JPH0586217A - Method for modifying conductivity of resin molded product - Google Patents

Method for modifying conductivity of resin molded product

Info

Publication number
JPH0586217A
JPH0586217A JP3074095A JP7409591A JPH0586217A JP H0586217 A JPH0586217 A JP H0586217A JP 3074095 A JP3074095 A JP 3074095A JP 7409591 A JP7409591 A JP 7409591A JP H0586217 A JPH0586217 A JP H0586217A
Authority
JP
Japan
Prior art keywords
resin molded
group
molded product
resin
complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3074095A
Other languages
Japanese (ja)
Inventor
Shuichi Fujiwara
藤原秀一
Kenji Motogami
本上憲治
Shigeo Mori
茂男 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Jidosha Kogyo KK
Toyota Motor East Japan Inc
DKS Co Ltd
Original Assignee
Dai Ichi Kogyo Seiyaku Co Ltd
Kanto Jidosha Kogyo KK
Kanto Auto Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Ichi Kogyo Seiyaku Co Ltd, Kanto Jidosha Kogyo KK, Kanto Auto Works Ltd filed Critical Dai Ichi Kogyo Seiyaku Co Ltd
Priority to JP3074095A priority Critical patent/JPH0586217A/en
Publication of JPH0586217A publication Critical patent/JPH0586217A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To highly improve the conductivity of a resin molded product without damaging the physical properties of the resin molded product, by kneading the raw material of the resin molded product with the complex of a specific polyether substance with an electrolyte salt, and subsequently molding the kneaded product. CONSTITUTION:A raw material of a resin molded product, such as a polyolefin resin, is kneaded with the complex of an organic compound having a skeleton of formula I [Z is active hydrogencontaining compound group; Y is active hydrogen, 1-20C alkyl, (alkyl)aryl; (m) is 1-250; (k) is 1-12; A is group of formula II (n) is 0-25; R is 1-20C alkyl, (alkyl)aryl)] with an electrolyte soluble therein, such as lithium stearyl sulfonate, and subsequently molded by an injection- molding method, etc. The surface of the obtained resin molded product is treated with plasma to obtain a molded product highly improved in the conductivity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は樹脂成形体の導電性改質
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for modifying the electrical conductivity of resin moldings.

【0002】[0002]

【従来の技術】従来の樹脂成形体の導電性改質方法とし
ては、カーボンブラック、カーボンファイバー、導電性
マイカ等を樹脂に練り込む方法がある。しかしながら、
このような従来の樹脂成形体の導電性改質方法にあって
は、カーボンブラック等の導電性物質を多量に練り込ま
なければ導電性の向上にはつながらないため、樹脂成形
体の物性低下を避けることはできず、また、黒色等の着
色の問題もあり、その用途には限りがあった。
2. Description of the Related Art As a conventional method for improving the conductivity of a resin molding, there is a method of kneading carbon black, carbon fiber, conductive mica or the like into a resin. However,
In such a conventional method for improving the electrical conductivity of the resin molded body, it is not possible to improve the electrical conductivity unless a large amount of a conductive substance such as carbon black is kneaded, so that physical property deterioration of the resin molded body is avoided. In addition, there is a problem of coloring such as black, and its use is limited.

【0003】[0003]

【発明が解決しようとする課題】本発明は、このような
従来法の欠点を解消し、樹脂成形体の物性を害すること
なく、また着色の問題を生ずることなく、樹脂成形体の
導電性を著しく改良しうる方法を提供することを課題と
する。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned drawbacks of the conventional method, and does not impair the physical properties of the resin molded body and causes the coloring problem without increasing the conductivity of the resin molded body. It is an object to provide a method that can be significantly improved.

【0004】[0004]

【課題を解決するための手段】本発明では、樹脂成形体
原料に特定のポリエーテル物質と電解質塩の錯体を練り
込み、成形することにより上記課題を解決する。即ち、
本発明の方法は、樹脂成形体原料に、下記一般式:
In the present invention, the above problems are solved by kneading a complex of a specific polyether substance and an electrolyte salt into a raw material for a resin molded body and molding the mixture. That is,
The method of the present invention uses the following general formula for the raw material of the resin molded body:

【0005】[0005]

【化3】 [Chemical 3]

【0006】〔但し、Zは活性水素含有化合物残基、Y
は活性水素基、又はアルキル基、アリール基、アルキル
アリール基、mは1〜250 の整数、kは1〜12の整数、
Aは一般式:
[Wherein Z is an active hydrogen-containing compound residue, Y
Is an active hydrogen group, or an alkyl group, an aryl group, an alkylaryl group, m is an integer of 1 to 250, k is an integer of 1 to 12,
A is the general formula:

