JPH0586180A - Thermotropic liquid crystalline polymeric material - Google Patents

Thermotropic liquid crystalline polymeric material

Info

Publication number
JPH0586180A
JPH0586180A JP3277078A JP27707891A JPH0586180A JP H0586180 A JPH0586180 A JP H0586180A JP 3277078 A JP3277078 A JP 3277078A JP 27707891 A JP27707891 A JP 27707891A JP H0586180 A JPH0586180 A JP H0586180A
Authority
JP
Japan
Prior art keywords
polymer
liquid crystalline
oxyphenyl
thermotropic liquid
spectrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3277078A
Other languages
Japanese (ja)
Other versions
JP3092736B2 (en
Inventor
Kenji Hanabusa
謙二 英
Toshikazu Hoshina
敏和 保科
Hiroyoshi Shirai
汪芳 白井
Yuichi Kubota
悠一 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP03277078A priority Critical patent/JP3092736B2/en
Publication of JPH0586180A publication Critical patent/JPH0586180A/en
Application granted granted Critical
Publication of JP3092736B2 publication Critical patent/JP3092736B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal Substances (AREA)
  • Polyamides (AREA)

Abstract

PURPOSE:To provide the title material which has a polypeptide main chain and side chains having oxyphenyl ketone groups and is useful as a functional material. CONSTITUTION:The title material which has a polypeptide main chain and side chains having oxyphenyl ketone groups and comprises structural units of the formula is prepd. by reacting 1mol of a polymer which has the polypeptide main chain, side chains having ester groups capable of undergoing transesterification, and a degree of polymn. 1,000-2,000 with about 2mol of an alcohol having an oxyphenyl ketone group in a nonaq. solvent such as ethylene dichloride in the presence of an acid catalyst such as p-toluenesulfonic acid.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、新規なサーモトロピッ
ク液晶性高分子材料に関する。
FIELD OF THE INVENTION The present invention relates to a novel thermotropic liquid crystalline polymer material.

【0002】[0002]

【従来の技術】液晶ポリマー(液晶性高分子材料)は、
サーモトロピック液晶ポリマーとライオトロピック液晶
ポリマーに大別することができ、最近、サーモトロピッ
ク液晶性高分子材料の研究が盛んに行なわれている。ま
た、サーモトロピック液晶性高分子材料は、化学構造的
には大きく、a)主鎖型液晶性高分子、b)側鎖型液晶
高分子、c)剛直鎖型液晶性高分子の3種に分類され
る。
2. Description of the Related Art Liquid crystal polymers (liquid crystalline polymer materials) are
Thermotropic liquid crystal polymers and lyotropic liquid crystal polymers can be roughly classified, and recently, researches on thermotropic liquid crystalline polymer materials have been actively conducted. Further, thermotropic liquid crystalline polymer materials are large in chemical structure, and are classified into three types: a) main chain type liquid crystalline polymer, b) side chain type liquid crystalline polymer, and c) rigid linear type liquid crystalline polymer. being classified.

【0003】このようなサーモトロピック液晶性高分子
材料には、ポリペプチド系のものがあり、本発明者等に
よってもポリペプチド誘導体の剛直鎖型液晶性高分子材
料について種々提案がなされている[K. Hanabusa, M.S
ato, H. Shirai, K. Takemoto, J. Polym. Sci., Poly
m. Lett. 22, 559〜564(1984): K. Hanabusa, O. Tanak
a, T. Koyama, A. Kurose, H. Shirai, T. Hayakawa,
N. Hojo, Polymer J. 20, 861〜868 (1988): K. Hanabu
sa, K. Yanagisawa, J. Higashi, H. Shirai, T. Hayak
awa, N. Hojo, J. Polym. Sci., Polym. Chem., 28, 82
5-835(1990)]。
Such thermotropic liquid crystalline polymer materials include those of the polypeptide type, and the inventors of the present invention have made various proposals regarding rigid linear type liquid crystalline polymer materials of polypeptide derivatives. K. Hanabusa, MS
ato, H. Shirai, K. Takemoto, J. Polym. Sci., Poly
m. Lett. 22 , 559 ~ 564 (1984): K. Hanabusa, O. Tanak
a, T. Koyama, A. Kurose, H. Shirai, T. Hayakawa,
N. Hojo, Polymer J. 20 , 861 ~ 868 (1988): K. Hanabu
sa, K. Yanagisawa, J. Higashi, H. Shirai, T. Hayak
awa, N. Hojo, J. Polym. Sci., Polym. Chem., 28 , 82
5-835 (1990)].

【0004】また、コレステリック液晶構造を発現する
ものとして、ポリグルタミン酸エステル系で長い側鎖を
もつホモポリマーやベンジル−L−グルタメートとドデ
シルグルタメートとのコポリマーも提案されている[J.
Watanabe, et al, Macromolecules, 18, 2141(1985):
J. Watanabe, et al, Polym.Prep. Jpn., 30, 283(198
0)]。
[0004] Further, as a polymer which develops a cholesteric liquid crystal structure, a homopolymer having a long side chain in a polyglutamic acid ester system and a copolymer of benzyl-L-glutamate and dodecyl glutamate have been proposed [J.
Watanabe, et al, Macromolecules, 18 , 2141 (1985):
J. Watanabe, et al, Polym.Prep. Jpn., 30 , 283 (198
0)].

【0005】したがって、このようなものに限らず、ポ
リペプチド系のサーモトロピック液晶性高分子材料を得
ることは、種々の用途拡大にもつながり、意味深いこと
である。
Therefore, it is significant to obtain a polypeptide-based thermotropic liquid crystalline polymer material, not limited to the above-mentioned ones, and to expand various applications.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、機能
性材料として期待される新規なポリペプチド系のサーモ
トロピック液晶性高分子材料を提供することにある。
An object of the present invention is to provide a novel polypeptide type thermotropic liquid crystalline polymer material which is expected as a functional material.

【0007】[0007]

【課題を解決するための手段】このような目的は、下記
(1)〜(3)の本発明により達成される。
The above objects are achieved by the present invention described in (1) to (3) below.

【0008】(1) ポリペプチド鎖を主鎖とし、側鎖
にオキシフェニルケトンを有することを特徴とするサー
モトロピック液晶性高分子材料。
(1) A thermotropic liquid crystalline polymer material having a polypeptide chain as a main chain and oxyphenyl ketone as a side chain.

【0009】(2) 前記オキシフェニルケトンが、o
−またはp−オキシフェニルケトンである上記(1)に
記載のサーモトロピック液晶性高分子材料。
(2) The oxyphenyl ketone is o
-Or p-oxyphenylketone, The thermotropic liquid crystalline polymer material according to (1) above.

【0010】(3) 化2で示される構成単位からなる
上記(1)または(2)に記載のサーモトロピック液晶
性高分子材料。
(3) The thermotropic liquid crystalline polymer material as described in (1) or (2) above, which comprises the structural unit shown in Chemical formula 2.

