, that is, after applying thermal shock 12 times. As a result, in conventional inkjet recording apparatuses, the ejection speed decreased to about 65% of the initial ejection speed due to the thermal shock described above. Furthermore, when recording was performed using each device in which the droplet ejection speed was reduced, it was observed that the recording density decreased as the ejection speed decreased, and the image quality deteriorated. [Purpose] The present invention causes deterioration in the quality of recorded images.
It is an object of the present invention to provide an inkjet recording device that can prevent a decrease in the amount of mechanical displacement due to changes over time in an electromechanical converter and can record high-quality images regardless of the environment in which the device is placed. An object of the present invention is to provide an inkjet recording device that performs recording using an electromechanical converter polarized by a polarization signal to generate energy for ejecting ink. , applies a drive signal when recording an image,
This is achieved by providing a drive means for applying a repolarization signal having the same polarity as the polarization signal in order to strengthen the polarization of the converter and having a larger energy than the drive signal when an image is not recorded. [Example] The present invention will be explained using a preferred example. FIG. 1 is a schematic cross-sectional view of the recording head of the inkjet recording apparatus used in this example. 1st
The figure shows an example in which a cylindrical piezoelectric element is used as the electromechanical transducer 11 polarized by a polarization signal to generate energy for ejecting droplets from an orifice. Further, in FIG. 1, 12 is a liquid flow path forming member in which an orifice is formed (hereinafter referred to as a nozzle), 13 is an adhesive for joining the converter 11 and the nozzle 12, and 14 is the converter 11.
Balance adjustment of energy in the droplet ejection direction and energy in the liquid supply direction when driving the
Alternatively, it is a filter that prevents impurities from entering the nozzle and adjusts the flow rate of liquid supply. The recording head shown in FIG. 1 is installed with the filter 14 side of the recording head immersed in the liquid in the sub-tank 21, as shown in the schematic cross-sectional view of the area surrounding the recording head of the inkjet recording apparatus in FIG. ing. Further, 22 is a supply tube for supplying liquid into the sub-tank 21 connected to a main tank (not shown), and 23 is a suction tube for adjusting the liquid level in the sub-tank 21. FIG. 3 is a circuit diagram showing an example of a drive circuit for driving the converter 11 of the inkjet recording apparatus. In FIG. 3, 31 is a converter, 32 is a power input terminal for driving the converter 31, 33 is a pulse input changeover switch, 3
4 is a resistor for changing the voltage applied to the converter 32, and 35 is an ejection pulse trigger input terminal for inputting a pulse for ejecting droplets. What is shown in FIG. 4 is a waveform diagram showing an example of the waveform of the input pulse inputted to the electromechanical converter, where a is a trigger waveform diagram of the ejection pulse, and b is a trigger waveform diagram of the repolarization pulse. FIG. 5 is a waveform diagram showing an example of the voltage waveform of the voltage input to each electrical/mechanical converter, in which a is a voltage waveform diagram of an ejection pulse, and b is a voltage waveform diagram of a repolarization pulse. In the present invention, a repolarization signal having the same polarity as the polarization signal (here, a drive signal during image recording) is sent to the electromechanical transducer in the direction in which the electromechanical transducer is polarized at any time during non-image recording. By applying a signal of the same polarity as the inkjet recording device, the performance of the inkjet recording device is always maintained. An example of how voltage is applied to the electromechanical converter during image recording and repolarization in the present invention will be explained using FIGS. 3 to 5. Usually, the trigger input terminal 3 for the ejection pulse shown in Figure 3
A discharge signal is input to the converter 5, and a desired voltage is applied to the converter 31, thereby causing the converter 31 to undergo mechanical displacement. During repolarization, a repolarization signal is input to the repolarization pulse trigger input terminal 36. As a result, a voltage having the same polarity as that during recording is applied to the converter 31. Note that the voltage input to the converter 31 can be easily changed by changing the voltage input to the terminal 32 or the resistance 34. In this example, as a recording head configured as shown in FIG.
After bonding PZT (leadzirco-titanate) as a mechanical converter, a filter 14 was attached to the liquid inflow side of the nozzle 12. This recording head is then connected to a filter 14 as shown in FIG.
An inkjet recording device was created by immersing the inkjet side into the subtank 21. After measuring the initial ejection speed of droplets and the initial dot diameter on paper of the inkjet recording device (hereinafter abbreviated as the device) prepared as described above, it was left in a temperature environment of -30° C. for one month. Thereafter, the apparatus was returned to room temperature, and the ejection speed of the droplets and the diameter of the dots on the paper caused by the ejected droplets were measured in the same manner as when the initial ejection speed and the initial diameter of the dots on the paper were measured. next,
A means for applying the DC voltage of the present invention in a direction that strengthens the polarization of the converter was activated, and a DC power source was applied to the electromechanical converter in a direction that strengthens the polarization of the converter (repolarization pulse was applied). ) and the droplet ejection speed and dot diameter on paper were measured. The results are shown in Table 1 for the droplet ejection speed and Table 2 for the dot diameter on paper.