【0007】[0007]

【化4】 [Chemical 4]

【0008】(nは0〜25の整数、Rは炭素数1〜20の
アルキル基、アリール基、又はアルキルアリール基)を
表わす〕で示される骨格を有する有機化合物とこれらに
可溶性の電解質塩との錯体を練り込み、その混練物を成
形した後、得られた樹脂成形体の表面をプラズマ処理す
ることを特徴とする。
(N represents an integer of 0 to 25, R represents an alkyl group, an aryl group, or an alkylaryl group having 1 to 20 carbon atoms) and an organic compound having a skeleton and an electrolyte salt soluble in these compounds. Is kneaded, the kneaded product is molded, and then the surface of the obtained resin molded product is subjected to plasma treatment.

【0009】本発明では、樹脂成形体原料として、ポリ
エチレン、ポリプロピレン等のポリオレフィン樹脂、A
BS樹脂、アクリル樹脂、ポリアミド樹脂、ポリ塩化ビ
ニル樹脂、ポリカーボネート樹脂、ポリアセタール樹
脂、フェノール樹脂等の表面抵抗値の高い樹脂がいずれ
も使用できる。
In the present invention, as a raw material for the resin molded body, a polyolefin resin such as polyethylene or polypropylene, A
Any resin having a high surface resistance value such as BS resin, acrylic resin, polyamide resin, polyvinyl chloride resin, polycarbonate resin, polyacetal resin, or phenol resin can be used.

【0010】また、樹脂成形体原料に練り込む錯体に使
用される式の骨格を有する有機化合物(以下、ポリエ
ーテルと述べる)としては、活性水素含有化合物にグリ
シジルエーテル類を反応させたものを使用するのが好ま
しい。
The organic compound having a skeleton of the formula (hereinafter referred to as polyether) used for the complex kneaded into the raw material for the resin molded product is a compound obtained by reacting an active hydrogen-containing compound with glycidyl ethers. Preferably.

【0011】かかる活性水素含有化合物としては、例え
ば、メタノール、エタノール等のモノアルコール;エチ
レングリコール、プロピレングリコール、1,4-ブタンジ
オール等のジアルコール;グリセリン、トリメチロール
プロパン、ソルビトール、シュークローズ、ポリグリセ
リン等の多価アルコール;ブチルアミン、2−エチルヘ
キシルアミン、エチレンジアミン、ヘキサメチレンジア
ミン、ジエチレントリアミン、トリエチレンテトラミ
ン、テトラエチレンペンタミン、ペンタエチレンヘキサ
ミン、アニリン、ベンジルアミン、フェニレンジアミン
等のアミン化合物;モノエタノールアミン、ジエタノー
ルアミン等の一分子中に異種の活性水素含有基を有する
化合物等がいずれも使用でき、中でも多価アルコールの
使用が好ましい。次に、このような活性水素含有化合物
と反応させるグリシジルエーテル類としては、例えば、
下記式で示されるアルキル−又はアリール−又はアルキ
ルアリール−ポリエチレングリコールグリシジルエーテ
ル類
Examples of such active hydrogen-containing compounds include monoalcohols such as methanol and ethanol; dialcohols such as ethylene glycol, propylene glycol and 1,4-butanediol; glycerin, trimethylolpropane, sorbitol, sucrose and polyalcohol. Polyhydric alcohols such as glycerin; butylamine, 2-ethylhexylamine, ethylenediamine, hexamethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, aniline, benzylamine, phenylenediamine, and other amine compounds; monoethanolamine , Compounds having different active hydrogen-containing groups in one molecule, such as diethanolamine, can be used, and polyhydric alcohols are preferably used. Next, as the glycidyl ethers to be reacted with such an active hydrogen-containing compound, for example,
Alkyl- or aryl- or alkylaryl-polyethylene glycol glycidyl ethers represented by the following formula

【0012】[0012]

【化5】 [Chemical 5]

【0013】(但し、R及びnは一般式と同様であ
る)が使用できるが、代表的なものとしては、Rが例え
ばメチル基、エチル基、プロピル基、ブチル基等の直鎖
アルキル基、イソプロピル基、sec-ブチル基、tert- ブ
チル基等の分枝アルキル基、フェニル基、ナフチル基、
ノニルフェニル基、トリル基、ベンジル基等のアリール
又はアルキルアリール基等であるものが挙げられる。中
でもnが1〜15、Rの炭素数が1〜12であるものが特に
好ましく使用される。
(However, R and n have the same meanings as in the general formula), typical examples of R are linear alkyl groups such as methyl group, ethyl group, propyl group and butyl group, Isopropyl group, sec-butyl group, branched alkyl group such as tert-butyl group, phenyl group, naphthyl group,
Examples thereof include aryl or alkylaryl groups such as nonylphenyl group, tolyl group and benzyl group. Among them, those in which n is 1 to 15 and R has 1 to 12 carbon atoms are particularly preferably used.