【0011】[0011]

【化2】 [Chemical 2]

【0012】[化2において、R1 およびR2 はそれぞ
れ、水素原子またはアルキル基を表し、これらは同一で
も異なっていてもよい。R3 はアルキル基を表す。R4
は1価の置換基を表し、nは0〜4の正の整数を表す。
5 はアルキル基を表す。L1 、L2 およびL3 は、そ
れぞれ、2価の連結基を表す。xおよびyはそれぞれ、
x+y=1の関係を満たす数値である。]
[In Chemical Formula 2, R 1 and R 2 each represent a hydrogen atom or an alkyl group, and these may be the same or different. R 3 represents an alkyl group. R 4
Represents a monovalent substituent, and n represents a positive integer of 0-4.
R 5 represents an alkyl group. L 1 , L 2 and L 3 each represent a divalent linking group. x and y are respectively
It is a numerical value that satisfies the relationship of x + y = 1. ]

【0013】[0013]

【具体的構成】以下、本発明の具体的構成について詳細
に説明する。
[Specific Structure] The specific structure of the present invention will be described in detail below.

【0014】本発明のサーモトロピック液晶性高分子材
料は、ポリペプチド鎖を主鎖とし、側鎖にオキシフェニ
ルケトンを有するものであり、化2で示される構造を構
成単位とするものである。ポリペプチド鎖はN末端アミ
ノ酸残基とC末端アミノ酸残基とが存在するものであ
る。なお、N末端のα−アミノ基およびC末端のα−カ
ルボキシ基は、それぞれ、その誘導体であってもよい。
The thermotropic liquid crystalline polymer material of the present invention has a polypeptide chain as a main chain and oxyphenyl ketone as a side chain, and has a structure represented by Chemical Formula 2 as a constitutional unit. A polypeptide chain has an N-terminal amino acid residue and a C-terminal amino acid residue. The N-terminal α-amino group and the C-terminal α-carboxy group may be derivatives thereof.

【0015】化2において、R1 およびR2 は、それぞ
れ水素原子、アルキル基を表し、これらは同一でも異な
っていてもよい。
In the chemical formula 2 , R 1 and R 2 each represent a hydrogen atom or an alkyl group, which may be the same or different.

【0016】R3 はアルキル基を表す。R4 は1価の置
換基を表し、nは0〜4の正の整数を表す。R5 はアル
キル基を表す。L1 、L2 およびL3 は、それぞれ2価
の連結基を表す。xおよびyはx+y=1の関係を満た
すものであり、xは0.5以下の数値、yは0.5以上
の数値を表す。
R 3 represents an alkyl group. R 4 represents a monovalent substituent radical, n represents a positive integer from 0-4. R 5 represents an alkyl group. L 1 , L 2 and L 3 each represent a divalent linking group. x and y satisfy the relationship of x + y = 1, x represents a numerical value of 0.5 or less, and y represents a numerical value of 0.5 or more.

【0017】R1 、R2 で表されるアルキル基として
は、炭素数1〜5のものが挙げられ、無置換であっても
置換基を有するものであってもよい。具体的には、メチ
ル基、プロピル基、ブチル基等であり、置換基を有する
場合の置換基としては、ヒドロキシ基、メルカプト基、
アミノ基、カルボキシ基、フェニル基等が挙げられる。
Examples of the alkyl group represented by R 1 and R 2 include those having 1 to 5 carbon atoms, which may be unsubstituted or may have a substituent. Specifically, a methyl group, a propyl group, a butyl group and the like, the substituent in the case of having a substituent, a hydroxy group, a mercapto group,
Examples thereof include an amino group, a carboxy group and a phenyl group.

【0018】R1 、R2 としては、ともに水素原子であ
ることが好ましい。
Both R 1 and R 2 are preferably hydrogen atoms.

【0019】R3 で表されるアルキル基としては、炭素
数1〜18のものが挙げられ、無置換のものが好まし
く、具体的には、メチル基、エチル基、プロピル基、ブ
チル基等が挙げられる。
Examples of the alkyl group represented by R 3 include those having 1 to 18 carbon atoms, preferably unsubstituted, specifically, methyl group, ethyl group, propyl group, butyl group and the like. Can be mentioned.

【0020】なかでも、R3 としてはメチル基が好まし
い。
Of these, a methyl group is preferred as R 3 .

【0021】nは0であることが好ましいが、nが1〜
4であるときのR4 で表される1価の置換基としては、
アルキル基等が挙げられる。
Although n is preferably 0, n is 1 to
When it is 4, the monovalent substituent represented by R 4 is
An alkyl group etc. are mentioned.

【0022】R5 で表されるアルキル基は炭素数5以
上、さらには5〜17であることが好ましく、無置換の
ものが好ましい。具体的には、ペンチル基、ウンデシル
基等が好ましいものとして挙げられる。
The alkyl group represented by R 5 preferably has 5 or more carbon atoms, more preferably 5 to 17 carbon atoms, and is preferably an unsubstituted one. Specifically, a pentyl group, an undecyl group and the like are mentioned as preferable ones.

【0023】L1 、L2 、L3 で表される2価の連結基
としては、−(CH2m −で示されるアルキレン基が
好ましい。
The divalent linking group represented by L 1 , L 2 and L 3 is preferably an alkylene group represented by — (CH 2 ) m —.

【0024】L1 とL2 とは同一でも異なっていてもよ
く、mは2〜4であることが好ましく、L3 はmが5〜
10であるものが好ましい。
L 1 and L 2 may be the same or different, m is preferably 2 to 4, and L 3 is 5 to m.
Those of 10 are preferred.

【0025】xは0.5以下、特に0.2〜0.4が好
ましく、yは0.5以上、特に0.6〜0.8が好まし
い。
X is preferably 0.5 or less, particularly 0.2 to 0.4, and y is 0.5 or more, particularly preferably 0.6 to 0.8.

【0026】化2においてオキシフェニルケトンは、o
−またはp−オキシフェニルケトンであることが好まし
い。
In the chemical formula 2, oxyphenyl ketone is o
It is preferably -or p-oxyphenyl ketone.

【0027】また、本発明の高分子材料は、化2の構造
を構成単位として、重合度が1000〜2000程度の
ものが好ましい。
The polymer material of the present invention preferably has a degree of polymerization of about 1000 to 2000 with the structure of Chemical formula 2 as a constitutional unit.

【0028】化2で示される構造の具体例を化3〜化5
に示すが、本発明はこれに限定されるものではない。
Specific examples of the structure shown in Chemical formula 2 are shown in Chemical formula 3 to Chemical formula 5
However, the present invention is not limited to this.