【表】【table】

【表】 尚、液滴の吐出速度及び紙上ドツト径は、入力
電圧70Vの矩形電圧を入力した場合における値で
ある。又、再分極パルスとしては、入力電圧
90V、パルス巾1分の矩形電圧を入力した。 第1表及び第2表からわかる様に、−30℃の温
度環境下に1ヶ月間放置された装置は液滴の吐出
速度が初期のそれぞれに較べて大幅に低下してお
り、紙上ドツト径についても同様に初期の値に較
べ大幅に小さくなつた。この状態の装置を使用し
て実際に画像記録を行なつたところ画像濃度の低
下した画像しか得られず初期の画像に較べ明らか
に劣つた記録しかできなかつた。これに対して、
再分極パルスを印加した本発明の装置は、初期の
液滴吐出速度及び紙上ドツト径にほとんど変化が
なく、その記録画像も初期のものに較べ全く遜色
のないものであつた。 本発明の別の実施例として、−30℃の温度環境
下に装置が放置された状態で再分極パルスを印加
したものを同様に初期状態と比較したが、この場
合においても記録画像は初期のものと較べ全く遜
色のないものが得られた。 再分極パルスのパルス巾としては、好ましくは
吐出パルスのパルス巾以上とされるが充分な再分
極効果を得る為により好ましくは10秒以上、最適
には装置の使用中止時間等を鑑みて10秒乃至1分
とするのが良い。 再分極パルスの印字時に印加する電圧と同等の
大きさ以上の同極性を持つた電圧が好ましく、そ
の上限は再分極パルスが印加される時間も考慮し
た上で電気機械変換体の損傷等が生じない様に設
定されるのはもちろんである。 再分極パルスは、1つのパルスから成る事は必
ずしも必要でなく、複数の短いパルスが連続され
て入力されても良い。 この場合、本発明でいう再分極パルスはそれ等
複数の短いパルスの集合として考えて良い。又、
電圧波形は第5図bに示される様な形状をとらな
くても良いのはいうまでもない。 再分極パルスが印加されるのは装置が非画像記
録時であることが必要であるがその条件を満たせ
ばいつ印加しても良い。例えば、装置の使用者が
非画像記録時の任意の時にスイツチやリレー、ス
イツチング回路等の手段によつて再分極パルスを
印加すれば良い。或いは、装置への電源投入時、
液滴の吐出回復操作時、装置がヒーター等のイン
ク温度の補償機構を備えている場合にはその補償
機構の作動時に、例えば前記の手段によつて所望
の時間再分極パルスを印加しても良い。後者の場
合使用者による誤操作や不良画像記録を常に回避
する意味で好ましい。 〈効果〉 以上、詳細に説明した様に、本発明によれば電
気・機械変換体を用いたインクジエツト記録装置
に於いて、装置がおかれる温度環境に因らず常に
安定した画像記録を行なえるインクジエツト記録
装置が提供される。
[Table] Note that the droplet ejection speed and dot diameter on paper are the values when a rectangular voltage of 70V is input. In addition, as a repolarization pulse, the input voltage
A rectangular voltage of 90V and a pulse width of 1 minute was input. As can be seen from Tables 1 and 2, the droplet ejection speed of the device left in a -30°C temperature environment for one month has decreased significantly compared to the initial stage, and the dot diameter on paper has decreased significantly. Similarly, the value has become significantly smaller than the initial value. When an image was actually recorded using the apparatus in this state, only an image with reduced image density was obtained, and the recording was clearly inferior to the initial image. On the contrary,
In the apparatus of the present invention to which the repolarization pulse was applied, there was almost no change in the initial droplet ejection speed and dot diameter on paper, and the recorded images were also comparable to those of the initial apparatus. As another example of the present invention, a repolarization pulse was applied while the device was left in a -30°C temperature environment and compared with the initial state. In this case as well, the recorded image was I was able to obtain something that was completely comparable to the others. The pulse width of the repolarization pulse is preferably greater than the pulse width of the ejection pulse, but in order to obtain a sufficient repolarization effect, it is more preferably 10 seconds or more, and optimally 10 seconds in consideration of the time when the device is not in use. It is best to set it to 1 minute. It is preferable to use a voltage that has the same polarity as the voltage applied when printing