【0014】グリシジルエーテル類を反応させる場合に
使用する触媒としては、ソジウムメチラート、苛性ソー
ダ、苛性カリ、炭酸リチウム等の塩基性触媒が一般的で
あるが、ボロントリフルオライドのような酸性触媒や、
トリメチルアミン、トリエチルアミンのようなアミン系
触媒も有用である。
As a catalyst used when reacting glycidyl ethers, basic catalysts such as sodium methylate, caustic soda, caustic potash, and lithium carbonate are generally used. However, acidic catalysts such as boron trifluoride and
Amine-based catalysts such as trimethylamine and triethylamine are also useful.

【0015】ポリエーテルの主鎖末端基Yは、活性水素
基であっても側鎖末端基Rと同様なアルキル基、アリー
ル基又はアルキルアリール基であっても差支えない(Y
がアルキル基、アリール基、又はアルキルアリール基で
ある場合は、側鎖末端基Rと同様な基が挙げられる)。
主鎖末端にアリキル基、アリール基、アルキルアリール
基を導入するには、一般にハロゲン化合物を反応させれ
ばよく、例えば、このような化合物としては、塩化メチ
ル、臭化メチル、ヨウ化メチル、塩化エチル、臭化エチ
ル、ヨウ化エチル、塩化プロピル、臭化プロピル、ヨウ
化プロピル、塩化ブチル、臭化ブチル、ヨウ化ブチル等
のような直鎖アルキル型ハロゲン化物、イソプロピルク
ロライド、イソプロピルブロマイド、イソプロピルアイ
オダイド、sec-ブチルクロライド、sec-ブチルブロマイ
ド、sec-ブチルアイオダイド、tert- ブチルクロライ
ド、tert- ブチルブロマイド、tert- ブチルアイオダイ
ド等のような分枝アルキル型ハロゲン化物、クロロベン
ゼン、ブロモベンゼン、アイオドベンゼン、1-クロロナ
フタレン、2-クロロナフタレン、1-ブロモナフタレン、
2-ブロモナフタレン、1-アイオドナフタレン、o-クロロ
トルエン、m-クロロトルエン、p-クロロトルエン、o-ブ
ロモトルエン、m-ブロモトルエン、p-ブロモトルエン、
o-アイオドトルエン、m-アイオドトルエン、p-アイオド
トルエン、ベンジルクロライド、ベンジルブロマイド等
のようなアリールもしくはアルキルアリール型ハロゲン
化物を挙げることができる。これらを単独で使用して
も、2種以上併用してもよい。
The main chain terminal group Y of the polyether may be an active hydrogen group or the same alkyl group, aryl group or alkylaryl group as the side chain terminal group R (Y
Is an alkyl group, an aryl group, or an alkylaryl group, the same group as the side chain terminal group R can be mentioned).
In order to introduce an alkyl group, an aryl group, or an alkylaryl group at the end of the main chain, a halogen compound may be generally reacted. Examples of such compounds include methyl chloride, methyl bromide, methyl iodide, and chloride. Linear alkyl halides such as ethyl, ethyl bromide, ethyl iodide, propyl chloride, propyl bromide, propyl iodide, butyl chloride, butyl bromide, butyl iodide, isopropyl chloride, isopropyl bromide, isopropyl aio Branched alkyl halides such as daid, sec-butyl chloride, sec-butyl bromide, sec-butyl iodide, tert-butyl chloride, tert-butyl bromide, tert-butyl iodide, chlorobenzene, bromobenzene, and i. Odobenzene, 1-chloronaphthalene, 2-chloronaphthalene, 1-bromonaphthalene,
2-bromonaphthalene, 1-iodonaphthalene, o-chlorotoluene, m-chlorotoluene, p-chlorotoluene, o-bromotoluene, m-bromotoluene, p-bromotoluene,
There may be mentioned aryl or alkylaryl type halides such as o-iodotoluene, m-iodotoluene, p-iodotoluene, benzyl chloride, benzyl bromide and the like. These may be used alone or in combination of two or more.