【0029】[0029]

【化3】 [Chemical 3]

【0030】[0030]

【化4】 [Chemical 4]

【0031】[0031]

【化5】 [Chemical 5]

【0032】本発明の化2で示される高分子材料は、例
えば化6のスキームIに従い、以下のようにして合成す
る。なお、化6では、化2において、R1=R2 、L1
=L2 であるものについて示している。
The polymer material represented by the chemical formula 2 of the present invention is synthesized as follows, for example, according to the scheme I of the chemical formula 6. In addition, in the chemical formula 6, in the chemical formula 2, R 1 = R 2 , L 1
= L 2 is shown.

【0033】ポリペプチド鎖の主鎖を有し、かつ交換反
応が可能なエステル基を側鎖に有するポリマー(P)
に、オキシフェニルケトンを有するアルコール(A)
を、エチレンジクロライド等の非水溶媒中において、p
−トルエンスルホン酸等の酸触媒の存在下で反応させて
得られる。このときのポリマー(P)は重合度1000
〜2000のものを使用し、ポリマー(P)とアルコー
ル(A)との反応比[ポリマー(P)/アルコール
(A)]はモル比で1/2程度とすればよい。また反応
温度は90〜100℃、反応時間は180〜360時間
とする。
Polymer (P) having a main chain of a polypeptide chain and having an ester group capable of an exchange reaction in a side chain
Alcohol (A) with oxyphenyl ketone
In a non-aqueous solvent such as ethylene dichloride,
-It is obtained by reacting in the presence of an acid catalyst such as toluenesulfonic acid. Polymer (P) at this time has a polymerization degree of 1000.
The reaction ratio [polymer (P) / alcohol (A)] between the polymer (P) and the alcohol (A) may be about 1/2 in terms of molar ratio. The reaction temperature is 90 to 100 ° C. and the reaction time is 180 to 360 hours.

【0034】[0034]

【化6】 [Chemical 6]

【0035】このようにして得られる目的物は、上記反
応によるエステル置換率が50%以上、好ましくは60
〜80%のものであり、可視紫外吸収スペクトル等によ
り確認できる。また、このものは、可視紫外吸収スペク
トル(UVスペクトル)、円偏光二色性法(CDスペク
トル)、赤外吸収スペクトル(IRスペクトル)等によ
って確認することができる。
The target product thus obtained has an ester substitution rate of 50% or more, preferably 60, by the above reaction.
% To 80%, which can be confirmed by a visible ultraviolet absorption spectrum or the like. Further, this can be confirmed by a visible ultraviolet absorption spectrum (UV spectrum), a circular dichroism method (CD spectrum), an infrared absorption spectrum (IR spectrum) and the like.

【0036】本発明の高分子材料は白色ポリマーであ
る。
The polymeric material of the present invention is a white polymer.

【0037】そして、加熱融解によって生じるサーモト
ロピックは液晶であり、液晶を示す温度範囲は約70℃
〜約270℃である。
The thermotropic generated by heating and melting is a liquid crystal, and the temperature range showing the liquid crystal is about 70.degree.
~ About 270 ° C.

【0038】[0038]

【実施例】以下、本発明の実施例によって具体的に説明
する。
EXAMPLES The present invention will be specifically described below with reference to examples.

【0039】実施例1(1)試薬 エチレンジクロライド、クロロホルム、メタノールは市
販一級品を常法に従い単留したものを使用した。カラム
用シリカゲルは和光製シリカゲルC−100とC−20
0を前処理することなくそのまま使用した。そのほかの
試薬は特別の記載がない限り、市販特級品あるいは市販
一級品をそのまま使用した。
Example 1 (1) Reagents As ethylene dichloride, chloroform and methanol, commercially available primary products obtained by simple distillation according to a conventional method were used. The column silica gel is Wako silica gel C-100 and C-20.
0 was used as is without pretreatment. Unless otherwise specified, commercially available special grade products or commercially available first grade products were used as they were.

【0040】(2)化2に示されるポリマー(P−1)
の合成 化7のスキームI−1に従って以下のように合成した。
(2) Polymer (P-1) shown in Chemical formula 2
Was synthesized as follows according to Scheme I-1 of Synthesis 7 of.

【0041】[0041]

【化7】 [Chemical 7]

【0042】(2−1)6−(p−ヘキサノイルフェノ
キシ)ヘキサノール(A−1)の合成
(2-1) 6- (p-hexanoylpheno
Xy) hexanol (A-1) synthesis

【0043】60mlのエタノールに0.97g (0.0
4モル)の金属ナトリウムを徐々に溶かした後、7.6
7g (0.04モル)のp−ヘキサノイルフェノール
7.24g (0.04モル)の6−ブロモヘキサノール
を加え1晩還流した。反応後吸引濾過して析出してきた
NaBrを除去し、濾液を減圧濃縮した後、エーテルに
溶解し、水、0.5N−NaOH、水の順で抽出した。
MgSO4 を有機層に加え乾燥した後減圧濃縮し、酢酸
エチル/石油エーテル(1:1)から再結晶を行ない、
さらに酢酸エチル/石油エーテル(1:9)より再結晶
を行なった。 収量 7.74g 収率 70% C18283 (Mw292.404)
0.97 g (0.0
4 mol) metallic sodium was gradually dissolved and then 7.6
7 g (0.04 mol) of p-hexanoylphenol 7.24 g (0.04 mol) of 6-bromohexanol was added and the mixture was refluxed overnight. After the reaction, suction filtration was performed to remove precipitated NaBr, the filtrate was concentrated under reduced pressure, dissolved in ether, and extracted with water, 0.5N-NaOH, and water in this order.
MgSO 4 was added to the organic layer, dried, concentrated under reduced pressure, and recrystallized from ethyl acetate / petroleum ether (1: 1).
Further, recrystallization was carried out from ethyl acetate / petroleum ether (1: 9). 70% Yield 7.74g yield C 18 H 28 O 3 (Mw292.404 )

【0044】20.92mgの(A−1)を20mgのエチ
レンジクロライド(EDC)に溶解し、50倍に希釈
後、1cmセルを用いてUVスペクトルの測定を行なっ
た。 UV(EDC):λmax =271nm(ε=17233)
20.92 mg of (A-1) was dissolved in 20 mg of ethylene dichloride (EDC), diluted 50 times, and UV spectrum was measured using a 1 cm cell. UV (EDC): λ max = 271 nm (ε = 17233)

【0045】なお、UVスペクトルは、日本分光製UV
IDEC505自己分光光度計で測定した。
The UV spectrum is UV made by JASCO Corporation.
It was measured with an IDEC 505 self-spectrophotometer.

【0046】また、日本分光製A−320型赤外線分光
光度計を用い、KBr錠剤法により赤外吸収スペクトル
を測定した。この結果、OHの伸縮振動が3300cm-1
付近に、C=0の伸縮振動が1680cm-1付近に、CH
2 の伸縮振動が2900cm-1付近に観測された。
The infrared absorption spectrum was measured by the KBr tablet method using an A-320 infrared spectrophotometer manufactured by JASCO Corporation. As a result, the stretching vibration of OH is 3300 cm -1.
Stretching vibration of C = 0 near 1680 cm -1 , CH
A stretching vibration of 2 was observed near 2900 cm -1 .

