JPH0585970B2 - - Google Patents

Info

Publication number
JPH0585970B2
JPH0585970B2 JP57007572A JP757282A JPH0585970B2 JP H0585970 B2 JPH0585970 B2 JP H0585970B2 JP 57007572 A JP57007572 A JP 57007572A JP 757282 A JP757282 A JP 757282A JP H0585970 B2 JPH0585970 B2 JP H0585970B2
Authority
JP
Japan
Prior art keywords
light
laser
quarter
feedback
wave plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57007572A
Other languages
Japanese (ja)
Other versions
JPS58125245A (en
Inventor
Toshio Sugyama
Hideo Suenaga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57007572A priority Critical patent/JPS58125245A/en
Priority to DE8383100531T priority patent/DE3376172D1/en
Priority to US06/460,015 priority patent/US4532619A/en
Priority to EP83100531A priority patent/EP0084871B1/en
Publication of JPS58125245A publication Critical patent/JPS58125245A/en
Publication of JPH0585970B2 publication Critical patent/JPH0585970B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/065Mode locking; Mode suppression; Mode selection ; Self pulsating
    • H01S5/0656Seeding, i.e. an additional light input is provided for controlling the laser modes, for example by back-reflecting light from an external optical component
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping

Description

【発明の詳細な説明】 本発明は半導体レーザダイオードを用いた光ピ
ツクアツプ装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical pickup device using a semiconductor laser diode.

光デイスク等の信号再生に用いる光ピツクアツ
プ装置に於いて、レーザダイオード等の光束を光
学レンズ等でデイスク信号面に微少スポツトに絞
り込み、デイスク信号により変調された反射光を
光検出器で電気信号に変換し情報を再生する。
In an optical pickup device used to reproduce signals from optical discs, etc., the light beam from a laser diode, etc. is focused into a minute spot on the disc signal surface using an optical lens, etc., and the reflected light modulated by the disc signal is converted into an electrical signal by a photodetector. Convert and reproduce information.

この種光ピツクアツプの構成を第1図に示す。 The configuration of this type of optical pickup is shown in FIG.

レーザダイオード1の光束をカツプリングレン
ズ2で平行光束にし、偏光プリズム3,1/4波長
板4を通り絞り込みレンズ5によりデイスク6の
信号面に絞り込まれる。反射光は5,4を通り偏
光プリズム3で反射され光検出器7で電気信号に
変換される。この種の光学系に於いては、偏光プ
リズム3と1/4波長板4を用いるために、原理的
にはレーザ1には反射光が帰還しない。すなわち
直接偏光している半導体レーザ1からの出射光
は、偏波面を1/4波長板4の結晶軸に対して45°の
角度をなして入射させることにより、1/4波長板
4通過後のレーザ光は円偏光になる。このレーザ
光がデイスク6の反射面で反射し、再び1/4波長
板4を通過すると、最初の入射偏光方向とは偏波
面が90°回転した直接偏光となる。90°偏光方向が
異なる光は直線偏光となる。90°偏光方向が異な
る光は偏光プリズム3を通過せずに反射するため
に半導体レーザ1へは戻らなくなる。しかし、部
品の精度、組立精度、またデイスクの光学的異方
性(複屈折)等により微少ではあるが、レーザ1
に帰還し帰還光量を零にすることは不可能であ
る。この場合、特に屈折率ガイド構造等の縦モー
ドのシングルモードレーザダイオードはこの微少
な帰還光量のため、縦モードが変化し、光出力が
変化する。信号再生は場合この出力変動がノイズ
になつてしまいデイスクより良好な信号を検出す
ることが困難となる。
The light beam from the laser diode 1 is made into a parallel light beam by a coupling lens 2, passes through a polarizing prism 3 and a quarter-wave plate 4, and is focused onto the signal surface of a disk 6 by a focusing lens 5. The reflected light passes through 5 and 4, is reflected by the polarizing prism 3, and is converted into an electrical signal by the photodetector 7. In this type of optical system, since the polarizing prism 3 and the quarter-wave plate 4 are used, reflected light does not return to the laser 1 in principle. In other words, by making the polarization plane incident at an angle of 45° to the crystal axis of the quarter-wave plate 4, the directly polarized light emitted from the semiconductor laser 1 becomes polarized after passing through the quarter-wave plate 4. The laser beam becomes circularly polarized. When this laser beam is reflected by the reflective surface of the disk 6 and passes through the quarter-wave plate 4 again, it becomes directly polarized light whose plane of polarization is rotated by 90 degrees from the initial incident polarization direction. Light with different polarization directions by 90° becomes linearly polarized light. Light having polarization directions different by 90° does not pass through the polarizing prism 3 and is reflected, so that it does not return to the semiconductor laser 1. However, due to parts precision, assembly precision, optical anisotropy (birefringence) of the disk, etc., the laser
It is impossible to return to zero and reduce the amount of returned light to zero. In this case, especially in a longitudinal single mode laser diode such as a refractive index guide structure, the longitudinal mode changes due to this small amount of feedback light, and the optical output changes. During signal reproduction, this output fluctuation becomes noise, making it difficult to detect a signal better than that from the disk.