【0016】更にこのようなポリエーテルと錯体を構成
する可溶性電解質塩としては、例えば、LiI 、LiCl、Li
ClO4、LiSCN 、LiBF4 、LiAsF6、LiCF3SO3、LiC6F13S
O3、LiCF3CO2、LiHgI3、NaI 、NaSCN 、NaBr、KI、CsSC
N 、AgNO3 、CuC12Mg(ClO4)2などの少なくともLi、Na、
K 、Cs、Ag、Cu又はMgの1種を含む無機イオン塩、ステ
アリルスルホン酸リチウム、オクチルスルホン酸ナトリ
ウム、ドデジルベンゼンスルホン酸リチウム、ナフタレ
ンスルホン酸ナトリウム、ジブチルナフタレンスルホン
酸リチウム、オクチルナフタレンスルホン酸カリウム、
ドデジルナフタレンスルホン酸カリウム等の有機イオン
塩が挙げられる。
Further, as the soluble electrolyte salt forming a complex with such a polyether, for example, LiI, LiCl, Li
ClO 4, LiSCN, LiBF 4, LiAsF 6, LiCF 3 SO 3, LiC 6 F 13 S
O 3 , LiCF 3 CO 2 , LiHgI 3 , NaI, NaSCN, NaBr, KI, CsSC
N, AgNO 3 , CuC 12 Mg (ClO 4 ) 2, etc., at least Li, Na,
Inorganic ionic salt containing one of K, Cs, Ag, Cu or Mg, lithium stearyl sulfonate, sodium octyl sulfonate, lithium dodecylbenzene sulfonate, sodium naphthalene sulfonate, lithium dibutylnaphthalene sulfonate, octyl naphthalene sulfonate potassium,
Organic ion salts such as potassium dodecylnaphthalene sulfonate may be mentioned.

【0017】なお、このような可溶性電解質塩の添加量
は、特に限定されないが、ポリエーテルに対して、0.5
〜10wt%程度であるのが好ましい。また、ポリエーテル
と可溶性電解質塩との錯体の使用量は、樹脂成形体原料
に対して、1〜30wt%、特に1〜10wt%であるのが好ま
しい。
The amount of such soluble electrolyte salt added is not particularly limited, but is 0.5% with respect to the polyether.
It is preferably about 10 wt%. Further, the amount of the complex of the polyether and the soluble electrolyte salt used is preferably 1 to 30% by weight, and particularly preferably 1 to 10% by weight based on the raw material of the resin molded body.

【0018】次に、ポリエーテルと可溶性電解質塩との
錯体を形成させる方法としては、予め水、メタノール、
メチルエチルケトン、テトラヒドロフラン、アセトン、
塩化メチレン等のポリエーテルと相溶性の高い単独又は
混合溶液に可溶性電解質塩を溶解させ、この溶液とポリ
エーテルを均一に混合し、錯体溶液を調整した後、溶媒
を除去し、錯体を得る方法が好ましい。しかし、場合に
よっては、ポリエーテルと可溶性電解質塩をそれぞれ樹
脂成形体原料に練り込み、樹脂成形体原料中で錯体を形
成させてもよい。
Next, as a method for forming a complex of polyether and a soluble electrolyte salt, water, methanol, and
Methyl ethyl ketone, tetrahydrofuran, acetone,
A method of obtaining a complex by dissolving a soluble electrolyte salt in a single or mixed solution having high compatibility with polyether such as methylene chloride, uniformly mixing the solution and the polyether, adjusting a complex solution, and then removing the solvent. Is preferred. However, in some cases, the polyether and the soluble electrolyte salt may be kneaded into the resin molded material to form a complex in the resin molded material.

【0019】ポリエーテルと可溶性電解質塩の錯体を、
樹脂成形体原料に練り込む方法としては二軸式押出し
機、熱ロール式等、一般的に用いられる方法がいずれも
使用でき、また、樹脂成形体の成形方法としても射出成
形、押出し成形、カレンダー加工、圧縮成形、SMC法
等がいずれも使用できる。
The complex of polyether and soluble electrolyte salt is
As a method of kneading into the resin molded material, any of commonly used methods such as a twin-screw extruder and a heat roll type can be used, and also as a molding method of the resin molded body, injection molding, extrusion molding, calendering. Any of processing, compression molding and SMC method can be used.

【0020】プラズマ処理は、高周波放電、マイクロ波
放電等で低圧の酸化性ガス、例えば酸素、又はこれに窒
素、アルゴン等を混入させたガスを励起して活性ガスを
発生させ、これを被処理物(成形体)の表面に接触させ
る方法を用いるが、その際の圧力は通常0.1〜5Torr、
好ましくは0.2〜1.0Torrであり、温度は40〜100
℃程度であり、処理時間は10秒〜10分程度でよい。
なお、処理ガスは、酸素18〜90容量%であるのが好
ましい。
The plasma treatment is carried out by exciting a low-pressure oxidizing gas such as oxygen or a gas obtained by mixing nitrogen, argon, or the like with high-frequency discharge, microwave discharge, or the like to generate an active gas, which is then treated. The method of contacting the surface of the product (molded body) is used, but the pressure at that time is usually 0.1 to 5 Torr,
Preferably, it is 0.2 to 1.0 Torr, and the temperature is 40 to 100.
C., and the treatment time may be about 10 seconds to 10 minutes.
The processing gas is preferably 18 to 90% by volume of oxygen.