【0047】(2−2)ポリマー(P−1)の合成 1.00g (0.007ユニット−モル)の化7に示す
PMLG(重合度1070)と3.88g (0.014
モル)の(A−1)および、262mgのp−トルエンス
ルホン酸(p−Ts)を35mlのエチレンジクロライド
(EDC)に加え、100℃で8日間攪拌下還流した。
この間、溶媒を留去し、新しいエチレンジクロライドを
加える作業を数回行なった。反応後、溶媒を完全に留去
し、メタノールで数回再沈させ真空乾燥した。 収量 3.9g
(2-2) Synthesis of Polymer (P-1) 1.00 g (0.007 unit-mol) of PMLG (polymerization degree 1070) shown in Chemical formula 7 and 3.88 g (0.014)
Mol) of (A-1) and 262 mg of p-toluenesulfonic acid (p-Ts) were added to 35 ml of ethylene dichloride (EDC), and the mixture was refluxed under stirring at 100 ° C for 8 days.
During this period, the solvent was distilled off and the work of adding new ethylene dichloride was repeated several times. After the reaction, the solvent was completely distilled off, and the residue was reprecipitated with methanol several times and dried under vacuum. Yield 3.9g

【0048】25.63mgの(P−1)を25mlのED
Cに溶解し、50倍に希釈後1cmセルを用いて上記と同
様にUVスペクルの測定を行なった。その結果λmax
270nm、吸光度は1.769であった。(A−1)の
εよりエステル置換率を求めたところ60%であった。
25.63 mg of (P-1) was added to 25 ml of ED
After dissolving in C and diluting 50 times, UV spectrum was measured in the same manner as above using a 1 cm cell. As a result λ max =
The absorbance at 270 nm was 1.769. The ester substitution rate determined from ε of (A-1) was 60%.

【0049】(3)化3に示されるポリマー(P−2)
の合成 化8のスキームI−2に従って以下のように合成した。
(3) Polymer (P-2) shown in Chemical formula 3
Synthesis was carried out according to Scheme I-2 of Synthesis 8 of.

【0050】[0050]

【化8】 [Chemical 8]

【0051】(3−1)6−(p−ドデカノイルフェノ
キシ)ヘキサノール(A−2)の合成 (2−1)の6−(p−ヘキサノイルフェノキシ)ヘキ
サノール(A−1)に準じて合成した。
(3-1) 6- (p-dodecanoylpheno
Synthesis of xy) hexanol (A-2) It was synthesized according to 6- (p-hexanoylphenoxy) hexanol (A-1) of (2-1).

【0052】24.74mgの(A−2)を20mlのED
Cに溶解し、50倍に希釈後1cmセルを用いてUVスペ
クルの測定を行なった。 UV(EDC):λmax =271nm(ε=17397)
24.74 mg of (A-2) was added to 20 ml of ED
After dissolving in C and diluting 50 times, UV spectrum was measured using a 1 cm cell. UV (EDC): λ max = 271 nm (ε = 17397)

【0053】(A−1)と同様にIRスペクトルを測定
したところ、OHの伸縮振動が3300cm-1付近に、C
=0の伸縮振動が1680cm-1付近に、CH2 の伸縮振
動が2900cm-1付近に観測された。
When the IR spectrum was measured in the same manner as in (A-1), the stretching vibration of OH was around 3300 cm -1 , and C
= Stretching vibration of zero in the vicinity of 1680 cm -1, stretching vibration of CH 2 was observed in the vicinity of 2900 cm -1.

【0054】(3−2)ポリマー(P−2)の合成 0.81g (0.0056ユニット−モル)のPMLG
(重合度1070)と4.22g (0.11モル)の
(A−2)および260mgのp−トルエンスルホン酸
(p−Ts)を35mlのエチレンジクロライド(ED
C)に加え、90℃で13日間攪拌下で還流した。この
間、溶媒を留去し、新しいエチレンジクロライドを加え
る作業を数回行なった。反応後、溶媒を完全に留去し、
メタノールで数回洗い再沈し、濾別、真空乾燥した。 収量 2.83g
(3-2) Synthesis of Polymer (P-2) 0.81 g (0.0056 unit-mol) of PMLG
(Degree of polymerization: 1070), 4.22 g (0.11 mol) of (A-2) and 260 mg of p-toluenesulfonic acid (p-Ts) were added to 35 ml of ethylene dichloride (ED).
In addition to C), the mixture was refluxed under stirring at 90 ° C. for 13 days. During this period, the solvent was distilled off and the work of adding new ethylene dichloride was repeated several times. After the reaction, the solvent was completely distilled off,
The precipitate was washed several times with methanol, reprecipitated, separated by filtration, and vacuum dried. Yield 2.83g

【0055】23.12mgの(P−2)を25mlのED
Cに溶かし、20倍に希釈した後1cmセルを用いてUV
スペクルの測定を行なった。その結果λmax =270nm
の吸光度は1.43であった。(A−2)のεからエス
テル置換率を求めたところ66%であった。
23.12 mg of (P-2) was added to 25 ml of ED
Dissolve in C, dilute 20 times, and then UV using 1 cm cell
The spectrum was measured. As a result λ max = 270 nm
The absorbance was 1.43. The ester substitution rate determined from ε of (A-2) was 66%.

【0056】(4)化3に示されるポリマー(P−3)
の合成 化9のスキームI−3に従って以下のように合成した。
(4) Polymer (P-3) shown in Chemical formula 3
Synthesis was carried out according to Scheme I-3 of Synthesis 9 of.

【0057】[0057]

【化9】 [Chemical 9]

【0058】(4−1)6−(o−ヘキサノイルフェノ
キシ)ヘキサノール(A−3)の合成 15mlのエタノールに0.69g の金属ナトリウムを徐
々に溶かした後、5.80g (0.03モル)のo−ヘ
キサノイルフェノールを加え、さらに5.43g (0.
03モル)の6−ブロモヘキサノールを加え1晩還流し
た。反応後、吸引濾過し析出したNaBrを除去し、濾
液を濃縮した後、エーテルに溶解し、水、0.5N−N
aOH、水の順で抽出した。有機層を、MgSO4 を加
えて乾燥し、減圧濃縮後クロロホルムに溶かし、不純物
を吸着させ除去するために、C−100のシリカゲルに
吸着させ、C−200のシリカゲルを充填したカラムに
かけクロロホルムで溶出し精製した。溶出した目的物の
フラクションを濃縮し、真空乾燥してオイル状の(A−
3)を得た。 収量 5.99g 収率 68% C18283 (Mw393.404)
(4-1) 6- (o-hexanoylpheno
Xy) Synthesis of hexanol (A-3) After gradually dissolving 0.69 g of metallic sodium in 15 ml of ethanol, 5.80 g (0.03 mol) of o-hexanoylphenol was added, and further 5.43 g ( 0.
(03 mol) of 6-bromohexanol was added and the mixture was refluxed overnight. After the reaction, suction filtration was performed to remove precipitated NaBr, and the filtrate was concentrated and then dissolved in ether, water, 0.5N-N
It was extracted in the order of aOH and water. The organic layer was dried by adding MgSO 4 , dissolved in chloroform after concentration under reduced pressure, adsorbed on C-100 silica gel in order to adsorb and remove impurities, applied to a column packed with C-200 silica gel and eluted with chloroform. And purified. The eluted fraction of the desired product was concentrated and dried under vacuum to obtain an oily (A-
3) was obtained. 68% Yield 5.99g yield C 18 H 28 O 3 (Mw393.404 )