本発明の目的は、光出力変動ノイズの欠点を低
減しかつ光利用効率の優れた光ピツクアツプ装置
を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an optical pickup device that reduces the drawbacks of optical output fluctuation noise and has excellent light utilization efficiency.

光源であるレーザダイオードには大別して、上
記した屈折率ガイドを設けたいわゆるシングルモ
ードレーザとゲインガイドによるマルチモードレ
ーザがある。シングル、マルチというのは縦モー
ドのことである。シングルモードレーザは帰還光
でモード変化しやすいが、マルチモードレーザ
は、モードが変化しにくいため、帰還光によるノ
イズの点ではマルチモードの方が一般的には優れ
ている。しかしマルチモードレーザには非点隔差
があるため、シリンドリカルレンズ等を用いて、
これを補正しなくてはいけないという欠点があ
る。このため、シングルモードレーザの方が構成
部品が少なくてすむが以上述べたノイズが出ると
いう欠点をもつ。従来は帰還光によるノイズを低
減するため、極力レーザに光が帰還しないように
していた。(参考文献日経メカニカル12/21′
1981等) 出願人がいろいろな半導体レーザでこの帰還ノ
イズのレベルと帰還量の関係を詳しく測定した結
果、ある帰還量の時にノイズがピークなり、それ
以上の量をかえつて帰還した方がノイズレベルが
低下する事実を発見した。第2図にシングルモー
ドレーザの反射帰還光量とノイズレベルの関係を
示す。これはCSP型レーザを用いて、開口数0.15
でカツプリングした例であり、レンズ系を通りデ
イスク面での光量を100%としてある。実際レー
ザの射出光量のすべてを光学系が用いてはいな
い。これは、半導体レーザの発光パターンが非等
方の楕円であることと、絞り込みレンズの開口の
強度が一様である方が小さなスポツトを形成する
ために必要なためである。よつてレーザの発光パ
ターンにより異なるが10〜30%程度が光学系を通
るのが普通である。以下帰還量はこの光学系を通
る光量を100%としてある。第2図において、横
軸はレーザ光の帰還率を示す。また縦軸はレーザ
光を光検出器で観測し直流出力を1とした時の帯
域幅1Hzあたりの相対ノイズ強度を示す。いいか
えれば相対ノイズ強度10-13とは10KHz(10-4)帯
域幅で測定した場合のS/N90dBに相当する。
第2図からわかるように、約10%以上帰還させる
と急激にノイズが少なくなる事実がわかつた。こ
れは、ある程度以上帰還させるとシングルモード
レーザがマルチライクになるためと考えられる。
約20%程度レーザに帰還してやればほぼノイズは
低減され支障がないレベルになる。
Laser diodes, which are light sources, can be roughly divided into so-called single mode lasers provided with the above-mentioned refractive index guide and multimode lasers using a gain guide. Single and multi are vertical modes. Single-mode lasers are susceptible to mode changes due to feedback light, but multi-mode lasers are less likely to change mode, so multi-mode lasers are generally superior in terms of noise caused by feedback light. However, since multimode lasers have astigmatism, using a cylindrical lens etc.
This has the drawback of having to be corrected. For this reason, although single mode lasers require fewer components, they have the disadvantage of producing the noise mentioned above. Conventionally, in order to reduce noise caused by the feedback light, we tried to prevent light from returning to the laser as much as possible. (References Nikkei Mechanical 12/21′
(1981, etc.) The applicant made detailed measurements of the relationship between the level of feedback noise and the amount of feedback using various semiconductor lasers, and found that the noise peaked at a certain amount of feedback, and that the noise level increased when a larger amount of feedback was returned. We discovered the fact that. FIG. 2 shows the relationship between the amount of reflected feedback light and the noise level of a single mode laser. This uses a CSP type laser with a numerical aperture of 0.15.
In this example, the amount of light passing through the lens system and reaching the disk surface is assumed to be 100%. In reality, the optical system does not use all of the amount of light emitted from the laser. This is because the emission pattern of the semiconductor laser is an anisotropic ellipse, and the aperture of the diaphragm lens needs to have uniform intensity in order to form a small spot. Therefore, it is normal for about 10 to 30% of the light to pass through the optical system, although it varies depending on the laser light emission pattern. The amount of feedback below assumes that the amount of light passing through this optical system is 100%. In FIG. 2, the horizontal axis indicates the feedback rate of laser light. The vertical axis indicates the relative noise intensity per 1 Hz bandwidth when the laser beam is observed with a photodetector and the DC output is set to 1. In other words, a relative noise intensity of 10 -13 corresponds to an S/N of 90 dB when measured at a 10 KHz (10 -4 ) bandwidth.
As can be seen from Figure 2, it was found that the noise decreased rapidly when the feedback was increased by about 10% or more. This is considered to be because the single mode laser becomes multi-like when the feedback exceeds a certain level.
If about 20% of the noise is returned to the laser, the noise will be reduced to a level where there is no problem.