【0021】作用 このような本発明においては、樹脂に練り込まれた上記
錯体の可溶性電解質塩のカチオンが通常のエチレンオキ
シドやプロピレンオキシド等のアルキレンオキシドを用
いたポリエーテルの場合、主鎖のら線構造(スパイラル
構造)の内部のみを移動することしかできなかったのに
対して、側鎖中にもエーテル結合酸素があるため、側鎖
を介して移動もできることに加え、カチオンが分子間を
移動するためには、通常は主鎖同士の接近(セグメント
運動にる接近)が必要であったのに対して、側鎖を介し
ての移動が可能となり、よりカチオン移動が容易となっ
たため、従来より高いイオン導電性を生じ、その抵抗値
を低下させ、優れた導電性を有する品質のよい樹脂成形
体を得ることができる。
In the present invention as described above, when the cation of the soluble electrolyte salt of the above complex kneaded in the resin is a usual polyether using an alkylene oxide such as ethylene oxide or propylene oxide, the main chain coplanar line is used. It was able to move only inside the structure (spiral structure), while in addition to the ether bond oxygen in the side chain, it can also move through the side chain and the cation moves between molecules. In order to achieve this, it was usually necessary for the main chains to approach each other (approaching in a segmental motion), but it became possible to move through the side chains, which facilitated cation transfer. It is possible to obtain higher ionic conductivity, reduce the resistance value thereof, and obtain a high-quality resin molded product having excellent conductivity.

【0022】[0022]

【実施例】【Example】

実施例1 エチレングリコール30g を出発物質として触媒に水酸化
カリウム7gを用いて、下記式に示す
Example 1 Using ethylene glycol (30 g) as a starting material and potassium hydroxide (7 g) as a catalyst, the following formula is used.

【0023】[0023]

【化6】 [Chemical 6]

【0024】n−ブチルトリエチレングリコールグリシ
ジルエーテル2390g を反応させて、脱塩精製を行ない、
式(但し、置換基等は下記の通り)で示される、分子
量4758(水酸基価より算出) の有機化合物1738g を得
た。
2390 g of n-butyltriethylene glycol glycidyl ether was reacted for desalting and purification,
1738 g of an organic compound represented by the formula (where the substituents and the like are as follows) having a molecular weight of 4758 (calculated from a hydroxyl value) was obtained.

【0025】[0025]

【化7】 [Chemical 7]

【0026】上記有機化合物500g中に、チオシアン酸リ
チウム25g をメタノール100gに溶解した溶液を加え、撹
拌して均一な溶液とした後、該溶液中のメタノールを減
圧トッピングし、錯体を得た。この錯体30g とポリプロ
ピレン樹脂1Kgを二軸押出し機で180 ℃、10分間混練
し、この混練物を同温度で2分間、50Kg/cm2の加圧によ
る熱プレス法で、成形(230mm ×230mm ×3mm) し、得
られた成形体の表面をガス流量6.75リットル/分、酸素
89容量%、窒素11容量%、圧力0.2mmHg、温度40℃、出
力1200Wで1分間プラズマ処理して、テストピースを作
成した。
A solution of 25 g of lithium thiocyanate in 100 g of methanol was added to 500 g of the above organic compound, and the mixture was stirred to form a uniform solution. Then, methanol in the solution was topped under reduced pressure to obtain a complex. 30 g of this complex and 1 kg of polypropylene resin were kneaded in a twin-screw extruder at 180 ° C for 10 minutes, and the kneaded material was molded (230 mm × 230 mm × 230 mm × 230 mm × 2) at the same temperature for 2 minutes by hot pressing with a pressure of 50 kg / cm 2. 3 mm), and the surface of the obtained molded product was supplied with oxygen at a gas flow rate of 6.75 l / min.
A test piece was prepared by performing a plasma treatment for 1 minute at 89% by volume, 11% by volume of nitrogen, a pressure of 0.2 mmHg, a temperature of 40 ° C. and an output of 1200 W.

【0027】実施例2 グリセリン20g を出発物質とし、触媒に水酸化カリウム
6g を用いて、まず下記式に示す
Example 2 Starting from 20 g of glycerin and using potassium hydroxide as a catalyst
First, the formula below is shown using 6g.