【0059】37.09mgの(A−3)を25mlのED
Cに溶解し、50倍に希釈後、1cmセルを用いてUVス
ペクトルの測定を行なった。 UV(EDC):λmax =303nm(ε=12906)
37.09 mg of (A-3) was added to 25 ml of ED
After dissolving in C and diluting 50 times, UV spectrum was measured using a 1 cm cell. UV (EDC): λ max = 303 nm (ε = 12906)

【0060】また、KBr板上にキャストし、赤外スペ
クトルを(A−1)と同様に測定したところ、OHの伸
縮振動が3300cm-1付近に、C=Oの伸縮振動が16
80cm-1付近に、CH2 の伸縮振動が2900cm-1付近
に測定された。
When cast on a KBr plate and the infrared spectrum was measured in the same manner as in (A-1), the stretching vibration of OH was around 3300 cm -1 and the stretching vibration of C = O was 16
Around 80 cm -1, stretching vibration of CH 2 was measured in the vicinity of 2900 cm -1.

【0061】(4−2)ポリマー(P−3)の合成 1.22g (0.0085ユニット−モル)のPMLG
と4.97g (0.017モル)の(A−3)および2
88mgのp−トルエンスルホン酸(p−Ts)を30ml
のエチレンジクロライド(EDC)に加え、90℃で1
3日間攪拌下で還流した。この間、溶媒を留去し、新し
いエチレンジクロライドを加える作業を数回行なった。
反応後、溶媒を完全に留去し、メタノールで数回洗い再
沈し、濾別、真空乾燥した。 収量 2.49g
(4-2) Synthesis of polymer (P-3) 1.22 g (0.0085 unit-mol) of PMLG
And 4.97 g (0.017 mol) of (A-3) and 2
30 ml of 88 mg p-toluenesulfonic acid (p-Ts)
Add ethylene dichloride (EDC) to 1 at 90 ° C
Refluxed for 3 days under stirring. During this period, the solvent was distilled off and the work of adding new ethylene dichloride was repeated several times.
After the reaction, the solvent was completely distilled off, the residue was washed with methanol several times, reprecipitated, separated by filtration and vacuum dried. Yield 2.49g

【0062】24.32mgの(P−3)を50mlのED
Cに溶かし、10倍に希釈した後1cmセルを用いてUV
スペクルの測定を行なった。λmax =303nmの吸光度
は1.37であった。(A−3)のεからエステル置換
率を求めたところ72%であった。
24.32 mg of (P-3) was added to 50 ml of ED
Dissolve in C, dilute 10 times, then use 1 cm cell for UV
The spectrum was measured. The absorbance at λ max = 303 nm was 1.37. When the ester substitution rate was calculated from ε of (A-3), it was 72%.

【0063】このようにして得られたポリマー(P−
1)、(P−2)、(P−3)について、液晶としての
挙動を明らかにするため種々の測定を行なった。この結
果を以下に述べる。
The polymer (P-
For 1), (P-2), and (P-3), various measurements were performed in order to clarify the behavior as a liquid crystal. The results will be described below.

【0064】ポリマー(P−1)、(P−2)、(P−
3)についてCDスペクトルを測定した。CDスペクト
ルは、EDCを溶媒とし、205〜250nmの波長域に
ついて、日本分光製J−600を用いて測定した。この
結果を図1〜図3に示す。
Polymers (P-1), (P-2), (P-
The CD spectrum of 3) was measured. The CD spectrum was measured using J-600 manufactured by JASCO Corporation in the wavelength range of 205 to 250 nm using EDC as a solvent. The results are shown in FIGS.

【0065】これらの図から明らかなように、ポリマー
(P−1)、(P−2)、(P−3)を含むEDC溶液
では、室温で208、222nm付近に主鎖ポリペプチド
のα−ヘリックス構造に基づく負の円偏光二色性が観察
された。下記の式を用いて、222nmにおける平均残基
楕円率より求めたα−ヘリックス含有量を表1に示し
た。
As is clear from these figures, in the EDC solution containing the polymers (P-1), (P-2) and (P-3), the α-chain of the main chain polypeptide was found at around 208 and 222 nm at room temperature. Negative circular dichroism based on the helix structure was observed. Table 1 shows the α-helix content obtained from the average residue ellipticity at 222 nm using the following formula.

【0066】 α−ヘリックス含有量 XH =−[θ]222 /4000Α-helix content X H = − [θ] 222/4000

【0067】[0067]

【表1】 [Table 1]

【0068】なお、表1には、UVスペクトルの測定に
より求めたエステル置換率を併記した。
Table 1 also shows the ester substitution rate obtained by measuring the UV spectrum.

【0069】ポリマー(P−1)、(P−2)、(P−
3)について、IRスペクトルを測定した。IRスペク
トルは、ポリマー(P−1)、(P−2)、(P−3)
をそれぞれクロロホルムに溶解し、キャストして得られ
たフィルムをサンプルとし、日本分光製FT−IR−7
300を用いて測定した。
Polymers (P-1), (P-2), (P-
Regarding 3), the IR spectrum was measured. The IR spectra of the polymers (P-1), (P-2), (P-3)
Was dissolved in chloroform, and the film obtained by casting was used as a sample, and FT-IR-7 manufactured by JASCO Corporation
It measured using 300.

【0070】この結果を図4〜図6に示す。The results are shown in FIGS.

【0071】これらの図から明らかなように、全てのサ
ンプルに1660cm-1にアミドI 、1560cm-1にアミ
ドII、615cm-1にアミドVの吸収が観察され、固体状
態でもα−ヘリックス構造を保持していることがわかっ
た。
[0071] As is apparent from these figures, amide 1660 cm -1 in all samples I, amide 1560 cm -1 II, absorption of amide V to 615 cm -1 was observed, even α- helical structure in the solid state It turns out that I hold it.