また直径が12cmのコンパクトデイスクにおい
て、このレーザ帰還量に対する該デイスク上に記
録されているPCM信号のフレームエラー数を測
定してみると、第3図のようになり、10%以上帰
還させるとエラー数は急激に減ることもわかつ
た。
In addition, when we measure the number of frame errors of the PCM signal recorded on a compact disk with a diameter of 12 cm in response to the amount of laser feedback, we find that the number of frame errors in the PCM signal recorded on the disk is as shown in Figure 3. It was also found that the number decreased rapidly.

従来からハーフプリズム、ハーフミラーを用い
て光学系を簡略することもできるが、この場合は
光の利用光効が非常に劣化する。第5図にレーザ
帰還量と信号レベル(光利用効率)の関係を偏光
プリズム、λ/4板を用いた光学系の場合を(a)、
ハーフミラーの場合を(b)に示す。同じ20%の帰還
量で、ハーフミラーの方より偏光プリズムの方が
4倍近く効率がよい。
Conventionally, it is possible to simplify the optical system by using a half prism or a half mirror, but in this case, the efficiency of light utilization is greatly degraded. Figure 5 shows the relationship between the amount of laser feedback and the signal level (light utilization efficiency) in the case of an optical system using a polarizing prism and a λ/4 plate (a).
The case of a half mirror is shown in (b). For the same amount of feedback of 20%, a polarizing prism is nearly four times more efficient than a half mirror.

よつて、偏光プリズムを用いたまま、少々レー
ザに帰還してやるのが優れている。このためには
1/4波長板を正規のレーザの波長に対して正確に
位相が90°シフトしないようにすればよい。たと
えば入射偏光方向に対し、1/4波長板の光軸を入
射光軸を軸上正規の45°ではなく、30°程度にする
ことにより20%の帰還量を作ることができる。ま
た1/4波長板を入射光軸に対し傾けても容易に可
能となる。
Therefore, it is better to return some light to the laser while using a polarizing prism. For this purpose, the quarter-wave plate should be configured so that the phase does not shift by exactly 90° with respect to the wavelength of the regular laser. For example, a feedback amount of 20% can be created by setting the optical axis of the quarter-wave plate at about 30° with respect to the incident polarization direction, instead of the normal 45° on the axis. This can also be easily achieved by tilting the quarter-wave plate with respect to the incident optical axis.