【0028】[0028]

【化8】 [Chemical 8]

【0029】n−ヘキシルジエチレングリコールグリシ
ジルエーテル2160g を反応させて脱塩精製を行ない、
式(但し、置換基等は下記の通り)で示される、分子量
9443 (水酸基価より算出) の有機化合物1861g を得た。
2160 g of n-hexyldiethylene glycol glycidyl ether was reacted for desalting and purification,
Molecular weight represented by the formula (however, the substituents are as follows)
1861 g of an organic compound of 9443 (calculated from the hydroxyl value) was obtained.

【0030】[0030]

【化9】 [Chemical 9]

【0031】上記有機化合物500g中にチオシアン酸カリ
ウム25g をアセトン200gに溶解した溶液を加え、撹拌し
て均一な溶液とした後、アセトンを減圧トッピングし、
錯体を得た。この錯体50g とポリプロピレン樹脂1Kgを
二軸押出し機で180 ℃、10分間混練し、この混練物を同
温度で2分間、50Kg/cm2の加圧による熱プレス法で成形
(230mm ×230mm ×3mm) し、得られた成形体の表面を
ガス流量6.75リットル/分、酸素89容量%、窒素11容量
%、圧力0.2mmHg、温度40℃、出力1200Wで1分間プラ
ズマ処理して、テストピースを作成した。
A solution prepared by dissolving 25 g of potassium thiocyanate in 200 g of acetone was added to 500 g of the above organic compound, and the mixture was stirred to form a uniform solution. Then, acetone was decompressed and topped,
A complex was obtained. 50 g of this complex and 1 kg of polypropylene resin were kneaded in a twin-screw extruder at 180 ° C for 10 minutes, and the kneaded material was molded by the hot pressing method at a temperature of 2 minutes and a pressure of 50 kg / cm 2.
(230 mm x 230 mm x 3 mm), and the surface of the obtained molded body is subjected to a plasma treatment for 1 minute at a gas flow rate of 6.75 l / min, oxygen 89% by volume, nitrogen 11% by volume, pressure 0.2 mmHg, temperature 40 ° C, output 1200 W. Then, the test piece was created.

【0032】実施例3 1,4-ブタンジオール20gを出発物質とし、触媒に水酸化
カリウム5gを用いて、下記式に示す
Example 3 Starting from 20 g of 1,4-butanediol and using 5 g of potassium hydroxide as a catalyst, the following formula is used.

【0033】[0033]

【化10】 [Chemical 10]

【0034】フェニルエチレングリコールグリシジルエ
ーテル1800g を反応させて、脱塩精製を行ない、式
(但し、置換基等は下記の通り)で示される、分子量71
90 (水酸基価より算出) の有機化合物1461g を得た。
1800 g of phenylethylene glycol glycidyl ether was reacted to carry out desalting and purification, and a molecular weight of 71 represented by the formula (provided that the substituents and the like are as described below).
1461 g of 90 (calculated from hydroxyl value) of the organic compound was obtained.

【0035】[0035]

【化11】 [Chemical 11]

【0036】上記有機化合物500g中に過塩素酸ナトリウ
ム25gをメタノール100gに溶解した溶液を加え、撹拌し
て均一な溶液とした後、メタノールを減圧トッピックし
て錯体を得た。この錯体50g とポリプロピレン樹脂1Kg
を二軸押出し機で180 ℃、10分間混練し、この混練物を
同温度で2分間、50Kg/cm2の加圧による熱プレス法で成
形 (230mm ×230mm ×3mm) し、得られた成形体の表面
をガス流量6.75リットル/分、酸素89容量%、窒素11容
量%、圧力0.2mmHg、温度40℃、出力1200Wで1分間プ
ラズマ処理して、テストピースを作成した。
A solution prepared by dissolving 25 g of sodium perchlorate in 100 g of methanol was added to 500 g of the above organic compound, and the mixture was stirred to form a uniform solution. Then, methanol was vacuum-topiced to obtain a complex. 50g of this complex and 1kg of polypropylene resin
Was kneaded with a twin-screw extruder at 180 ° C for 10 minutes, and the kneaded material was molded for 2 minutes at the same temperature by a hot press method with a pressure of 50 kg / cm 2 (230 mm × 230 mm × 3 mm), and the obtained molding was obtained. A test piece was prepared by subjecting the surface of the body to plasma treatment at a gas flow rate of 6.75 l / min, oxygen 89% by volume, nitrogen 11% by volume, pressure 0.2 mmHg, temperature 40 ° C., output 1200 W for 1 minute.

【0037】実施例4 ブチルアミン15g を出発物質とし、触媒に水酸化カリウ
ム 9g を用いて、次に下記式に示す
Example 4 Starting from 15 g of butylamine and using 9 g of potassium hydroxide as a catalyst, the following formula is used.