the repolarization pulse, and the upper limit should be set in consideration of the time during which the repolarization pulse is applied to prevent damage to the electromechanical transducer. Of course, it is set so that it does not exist. The repolarization pulse does not necessarily need to consist of one pulse, and a plurality of short pulses may be input in succession. In this case, the repolarization pulse referred to in the present invention may be considered as a collection of a plurality of short pulses. or,
It goes without saying that the voltage waveform does not have to take the shape shown in FIG. 5b. Although it is necessary that the repolarization pulse be applied when the apparatus is not recording an image, it may be applied at any time as long as the conditions are met. For example, the user of the apparatus may apply a repolarization pulse at any time during non-image recording using means such as a switch, relay, or switching circuit. Alternatively, when powering on the device,
During a droplet ejection recovery operation, if the device is equipped with an ink temperature compensation mechanism such as a heater, when the compensation mechanism is activated, a repolarization pulse may be applied for a desired time by, for example, the above-mentioned means. good. The latter case is preferable in that it always avoids erroneous operations by the user and recording of defective images. <Effects> As explained in detail above, according to the present invention, in an inkjet recording device using an electromechanical converter, stable image recording can be performed at all times regardless of the temperature environment in which the device is placed. An inkjet recording device is provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はインクジエツト記録装置の記録ヘツド
の模式的切断面図、第2図はインクジエツト記録
装置の模式的切断面図、第3図は電気・機械変換
体の駆動回路の一例を示す回路図、第4図は入力
パルスの波形の一例を示す波形図でaは吐出パル
スの波形図、bは再分極パルスの波形図、第5図
は電気・機械変換体に入力される電圧の波形の一
例を示す電圧波形図でaは画像記録時の電圧波形
図、bは再分極時の電圧波形図である。 11……電気・機械変換体(変換体)、12…
…液流路形成部材(ノズル)、13……接着剤、
14……フイルター、21……サブタンク、22
……供給チユーブ、23……吸引チユーブ。
FIG. 1 is a schematic cross-sectional view of a recording head of an inkjet recording device, FIG. 2 is a schematic cross-sectional view of the inkjet recording device, and FIG. 3 is a circuit diagram showing an example of a drive circuit for an electromechanical converter. Fig. 4 is a waveform diagram showing an example of the waveform of the input pulse, a is a waveform diagram of the ejection pulse, b is a waveform diagram of the repolarization pulse, and Fig. 5 is an example of the waveform of the voltage input to the electromechanical converter. In the voltage waveform diagram showing a, a is a voltage waveform diagram during image recording, and b is a voltage waveform diagram during repolarization. 11...Electrical/mechanical converter (converter), 12...
...Liquid flow path forming member (nozzle), 13...Adhesive,
14...Filter, 21...Subtank, 22
... Supply tube, 23 ... Suction tube.