次に本発明の一実施例を第4図に示す。本実施
例は前記した入射偏波方向に対し1/4波長板の光
軸を本来の位置よりずらせた例である。
Next, an embodiment of the present invention is shown in FIG. This embodiment is an example in which the optical axis of the quarter-wave plate is shifted from its original position with respect to the incident polarization direction described above.

(a)は従来の例である。入射偏波方向に対して1/
4波長板4aが45°の角度をなしている。(b)は本発
明の例であり、入射偏波方向に対し、1/4波長板
4bの光軸を60°に設定してある。このため入射
光の位相変化90°よりずれるため、レーザへの帰
還量を20%にすることができる。
(a) is a conventional example. 1/ with respect to the incident polarization direction
The four-wavelength plate 4a forms an angle of 45°. (b) is an example of the present invention, in which the optical axis of the quarter-wave plate 4b is set at 60° with respect to the direction of incident polarization. This deviates from the 90° phase change of the incident light, making it possible to reduce the amount of feedback to the laser to 20%.

また、1/4波長板そのものをレーザに20%程度
帰還するように1/4波長ではなく、位相シフト量
そのものが1/4波長からずらしたものを用いても
よい。
Furthermore, instead of using a 1/4 wavelength plate so that about 20% of the 1/4 wavelength plate itself returns to the laser, a plate whose phase shift amount itself is shifted from the 1/4 wavelength may be used.

本発明は以上述べたように、レーザダイオード
の光を一部戻してやることにより、レーザの縦モ
ードの変化に伴なうノイズを低減し得、デイスク
より良質な信号を検出することが可能となり、か
つ光利用効率の優れた光ピツクアツプを提供する
ことができる。
As described above, the present invention makes it possible to reduce noise caused by changes in the longitudinal mode of the laser by returning part of the light from the laser diode, making it possible to detect signals of higher quality than from the disk. Furthermore, it is possible to provide an optical pickup with excellent light utilization efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は光ピツクアツプ装置の基本構成図、第
2図は本発明によるレーザの帰還光量とノイズの
関係特性図、第3図は本発明によるレーザ帰還光
量とフレームエラー数の関係特性図、第4図は
λ/4波長板と光軸との関係を示す図、aは従
来、bは本発明の実施例であり、第5図はレーザ
帰還光量と信号レベルとの関係特性を示す図であ
つて、同図aは第4図bの実施例の場合を、第5
図bはハーフミラーを用いた場合を夫々示してい
る。 1……レーザダイオード、2……カツプリング
レンズ、3……偏光プリズム、4……1/4波長板、
5……絞り込みレンズ、6……デイスク。
FIG. 1 is a basic configuration diagram of an optical pickup device, FIG. 2 is a characteristic diagram of the relationship between the amount of laser feedback light and noise according to the present invention, and FIG. 3 is a characteristic diagram of the relationship between the amount of laser feedback light and the number of frame errors according to the present invention. Figure 4 is a diagram showing the relationship between the λ/4 wavelength plate and the optical axis, a is the conventional one, b is the embodiment of the present invention, and Figure 5 is a diagram showing the relationship between the amount of laser feedback light and the signal level. In addition, Fig. 4a shows the case of the embodiment of Fig. 4b, and Fig. 5
Figure b shows the case where a half mirror is used. 1...Laser diode, 2...Coupling lens, 3...Polarizing prism, 4...1/4 wavelength plate,
5... Aperture lens, 6... Disc.