【0038】[0038]

【化12】 [Chemical formula 12]

【0039】n−ヘキシルヘキサエチレングリコールグ
リシジルエーテル3100g を反応させた後、塩化メチルを
水酸基に対して1.2当量用いて反応させ、末端メチル化
してから、脱塩精製を行ない、式(但し、置換基等は
下記の通り)で示される、分子量14,388 (水酸基価より
算出) の有機化合物2501g を得た。
After reacting 3100 g of n-hexylhexaethylene glycol glycidyl ether, the reaction was carried out by using 1.2 equivalents of methyl chloride with respect to the hydroxyl group to carry out terminal methylation, followed by desalting and purification. 2501 g of an organic compound having a molecular weight of 14,388 (calculated from a hydroxyl value), represented by the following substituents) was obtained.

【0040】[0040]

【化13】 [Chemical 13]

【0041】上記有機化合物500g中に、過塩素酸リチウ
ム25gをメタノール100gに溶解した溶液を加え、撹拌し
て均一な溶液とした後、メタノールを減圧トッピングし
て錯体を得た。この錯体70g とポリプロピレン樹脂1Kg
を二軸押出し機で180 ℃、10分間混練し、この混練物を
同温度で2分間、50Kg/cm2の加圧による熱プレス法で成
形 (230mm × 230mm×3mm) し、得られた成形体の表面
をガス流量6.75リットル/分、酸素89容量%、窒素11容
量%、圧力0.2mmHg、温度40℃、出力1200Wで1分間プ
ラズマ処理して、テストピースを作成した。
A solution of 25 g of lithium perchlorate in 100 g of methanol was added to 500 g of the above organic compound, and the mixture was stirred to form a uniform solution. Then, methanol was topped under reduced pressure to obtain a complex. 70g of this complex and 1Kg of polypropylene resin
Was kneaded with a twin-screw extruder at 180 ° C for 10 minutes, and the kneaded material was molded for 2 minutes at the same temperature by a hot press method with a pressure of 50 kg / cm 2 (230 mm × 230 mm × 3 mm), and the obtained molding was obtained. A test piece was prepared by subjecting the surface of the body to plasma treatment at a gas flow rate of 6.75 l / min, oxygen 89% by volume, nitrogen 11% by volume, pressure 0.2 mmHg, temperature 40 ° C., output 1200 W for 1 minute.

【0042】比較例 ポリプロピレン樹脂1Kgを、二軸押出し機で180 ℃10分
間練り、同温度で2分間、50Kg/cm2 の加圧による熱プ
レス法で成形(230mm× 230mm×3mm)し、得られた成形体
の表面をガス流量6.75リットル/分、酸素89容量%、窒
素11容量%、圧力0.2mmHg、温度40℃、出力1200Wで1
分間プラズマ処理して、テストピースを作成した。
Comparative Example 1 kg of polypropylene resin was kneaded in a twin-screw extruder at 180 ° C. for 10 minutes, and then molded (230 mm × 230 mm × 3 mm) at the same temperature for 2 minutes by a hot press method by applying a pressure of 50 kg / cm 2 to obtain a product. The surface of the formed compact was gas flow rate 6.75 liters / minute, oxygen 89% by volume, nitrogen 11% by volume, pressure 0.2 mmHg, temperature 40 ° C., output 1200 W, 1
Plasma treatment was performed for a minute to prepare a test piece.

【0043】結果 実施例1〜4及び比較例で得たテストピースはいずれも
物性及び外観において大差なく、その表面抵抗値及び引
張降伏強さについて測定した結果は次の通りであった。 表面抵抗(Ω) 引張降伏強さ(Kg/cm2) 実施例1 4.1×1012 321 実施例2 3.2×1012 325 実施例3 1.9×1012 318 実施例4 2.8×1012 319 比較例 2 ×1016以上 330 〔表面抵抗値の測定方法〕YHP(横河ヒューレットパッカ
ード) 社製の超絶縁抵抗計4329A 型を用いて印加電圧50
0Vで電圧をかけてから30秒後の表面抵抗を測定した。
Results The test pieces obtained in Examples 1 to 4 and Comparative Example were not significantly different in physical properties and appearance, and the results of measuring the surface resistance value and the tensile yield strength were as follows. Surface resistance (Ω ) Tensile yield strength (Kg / cm 2 ) Example 1 4.1 × 10 12 321 Example 2 3.2 × 10 12 325 Example 3 1.9 × 10 12 318 Example 4 2.8 × 10 12 319 Comparative Example 2 × 10 16 or more 330 [Measurement method of surface resistance value] Applied voltage 50 using a super insulation resistance meter 4329A type made by YHP (Yokogawa Hewlett Packard)
The surface resistance was measured 30 seconds after the voltage was applied at 0V.