【0072】ポリマー(P−1)、(P−2)、(P−
3)について、DSCの測定を行なった。DSCは、理
学電気製高性能示差走査熱量計DSC−10Aを用いて
測定した。
Polymers (P-1), (P-2), (P-
For 3), DSC measurement was performed. DSC was measured using a high-performance differential scanning calorimeter DSC-10A manufactured by Rigaku Denki.

【0073】これらのポリマーの昇温過程における吸熱
転移温度とDSC曲線を表2と図7〜図9に示す。
The endothermic transition temperature and DSC curve of these polymers in the course of temperature rise are shown in Table 2 and FIGS.

【0074】[0074]

【表2】 [Table 2]

【0075】ポリマー(P−1)では67℃、(P−
2)では75℃にそれぞれ吸熱転移ピークが見られた。
また、(P−3)では室温以下ですでに液晶への転移が
行なわれていると考えられ明確なピークは観察されなか
った。
67 ° C. for the polymer (P-1), (P-
In 2), an endothermic transition peak was observed at 75 ° C.
Further, in (P-3), it is considered that the transition to the liquid crystal has already occurred at room temperature or lower, and no clear peak was observed.

【0076】ポリマー(P−1)、(P−2)、(P−
3)について、偏光顕微鏡観察を行なった。偏光顕微鏡
観察には、Mettler 製 FT 80 Central ProsessorとFT H
ot Stageで温度制御を行ない、Nikon 製AFS-II型偏光顕
微鏡を用いて、クロスニコル下でテクスチャーの観察を
行ない、Nikon 製顕微鏡写真装置FX-35 WAカメラを用い
て写真撮影を行なった。
Polymers (P-1), (P-2), (P-
Regarding 3), a polarization microscope observation was performed. FT 80 Central Prosessor and FT H manufactured by Mettler
The temperature was controlled at the ot Stage, the texture was observed under a crossed Nicols using a Nikon AFS-II type polarization microscope, and a photo was taken using a Nikon micrograph FX-35 WA camera.

【0077】これらの結果を図10〜図15に示す。The results are shown in FIGS.

【0078】全てのサンプルにクロスニコル下で複屈折
がみられた(図10〜図12参照)。特に(P−2)で
は51℃以下で見られる複屈折が、52−57℃の間で
消滅し、暗視野になった。58℃以上になると再び複屈
折を示し元の状態に戻った。またこれらの試料をスライ
ドガラスにはさんで110℃に保ったところ、コレステ
リックのピッチに相当すると思われる縦縞模様を示し
た。それぞれのピッチを実測した結果、(P−1)、
(P−2)、(P−3)それぞれ27μm 、20μm 、
24μm となった(図13〜図15参照)。
Birefringence was observed in all samples under crossed Nicols (see FIGS. 10 to 12). In particular, in (P-2), the birefringence observed at 51 ° C or lower disappeared between 52 and 57 ° C, resulting in a dark field. At 58 ° C. or higher, birefringence was exhibited again and the state returned to the original state. Further, when these samples were sandwiched between slide glasses and kept at 110 ° C., vertical striped patterns which appeared to correspond to the cholesteric pitch were shown. As a result of actually measuring each pitch, (P-1),
(P-2), (P-3) 27 μm, 20 μm,
It became 24 μm (see FIGS. 13 to 15).

【0079】ポリマー(P−1)、(P−2)、(P−
3)について、分子の配向状態を詳しく調べるため、X
線回折測定を行なった。X線回折測定には、理学電気製
X線回折装置 CN 4056 A型を用い、平面カメラを取り付
け、回折写真の撮影を行なった。管電流35mA、管電圧
は40kVで、ニッケル箔で濾過した CuKα線を用いた。
露光時間は2時間で照射距離は10cmで行なった。
Polymers (P-1), (P-2), (P-
Regarding 3), in order to investigate the molecular orientation state in detail, X
A line diffraction measurement was performed. For X-ray diffraction measurement, an X-ray diffractometer manufactured by Rigaku Denki CN 4056 A type was used, a plane camera was attached, and a diffraction photograph was taken. The tube current was 35 mA, the tube voltage was 40 kV, and CuKα rays filtered through nickel foil were used.
The exposure time was 2 hours and the irradiation distance was 10 cm.

【0080】電場の影響の測定は、X線用キャピラリー
にポリマーを詰め、1.5mmの間隔でITO電極にはさ
み、本発明者等作製の高電圧装置を用い電場を印加した
(5V−300V)。
The influence of the electric field was measured by packing a polymer for X-ray capillaries, sandwiching the ITO electrode at intervals of 1.5 mm, and applying an electric field using a high voltage device manufactured by the present inventors (5V-300V). ..

【0081】このとき、棒状にロールさせたポリマーを
X線キャピラリーに詰め、それを160℃でアニーリン
グした後、キャピラリー軸に対して垂直方向からX線を
照射して写真撮影を行なった。
At this time, the rod-shaped polymer was packed in an X-ray capillary, annealed at 160 ° C., and then photographed by irradiating X-rays from the direction perpendicular to the capillary axis.

【0082】これらのX線回折写真とBragg の式より求
めた面間隔を図16〜18と表3に示す。このように赤
道方向に鋭いスポット状の反射がみられ、キャピラリー
内で、液晶状態にあるポリマーのα−ヘリックス軸は、
壁効果によって、キャピラリー軸と平行して配向するこ
とがわかった。またキャピラリーに詰めたポリマーを1
60℃でアニーリングしながら、キャピラリー軸に対し
て垂直に300Vの電場を印加した後、X線回折を行な
った。その回折写真を図19〜図21に示す。図19〜
図21の各図において、(A)は電場を印加しない場合
であり、(B)は300Vの電場を印加した場合のもの
である。
The interplanar spacings obtained from these X-ray diffraction photographs and the Bragg equation are shown in FIGS. In this way, a sharp spot-like reflection is seen in the equatorial direction, and the α-helix axis of the polymer in the liquid crystal state in the capillary is
It was found that due to the wall effect, it was oriented parallel to the capillary axis. In addition, 1 polymer packed in a capillary
While annealing at 60 ° C., an electric field of 300 V was applied perpendicularly to the capillary axis, and then X-ray diffraction was performed. The diffraction photographs are shown in FIGS. 19-
In each of FIG. 21, (A) shows the case where no electric field is applied, and (B) shows the case where an electric field of 300 V is applied.

【0083】これらの図から明らかなように、X線をキ
ャピラリーの軸に対して垂直方向に照射したところ、O
Vでは、赤道方向に鋭いスポット状の反射が見られた
が、300Vの電場を印加するとリング状の反射に変化
した。この様な電場印加に伴う配向性の消失は、α−ヘ
リックス軸方向の永久双極子モーメントが電場の影響を
受けてゆらぎ、壁効果によって配向を乱したためと思わ
れる。
As is apparent from these figures, when X-rays were irradiated in the direction perpendicular to the axis of the capillary,
At V, a sharp spot-like reflection was seen in the equatorial direction, but it changed to a ring-like reflection when an electric field of 300 V was applied. The disappearance of the orientation due to the application of the electric field is considered to be because the permanent dipole moment in the α-helix axial direction fluctuates under the influence of the electric field and disturbs the orientation due to the wall effect.