Claims (1)

【特許請求の範囲】 1 縦モードがシングルの半導体レーザの出力光
束を、偏光プリズム及び1/4波長板を通して、デ
イスクに絞り込み照射し、該デイスクからの反射
光を該1/4波長板を通し、さらに該偏光プリズム
で反射させて光検出器でピツクアツプするように
した光ピツクアツプ装置において、 該デイスクからの反射光のうちの規定の光量が
該偏光プリズムを透過し、該半導体レーザに帰還
して該半導体レーザの縦モードがシングルモード
からマルチライクに変化するように、該1/4波長
板の結晶軸を、その入射偏波方向に対して、45°
に定めた基準角度よりもずらしたことを特徴とす
る光ピツクアツプ装置。
[Claims] 1. The output light beam of a semiconductor laser with a single longitudinal mode is focused and irradiated onto a disk through a polarizing prism and a quarter-wave plate, and the reflected light from the disk is passed through the quarter-wave plate. Further, in an optical pickup device in which light is reflected by the polarizing prism and picked up by a photodetector, a predetermined amount of light from the reflected light from the disk is transmitted through the polarizing prism and returned to the semiconductor laser. In order to change the longitudinal mode of the semiconductor laser from a single mode to a multi-like mode, the crystal axis of the quarter-wave plate is set at 45° with respect to the direction of incident polarization.
An optical pick-up device characterized by being shifted from a reference angle determined in .
JP57007572A 1982-01-22 1982-01-22 Optical pickup device Granted JPS58125245A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP57007572A JPS58125245A (en) 1982-01-22 1982-01-22 Optical pickup device
DE8383100531T DE3376172D1 (en) 1982-01-22 1983-01-21 Method and apparatus for reducing semiconductor laser optical noise
US06/460,015 US4532619A (en) 1982-01-22 1983-01-21 Method and apparatus for reducing semiconductor laser optical noise
EP83100531A EP0084871B1 (en) 1982-01-22 1983-01-21 Method and apparatus for reducing semiconductor laser optical noise

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57007572A JPS58125245A (en) 1982-01-22 1982-01-22 Optical pickup device

Publications (2)

Publication Number Publication Date
JPS58125245A JPS58125245A (en) 1983-07-26
JPH0585970B2 true JPH0585970B2 (en) 1993-12-09

Family

ID=11669520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57007572A Granted JPS58125245A (en) 1982-01-22 1982-01-22 Optical pickup device

Country Status (1)

Country Link
JP (1) JPS58125245A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH087869B2 (en) * 1983-05-12 1996-01-29 オリンパス光学工業株式会社 Optical pickup device
JPS6089841A (en) * 1983-10-21 1985-05-20 Toyo Commun Equip Co Ltd Reflected light partial feedback light isolator
JPS60131647A (en) * 1983-12-20 1985-07-13 Matsushita Electric Ind Co Ltd Wavelength plate
JPH02137132A (en) * 1988-11-16 1990-05-25 Sony Corp Reproducing device for optical recording medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5637834A (en) * 1980-08-20 1981-04-11 Hitachi Ltd Optical pickup
JPS5680193A (en) * 1979-12-06 1981-07-01 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5680193A (en) * 1979-12-06 1981-07-01 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser device
JPS5637834A (en) * 1980-08-20 1981-04-11 Hitachi Ltd Optical pickup

Also Published As

Publication number Publication date
JPS58125245A (en) 1983-07-26

Similar Documents

Publication Publication Date Title
US4799210A (en) Fiber optic read/write head for an optical disk memory system
JPH0762913B2 (en) Automatic focus control method
JPS6334532B2 (en)
US5067117A (en) Output stabilizing apparatus for an optical head
KR19990020932A (en) Optical pickup device for recording reproduction
US6266313B1 (en) Optical pickup for recording or reproducing system
JPH0585970B2 (en)
JP3392206B2 (en) Optical pickup
US7358470B2 (en) Optical pickup
JPS61162838A (en) Driving device for light source of optical disk recording and reproducing device
JP2686958B2 (en) Optical pickup device
JPS58175149A (en) Optical pickup device
JPS6226098B2 (en)
JP2000099978A (en) Optical pickup
JPS58175147A (en) Optical pickup device
JPS6040538A (en) Optical information reader
JPH039134Y2 (en)
KR100207720B1 (en) Optical pickup apparatus for recording and reproducing
JPS60154337A (en) Optical pickup device
JP2002319699A (en) Optical device
JPS58175146A (en) Semiconductor laser
KR0168135B1 (en) Optical pick-up assembly for optical disk
KR100655547B1 (en) Apparatus for optical pick-up
JPH10233025A (en) Optical pickup
JP2002157769A (en) Information recording and reproducing device