【0044】[0044]

【発明の効果】本発明では、従来導電性に問題があると
された樹脂を使用して、その樹脂の物性及び色相を実質
的に害することなく、著しく導電性を改良した成形体を
得ることができる。
EFFECTS OF THE INVENTION In the present invention, a resin which has been conventionally considered to have a problem with conductivity is used, and a molded product having remarkably improved conductivity is obtained without substantially impairing the physical properties and hue of the resin. You can

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C08L 71:00) ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 5 Identification code Office reference number FI technical display area C08L 71:00)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 樹脂成形体原料に、下記一般式 【化1】 〔但し、Zは活性水素含有化合物残基、Yは活性水素基
又は炭素数1〜20のアルキル基、アリール基又はアルキ
ルアリール基、mは1〜250 の整数、kは1〜12の整
数、Aは下記一般式 【化2】 (nは0〜25の整数、Rは炭素数1〜20のアルキル基、
アリール基、又はアルキルアリール基)を表わす〕で示
される骨格を有する有機化合物とこれらに可溶性の電解
質塩との錯体を練り込み、その混練物を成形した後、得
られた樹脂成形体の表面をプラズマ処理することを特徴
とする樹脂成形体の導電性改質方法。
1. A raw material for a resin molded body is represented by the following general formula: [Wherein Z is an active hydrogen-containing compound residue, Y is an active hydrogen group or an alkyl group having 1 to 20 carbon atoms, an aryl group or an alkylaryl group, m is an integer of 1 to 250, k is an integer of 1 to 12, A is the following general formula: (N is an integer of 0 to 25, R is an alkyl group having 1 to 20 carbon atoms,
Representing an aryl group or an alkylaryl group)], a complex of an organic compound having a skeleton represented by the formula] and an electrolyte salt soluble in these is kneaded, and the kneaded product is molded, and then the surface of the obtained resin molded product is A method for modifying the electrical conductivity of a resin molding, which comprises performing a plasma treatment.
JP3074095A 1991-03-12 1991-03-12 Method for modifying conductivity of resin molded product Pending JPH0586217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3074095A JPH0586217A (en) 1991-03-12 1991-03-12 Method for modifying conductivity of resin molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3074095A JPH0586217A (en) 1991-03-12 1991-03-12 Method for modifying conductivity of resin molded product

Publications (1)

Publication Number Publication Date
JPH0586217A true JPH0586217A (en) 1993-04-06

Family

ID=13537287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3074095A Pending JPH0586217A (en) 1991-03-12 1991-03-12 Method for modifying conductivity of resin molded product

Country Status (1)

Country Link
JP (1) JPH0586217A (en)

Similar Documents

Publication Publication Date Title
KR102492841B1 (en) Novel polymers and methods for their manufacture
EP3650483B1 (en) Halogen-containing polymer and production method for same
US3378505A (en) Substituted polyphenylene ethers
KR101975974B1 (en) poly(phenylene oxide) mediated anion-exchange membranes with comb-shaped structure and preparation method thereof
JPH06196016A (en) Proton-conductive polymer solid electrolyte
JPH03139566A (en) Ion-conductive material and its preparation
Zhang et al. Mechanically flexible bulky imidazolium-based anion exchange membranes by grafting PEG pendants for alkaline fuel cells
JPH05202281A (en) Ionically conductive polyelectrolyte
US5053166A (en) Hetero-arylene vinylene polymer and highly conductive composition thereof
WO2023217050A1 (en) Polymer and preparation method therefor, and anion-exchange membrane
JPH0586217A (en) Method for modifying conductivity of resin molded product
EP0421612B1 (en) Method for improving electric conductivity of a resin moulding
EP0418067B1 (en) Method for improving electric conductivity of a resin moulding
JPH0578506A (en) Method for modifying conductivity of molded resin
KR19980015054A (en) POLYMER ION CONDUCTIVE FILM AND METHOD FOR PRODUCING THE S
JPH0468064A (en) Polyelectrolyte having ionic conductivity
JP2813832B2 (en) Ion conductive polymer electrolyte
KR20190026133A (en) Anion-exchange membrane based on aminated poly(tyrene-ethylene-butylene-styrene) copolymer and manufacturing method thereof
JPH04202229A (en) Modification of conductivity of resin molding
JPH0584464A (en) Electrostatic coating method for resin molding
JPH04202231A (en) Modification of conductivity of resin molding
JPH0586218A (en) Method for modifying conductivity of resin molded product
JPH0570616A (en) Method for modifying electrical conductivity of molded article of resin
JP2813828B2 (en) Ion conductive polymer electrolyte
JPH0584463A (en) Electrostatic coating method for resin molding