【0084】[0084]

【表3】 [Table 3]

【0085】次に、、ポリマー(P−1)、(P−
2)、(P−3)の液晶挙動について、主に偏光顕微鏡
観察とDSCを中心にまとめる。
Next, the polymers (P-1) and (P-
2) The liquid crystal behaviors of (P-3) will be summarized mainly by observation with a polarization microscope and DSC.

【0086】偏光顕微鏡観察の結果によると、(P−
2)は明らかに52℃〜57℃の範囲で等方性である。
また偏光顕微鏡写真におけるフィンガープリントパター
ンや、ポリドメインのプレナーテクスチャーの発現によ
り、これらのポリマーはコレステリック液晶であり、ガ
ラス板などで挟むことで容易に配向することがわかっ
た。また、X線回折の結果により、キャピラリーの様な
ものに詰めるとネマチックの配向を示すことがわかっ
た。
According to the result of observation with a polarization microscope, (P-
2) is obviously isotropic in the range of 52 ° C to 57 ° C.
Moreover, it was found that these polymers were cholesteric liquid crystals and were easily oriented by sandwiching them with a glass plate or the like, due to the fingerprint pattern in the polarization micrograph and the planar texture of the polydomain. In addition, it was found from the result of X-ray diffraction that nematic alignment was exhibited when packed in something like a capillary.

【0087】(P−1)と(P−2)のDSC曲線にお
ける明確な吸熱ピークの低温側に現れるショルダーは、
側鎖のパッキング状態の変化に起因していると思われ
る。すなわち、側鎖は昇温するに従い徐々に融解し、
(P−1)の67℃、(P−2)の75℃で完全に融解
すると考えられる。偏光顕微鏡観察で室温から複屈折を
示しているので、室温でも側鎖は完全な結晶ではなく、
一部が溶けてパッキングがゆるんでいる状態であると考
えられる。一方、(P−3)ではこれらよりも低温で側
鎖の融解が起こるので、明確なピークが観察されず、ま
た室温で最も柔らかく粘性も高い。
The shoulders appearing on the low temperature side of the clear endothermic peaks in the DSC curves of (P-1) and (P-2) are:
It seems that this is due to the change in the packing state of the side chain. That is, the side chains gradually melt as the temperature rises,
It is considered that it completely melts at 67 ° C. of (P-1) and 75 ° C. of (P-2). Since the birefringence is observed from room temperature under a polarizing microscope, the side chains are not perfect crystals even at room temperature.
It is considered that the packing is loose due to part of it melted. On the other hand, in (P-3), melting of the side chain occurs at a temperature lower than these, so no clear peak is observed, and it is the softest and highly viscous at room temperature.

【0088】[0088]

【発明の効果】本発明によれば、種々の機能性材料とし
ての用途が期待される新規な液晶性高分子材料が得られ
る。
According to the present invention, a novel liquid crystalline polymer material which is expected to be used as various functional materials can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】ポリマー(P−1)のCDスペクトルを示すグ
ラフである。
FIG. 1 is a graph showing a CD spectrum of polymer (P-1).

【図2】ポリマー(P−2)のCDスペクトルを示すグ
ラフである。
FIG. 2 is a graph showing a CD spectrum of polymer (P-2).

【図3】ポリマー(P−3)のCDスペクトルを示すグ
ラフである。
FIG. 3 is a graph showing a CD spectrum of polymer (P-3).

【図4】ポリマー(P−1)のIRスペクトルを示すグ
ラフである。
FIG. 4 is a graph showing an IR spectrum of polymer (P-1).

【図5】ポリマー(P−2)のIRスペクトルを示すグ
ラフである。
FIG. 5 is a graph showing an IR spectrum of polymer (P-2).

【図6】ポリマー(P−3)のIRスペクトルを示すグ
ラフである。
FIG. 6 is a graph showing an IR spectrum of polymer (P-3).

【図7】ポリマー(P−1)のDSC曲線を示すグラフ
である。
FIG. 7 is a graph showing a DSC curve of polymer (P-1).

【図8】ポリマー(P−2)のDSC曲線を示すグラフ
である。
FIG. 8 is a graph showing a DSC curve of polymer (P-2).

【図9】ポリマー(P−3)のDSC曲線を示すグラフ
である。
FIG. 9 is a graph showing a DSC curve of polymer (P-3).

【図10】粒子構造を示す図面代用写真であり、ポリマ
ー(P−1)の偏光顕微鏡写真である。
FIG. 10 is a drawing-substitute photograph showing a particle structure, which is a polarizing microscope photograph of a polymer (P-1).

【図11】粒子構造を示す図面代用写真であり、ポリマ
ー(P−2)の偏光顕微鏡写真である。
FIG. 11 is a drawing-substitute photograph showing a particle structure, which is a polarization microscope photograph of a polymer (P-2).

【図12】粒子構造を示す図面代用写真であり、ポリマ
ー(P−3)の偏光顕微鏡写真である。
FIG. 12 is a drawing-substitute photograph showing a particle structure, which is a polarizing microscope photograph of a polymer (P-3).

【図13】粒子構造を示す図面代用写真であり、ポリマ
ー(P−1)をスライドガラスにはさんだときの偏光顕
微鏡写真である。
FIG. 13 is a drawing-substituting photograph showing a particle structure, which is a polarizing microscope photograph when the polymer (P-1) is sandwiched between slide glasses.

【図14】粒子構造を示す図面代用写真であり、ポリマ
ー(P−2)をスライドガラスにはさんだときの偏光顕
微鏡写真である。
FIG. 14 is a drawing-substituting photograph showing a particle structure, which is a polarizing microscope photograph when the polymer (P-2) is sandwiched between slide glasses.

【図15】粒子構造を示す図面代用写真であり、ポリマ
ー(P−3)をスライドガラスにはさんだときの偏光顕
微鏡写真である。
FIG. 15 is a drawing-substitute photograph showing a particle structure, which is a polarizing microscope photograph of a polymer (P-3) sandwiched between glass slides.

【図16】粒子構造を示す図面代用写真であり、ポリマ
ー(P−1)のX線回折写真である。
FIG. 16 is a drawing-substitute photograph showing a particle structure, which is an X-ray diffraction photograph of polymer (P-1).

【図17】粒子構造を示す図面代用写真であり、ポリマ
ー(P−2)のX線回折写真である。
FIG. 17 is a drawing-substitute photograph showing a particle structure, which is an X-ray diffraction photograph of polymer (P-2).