Claims (1)

【特許請求の範囲】 1 インクを吐出するためのエネルギーを発生す
るべく分極信号によつて分極処理された電気・機
械変換体を用いて記録を行なうインクジエツト記
録装置において、 前記電気・機械変換体に対し、画像記録時に駆
動信号を印加し、非画像記録時に該駆動信号より
もエネルギーが大きく該変換体の分極を強めるべ
く前記分極信号と同極性の再分極信号を印加する
駆動手段と、 を具備することを特徴とするインクジエツト記録
装置。 2 前記再分極信号は、前記駆動信号よりも信号
通電時間が長いことを特徴とする特許請求の範囲
第1項記載のインクジエツト記録装置。 3 前記再分極信号は、前記駆動信号よりも電圧
が高いことを特徴とする特許請求の範囲第1項記
載のインクジエツト記録装置。 4 前記非画像記録時は、インクの吐出回復操作
時であることを特徴とする特許請求の範囲第1項
記載のインクジエツト記録装置。 5 前記非画像記録時は、インクの温度補償作動
時であることを特徴とする特許請求の範囲第1項
記載のインクジエツト記録装置。
[Scope of Claims] 1. In an inkjet recording device that performs recording using an electro-mechanical converter polarized by a polarization signal to generate energy for ejecting ink, the electro-mechanical converter includes: On the other hand, the drive means applies a drive signal during image recording, and applies a repolarization signal having the same polarity as the polarization signal and having greater energy than the drive signal and intensifying the polarization of the converter during non-image recording. An inkjet recording device characterized by: 2. The inkjet recording apparatus according to claim 1, wherein the repolarization signal has a longer signal energization time than the drive signal. 3. The inkjet recording apparatus according to claim 1, wherein the repolarization signal has a higher voltage than the drive signal. 4. The inkjet recording apparatus according to claim 1, wherein the non-image recording time is an ink ejection recovery operation. 5. The inkjet recording apparatus according to claim 1, wherein the time of non-image recording is the time of ink temperature compensation operation.
JP8260884A 1984-04-24 1984-04-24 Inkjet recorder Granted JPS60225761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8260884A JPS60225761A (en) 1984-04-24 1984-04-24 Inkjet recorder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8260884A JPS60225761A (en) 1984-04-24 1984-04-24 Inkjet recorder

Publications (2)

Publication Number Publication Date
JPS60225761A JPS60225761A (en) 1985-11-11
JPH0586342B2 true JPH0586342B2 (en) 1993-12-10

Family

ID=13779185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8260884A Granted JPS60225761A (en) 1984-04-24 1984-04-24 Inkjet recorder

Country Status (1)

Country Link
JP (1) JPS60225761A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57126670A (en) * 1980-09-30 1982-08-06 Siemens Ag Circuit controlling recording nozzle
JPS57131566A (en) * 1981-02-09 1982-08-14 Canon Inc Ink jet recorder
JPS5818273A (en) * 1981-07-27 1983-02-02 Sharp Corp Removal of air from ink jet nozzle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57126670A (en) * 1980-09-30 1982-08-06 Siemens Ag Circuit controlling recording nozzle
JPS57131566A (en) * 1981-02-09 1982-08-14 Canon Inc Ink jet recorder
JPS5818273A (en) * 1981-07-27 1983-02-02 Sharp Corp Removal of air from ink jet nozzle

Also Published As

Publication number Publication date
JPS60225761A (en) 1985-11-11

Similar Documents

Publication Publication Date Title
JP4251912B2 (en) Image forming apparatus
JP3495761B2 (en) Method of forming ink droplets in ink jet printer and ink jet recording apparatus
JP3468377B2 (en) Driving method of ink jet recording head, ink jet recording apparatus, and control apparatus of ink jet recording head
WO1995034427A1 (en) Method of driving ink jet head
US6945627B2 (en) Ink jet recording apparatus and ink jet recording method
JP2000141647A (en) Ink-jet recording apparatus
JP2009066948A (en) Liquid jetting apparatus
JP4266568B2 (en) DRIVE DEVICE, LIQUID DISCHARGE DEVICE, AND DRIVE METHOD
WO1999014050A1 (en) Method of driving ink-jet head
JPS59143654A (en) Liquid discharge apparatus
JPH11170522A (en) Method and apparatus for jetting ink drop
JP2010105300A (en) Liquid discharge apparatus
JP2004082718A (en) Inkjet recorder and inkjet recording method
JP4323197B2 (en) Driving method of piezoelectric ink jet head
JPH0586342B2 (en)
JP3234073B2 (en) Inkjet head
JPH0524194A (en) Ink jet recorder
JP2004314612A (en) Driving method of piezoelectric ink-jet head
JP2006068970A (en) Reproduction method of piezoelectric element and liquid discharging apparatus
JP2000313119A (en) Ink jet recording head, ink jet recording apparatus and method
JP5274883B2 (en) Ink jet head, swing method thereof, and image forming apparatus
JP3322276B2 (en) Driving method and apparatus for inkjet recording head
JPS5855253A (en) Driving method for electrostriction vibrator in ink jet recorder
JPH04339660A (en) Method for driving liquid jet recording head
JP3594628B2 (en) Ink jet recording device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term