【図18】粒子構造を示す図面代用写真であり、ポリマ
ー(P−3)のX線回折写真である。
FIG. 18 is a drawing-substitute photograph showing a particle structure, which is an X-ray diffraction photograph of a polymer (P-3).

【図19】粒子構造を示す図面代用写真であり、ポリマ
ー(P−1)のX線回折写真であり、(A)は電場を印
加しないとき、(B)は300Vを電場を印加したとき
のものである。
FIG. 19 is a drawing-substituting photograph showing a particle structure, which is an X-ray diffraction photograph of polymer (P-1). It is a thing.

【図20】粒子構造を示す図面代用写真であり、ポリマ
ー(P−2)のX線回折写真であり、(A)は電場を印
加しないとき、(B)は300Vを電場を印加したとき
のものである。
FIG. 20 is a drawing-substituting photograph showing a particle structure, which is an X-ray diffraction photograph of polymer (P-2). It is a thing.

【図21】粒子構造を示す図面代用写真であり、ポリマ
ー(P−3)のX線回折写真であり、(A)は電場を印
加しないとき、(B)は300Vを電場を印加したとき
のものである。
FIG. 21 is a drawing-substituting photograph showing a particle structure, which is an X-ray diffraction photograph of polymer (P-3). It is a thing.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 白井 汪芳 長野県小県郡丸子町長瀬2496 (72)発明者 久保田 悠一 千葉県千葉市桜木町137−4 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shiho Uyoyoshi 2496 Nagase, Maruko-cho, Ogo-gun, Nagano Prefecture (72) Inventor Yuichi Kubota 137-4 Sakuragi-cho, Chiba City, Chiba Prefecture

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ポリペプチド鎖を主鎖とし、側鎖にオキ
シフェニルケトンを有することを特徴とするサーモトロ
ピック液晶性高分子材料。
1. A thermotropic liquid crystalline polymer material comprising a polypeptide chain as a main chain and oxyphenyl ketone as a side chain.
【請求項2】 前記オキシフェニルケトンが、o−また
はp−オキシフェニルケトンである請求項1に記載のサ
ーモトロピック液晶性高分子材料。
2. The thermotropic liquid crystalline polymer material according to claim 1, wherein the oxyphenyl ketone is o- or p-oxyphenyl ketone.
【請求項3】 化1で示される構成単位からなる請求項
1または2に記載のサーモトロピック液晶性高分子材
料。 【化1】 [化1において、R1 およびR2 はそれぞれ、水素原子
またはアルキル基を表し、これらは同一でも異なってい
てもよい。R3 はアルキル基を表す。R4 は1価の置換
基を表し、nは0〜4の正の整数を表す。R5 はアルキ
ル基を表す。L1 、L2 およびL3 は、それぞれ、2価
の連結基を表す。xおよびyはそれぞれ、x+y=1の
関係を満たす数値である。]
3. The thermotropic liquid crystalline polymer material according to claim 1, comprising the structural unit represented by the chemical formula 1. [Chemical 1] [In Chemical Formula 1, R 1 and R 2 each represent a hydrogen atom or an alkyl group, and these may be the same or different. R 3 represents an alkyl group. R 4 represents a monovalent substituent radical, n represents a positive integer from 0-4. R 5 represents an alkyl group. L 1 , L 2 and L 3 each represent a divalent linking group. x and y are numerical values that satisfy the relationship of x + y = 1. ]
JP03277078A 1991-09-27 1991-09-27 Thermotropic liquid crystalline polymer material Expired - Fee Related JP3092736B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03277078A JP3092736B2 (en) 1991-09-27 1991-09-27 Thermotropic liquid crystalline polymer material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03277078A JP3092736B2 (en) 1991-09-27 1991-09-27 Thermotropic liquid crystalline polymer material

Publications (2)

Publication Number Publication Date
JPH0586180A true JPH0586180A (en) 1993-04-06
JP3092736B2 JP3092736B2 (en) 2000-09-25

Family

ID=17578473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03277078A Expired - Fee Related JP3092736B2 (en) 1991-09-27 1991-09-27 Thermotropic liquid crystalline polymer material

Country Status (1)

Country Link
JP (1) JP3092736B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6112010B2 (en) * 2011-05-12 2017-04-12 味の素株式会社 Poly α-amino acid and ferroelectric memory device using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6112010B2 (en) * 2011-05-12 2017-04-12 味の素株式会社 Poly α-amino acid and ferroelectric memory device using the same

Also Published As

Publication number Publication date
JP3092736B2 (en) 2000-09-25

Similar Documents

Publication Publication Date Title
US4657694A (en) Electrically conductive liquid crystalline substance and polymer
Fischer et al. Liquid crystalline side group block copolymers with n-butyl methacrylate as an amorphous A-block: synthesis and characterization
van Houtem et al. Desymmetrization of 3, 3′‐Bis (acylamino)‐2, 2′‐bipyridine‐Based Discotics: The High Fidelity of Their Self‐Assembly Behavior in the Liquid‐Crystalline State and in Solution
US7037444B2 (en) Photo-responsive liquid crystal composition
US5429770A (en) Low-molecular-weight and polymeric liquid-crystalline benzotriazoles, and the use thereof
KR101575025B1 (en) Silsesquioxane derivatives, method for preparing the same and liquid-crystal display comprising the same
US20040062927A1 (en) Fluorinated dendrons and self-organizing ultrahigh density nanocylinder compositions
JP3092736B2 (en) Thermotropic liquid crystalline polymer material
JPS62277412A (en) Novel polymer
KR100285610B1 (en) Photochromic liquid crystal spirobenzopyran compounds, composition comprising the same, photochromic thin films prepared therefrom and method for preparing said compound
KR20050120657A (en) Benzene derivative having long linear conjugated structure moiety, method for production thereof and liquid crystalline material
JPS6332803B2 (en)
CN111849509B (en) Compound light stabilizer, and preparation method and application thereof
CN111499561B (en) Novel light stabilizer compound and preparation method and application thereof
JPH0469627B2 (en)
JP2641274B2 (en) Liquid crystal-forming polymer and method for producing the same
JP6707794B2 (en) Dithienogelmol compound
JP2740847B2 (en) Polymer liquid crystal material
JPS6027670B2 (en) 4-(4'-Alkoxybenzoyloxy)-aniline derivative, its production method and its use
FR2738249A1 (en) MESOGENIC METAL COMPLEXES, PROCESS FOR POLYMERIZING THESE COMPLEXES AND ANISOTROPIC POLYMERS THUS OBTAINED
CN111892530A (en) Light stabilizer, and preparation method and application thereof
JPH01156971A (en) Novel compound
JPS63318526A (en) Liquid crystal optical element
CN111848499A (en) Novel compound light stabilizer, and preparation method and application thereof
KR20050119139A (en) Benzene derivative having moiety of long linear conjugated structure, method for preparation thereof and liquid crystalline material

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000620

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees