JPH0585899A - Preparation of needlelike single crystal - Google Patents

Preparation of needlelike single crystal

Info

Publication number
JPH0585899A
JPH0585899A JP25360591A JP25360591A JPH0585899A JP H0585899 A JPH0585899 A JP H0585899A JP 25360591 A JP25360591 A JP 25360591A JP 25360591 A JP25360591 A JP 25360591A JP H0585899 A JPH0585899 A JP H0585899A
Authority
JP
Japan
Prior art keywords
substrate
needle
crystal
single crystal
atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25360591A
Other languages
Japanese (ja)
Inventor
Yoshihiro Imamura
義宏 今村
Yoshiaki Kadota
好晃 門田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP25360591A priority Critical patent/JPH0585899A/en
Publication of JPH0585899A publication Critical patent/JPH0585899A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To epitaxially grow a needlelike single crystal of a kind the same or different from that of a substrate crystal by applying a voltage to an electroconductive needle in the vicinity of the substrate crystal, ionizing atoms in a gas and embedding the ionized atoms in a prescribed position of the substrate crystal. CONSTITUTION:A chamber 6 is evacuated to about 10<-8>Torr and a substrate [e.g. n type (111) GaAs] 1 is heated to about 600 deg.C. The temperature is then lowered to about 100 deg.C. Tetraethyltin gas is injected from a nozzle 4 and kept at about 10<-6>Torr. An electrically conductive needle 2 is approached to a position at a distance of tens of nm from the surface of the substrate 1 and a positive voltage of 10V is applied for 1 ms to embed tin atoms in the surface of the substrate 1, which is then transferred to a chamber 7. A gate valve 8 is closed to regulate the temperature of the substrate 1 to about 350 deg.C The objective raw material gas (e.g. a mixed gas of trimethylgallium and arsine) for the objective needlelike single crystal is injected from a nozzle 10 and a valve of a vent hole 11 is regulated to adjust the internal pressure to about 50Torr. Thereby, the needlelike single crystal (e.g. GaAs) is grown from the above-mentioned tin atoms.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は針状単結晶の作製法に関
し、特に電子素子に利用可能な針状単結晶の作製法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a needle-shaped single crystal, and more particularly to a method for producing a needle-shaped single crystal that can be used in electronic devices.

【0002】[0002]

【従来の技術】針状単結晶(ウィスカー)を、意図する
位置に成長させる技術はまだ無いといって良いが、その
成長機構は古くから調べられている。概要は、例えば黒
田登志夫 著:「結晶は生きている」 サイエンス社
pp.247−250に述べられているように、1.ら
せん転位による優先的なスパイラル成長、2.ウィスカ
ーの先端に常に液滴をのせながら成長するVLS(va
pour phase−liquid phase−s
olid phase)機構などである。これらはいず
れも偶発的に発生した針状結晶の生成原因を追究して、
その機構を明らかにしたといってよく、工学的な目的か
ら、所定の位置に、設計された大きさで針状単結晶を作
製する技術を述べたものではない。針状単結晶を積極的
に電子素子に利用しようとする試みは、原口恵一 他3
名:「GaAs量子細線結晶のpn接合特性」応用物理
学関係連合講演会 講演予稿集1990年秋期,28p
−M−1,1117頁に報告例がある。またこれらの結
晶の成長法についてはアプライド フィジックス レタ
ーズ.59巻,4号22の431−433頁に記載(H
iruma,T.Katsuyama,K.Ogaw
a,M.Koguchi,H.Kakibayashi
and G.P.Morgan:Quantum s
ize microcrystals grown u
sing organometallic vapor
phase epitaxy,Appl.Phys.
Lett.59(4),22 July 1991.)
されているが、成長機構については、VLS機構との推
測的結果のみが記述されており、特定の位置に細線結晶
(針状単結晶)を成長させることは記載されていない。
2. Description of the Related Art It can be said that there is no technique for growing a needle-shaped single crystal (whisker) at an intended position, but its growth mechanism has been studied for a long time. For an overview, see, for example, Toshio Kuroda: "Crystals are alive" Science Company
pp. 247-250, 1. Preferential spiral growth by screw dislocation, 2. VLS (va) that grows while always depositing droplets on the tips of whiskers
pour phase-liquid phase-s
The solid phase mechanism and the like. In each of these, we investigated the cause of accidental needle-shaped crystal formation,
It cannot be said that the mechanism is clarified, and for the purpose of engineering, it does not describe a technique for producing a needle-shaped single crystal at a predetermined position in a designed size. Keiichi Haraguchi et al. 3 attempted to positively utilize needle-shaped single crystals for electronic devices.
Name: "pn junction characteristics of GaAs quantum wire crystals" Proceedings of the Joint Lecture on Applied Physics Autumn 1990, 28p
-M-1, page 1117 has a report example. For the growth method of these crystals, see Applied Physics Letters. 59, No. 4, 22, pp. 431-433 (H
iruma, T .; Katsyuyama, K .; Ogaw
a, M. Koguchi, H .; Kakibayashi
and G.D. P. Morgan: Quantum s
size microcrystals grow u
sing organometallic vapor
phase epitaxy, Appl. Phys.
Lett. 59 (4), 22 July 1991. )
However, regarding the growth mechanism, only speculative results with the VLS mechanism are described, and growing a fine wire crystal (acicular single crystal) at a specific position is not described.

【0003】[0003]

【発明が解決しようとする課題】上述したように、個々
の針状単結晶の位置を、前もって正確に決めて成長させ
る技術はなく、また針状単結晶の生成を制御できるまで
には至っていないため、素子の設計性に欠けるという欠
点があった。
As described above, there is no technique for precisely determining the position of each needle-shaped single crystal in advance and growing the needle-shaped single crystal, and it has not been possible to control the generation of the needle-shaped single crystal. Therefore, there is a drawback that the designability of the element is lacking.

【0004】本発明は、これらの欠点を除き、所定の位
置に針状単結晶を成長させる技術を提供することを目的
とする。
An object of the present invention is to eliminate these drawbacks and to provide a technique for growing a needle-shaped single crystal at a predetermined position.

【0005】[0005]

【課題を解決するための手段】本発明は基板結晶の表面
に近接させた導電性の針に電圧を印加し、該針の先端と
前記基板結晶の表面との間に存在する気体または液体に
含まれる原子をイオン化して前記針の先端の電界による
反発力によって前記基板結晶の表面に前記イオン化され
た原子を埋め込み、しかる後埋め込まれた前記原子を核
として前記基板結晶と同種または異種の針状単結晶を前
記基板結晶表面にエピタキシャル成長させることを特徴
とする。
According to the present invention, a voltage is applied to a conductive needle that is brought close to the surface of a substrate crystal, and a gas or liquid existing between the tip of the needle and the surface of the substrate crystal is applied. A needle that is the same as or different from the substrate crystal by ionizing the contained atoms and embedding the ionized atoms in the surface of the substrate crystal by the repulsive force by the electric field at the tip of the needle, and then using the embedded atoms as nuclei -Shaped single crystal is epitaxially grown on the surface of the substrate crystal.

【0006】さらに本発明は収束イオンビームを形成し
てイオンを基板結晶の表面に注入し、注入された原子を
核として前記基板結晶と同種または異種の針状単結晶を
前記基板結晶表面にエピタキシャル成長させることを特
徴とする。
Further, according to the present invention, a focused ion beam is formed to inject ions into the surface of a substrate crystal, and needle-like single crystals of the same kind or different kinds as the substrate crystal are epitaxially grown on the surface of the substrate crystal by using the injected atoms as nuclei. It is characterized in that

【0007】[0007]

【作用】本発明によれば、直径が100nm以下の極め
て細い単結晶を意図した場所に作製することができ、量
子効果の期待できる半導体細線構造、あるいはマイクロ
マシーンの機構部,センサ部,電子放射フィラメントな
どに利用できるので、電子工業を中心とした利用分野は
大きい。
According to the present invention, an extremely thin single crystal having a diameter of 100 nm or less can be produced in an intended place, and a semiconductor thin wire structure for which a quantum effect can be expected, or a mechanism part of a micromachine, a sensor part, an electron emission. Since it can be used for filaments, etc., it has a large application field centered on the electronics industry.

【0008】[0008]

【実施例】以下、図面を参照して本発明の実施例を詳細
に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0009】実施例1 本発明における針状単結晶の作製は二つのプロセスに分
けられる。
Example 1 The production of a needle-shaped single crystal according to the present invention is divided into two processes.

【0010】まず第一は、針状結晶の発生する核となる
原子あるいは分子を、基板結晶の意図する位置に埋め込
むプロセスであり、第二は、その核を基に針状単結晶を
成長させるプロセスである。図1は、これらのプロセス
を実行するための装置の原理を示したものであり、基板
1に導電性の針2を近接させる機構部分3が、この針先
と基板との間隙に核となる原子を供給する原料ガスを流
すためのノズル4および排気孔5を具えたチャンバ6に
設置されている。針2には電気端子2Aから電圧を印加
できる。
First, there is a process of embedding an atom or molecule serving as a nucleus for acicular crystals in an intended position of a substrate crystal, and second, a needle-like single crystal is grown on the basis of the nucleus. Is a process. FIG. 1 shows the principle of an apparatus for carrying out these processes, and a mechanism portion 3 for bringing a conductive needle 2 close to the substrate 1 serves as a nucleus in the gap between the needle tip and the substrate. It is installed in a chamber 6 having a nozzle 4 and an exhaust hole 5 for flowing a source gas for supplying atoms. A voltage can be applied to the needle 2 from the electric terminal 2A.

【0011】チャンバ6は第二の成長プロセスを行うチ
ャンバ7とゲートバルブ8を介して上下方向に接続され
ており、ヒーターなどの加熱機構9Aを有する基板支持
台9を上下動させることにより上記の二つのプロセス
を、連続的に行うことができる。本実施例では、核とな
る原子として錫(Sn),基板1をn形(111)Ga
Asとした場合について述べる。チャンバ6を10-8
orr程度の高真空に排気したのち、基板1を約600
℃まで加熱する。この加熱により基板表面に形成されて
いた自然酸化膜は除去され、原子的に清浄な基板表面が
得られる。
The chamber 6 is vertically connected to the chamber 7 for performing the second growth process via the gate valve 8, and the above-mentioned structure is obtained by vertically moving the substrate support 9 having a heating mechanism 9A such as a heater. The two processes can be performed sequentially. In this embodiment, tin (Sn) is used as a nucleus atom, and the substrate 1 is made of n-type (111) Ga.
The case of As will be described. Set chamber 6 to 10 -8 T
After evacuating to a high vacuum of about orr, the substrate 1 is about 600
Heat to ℃. By this heating, the natural oxide film formed on the substrate surface is removed, and an atomically clean substrate surface is obtained.

【0012】次に基板1の温度を100℃まで下げ、ノ
ズル4よりテトラエチルスズ(TEn)ガスを注入し1
-6Torr程度の雰囲気圧に維持する。タングステン
針2を基板1の表面から数10nmの位置まで近接させ
基板面に対して10Vの正電圧を1ms印加すると、T
ESnは錫原子とエチル基を主体とする分子に分解しプ
ラスにイオン化した数個の錫原子は、針2の先端から電
気的に弾かれて基板1の表面GaAs原子の格子に埋め
込まれる。さらに別の場所に核を形成するためには針2
の位置を固定したまま基板1を二次元的に移動させ、同
じプロセスを行う。
Next, the temperature of the substrate 1 is lowered to 100 ° C., and tetraethyltin (TEn) gas is injected from the nozzle 4 to 1
The atmospheric pressure is maintained at about 0 -6 Torr. When the tungsten needle 2 is brought close to the position of several tens nm from the surface of the substrate 1 and a positive voltage of 10 V is applied to the substrate surface for 1 ms, T
ESn is decomposed into molecules mainly composed of tin atoms and ethyl groups, and several positively ionized tin atoms are electrically repelled from the tip of the needle 2 and embedded in the lattice of surface GaAs atoms of the substrate 1. Needle 2 for nucleation at another location
The substrate 1 is two-dimensionally moved while the position of is fixed and the same process is performed.

【0013】次に基板1をチャンバ7に移し、ゲートバ
ルブ8を閉じてから、基板1の温度を350℃にする。
ノズル10からGaAsの原料であるトリメチルガリウ
ム(TMG:常温吸引型容器)5ccとアルシン(As
3 :100%容器からの吸引)15ccの混合ガスを
注入し、排気孔11のバルブを調節することにより、チ
ャンバ7の内圧を50Torrにすると、第一のプロセ
スで錫原子を埋め込んだ所から、根元の直径約150Å
の針状単結晶が成長し、成長高さが約1μmになると直
径は10nmになりそれ以上成長させても、直径はほと
んど変化しない。
Next, the substrate 1 is transferred to the chamber 7, the gate valve 8 is closed, and then the temperature of the substrate 1 is set to 350.degree.
From the nozzle 10, trimethylgallium (TMG: room temperature suction type container) 5 cc, which is a raw material of GaAs, and arsine (As
(H 3 : Suction from a 100% container) By injecting 15 cc of mixed gas and adjusting the valve of the exhaust hole 11 to set the internal pressure of the chamber 7 to 50 Torr, the tin atom was embedded in the first process. , The diameter of the root is about 150Å
When the needle-shaped single crystal of No. 1 grows and the growth height becomes about 1 μm, the diameter becomes 10 nm, and the diameter hardly changes even if it is grown further.

【0014】核を形成する時に針に加える電圧を15〜
20V、時間を500ms程度に設定すると、錫原子は
直径約80nmのクラスタ状となり基板結晶に、一種の
島を形成する。この島を核として、針状単結晶を成長さ
せると、直径が数十nmの結晶が成長する。これらの結
晶成長メカニズムを考察すると、錫が数原子層の核の場
合は錫とガリウムの液滴が形成されるほどの体積にはな
らず、基板結晶の表面1〜2原子層の間に積層欠陥を形
成する。ガリウムひ素やシリコンといったダイアモンド
構造の立方晶では積層欠陥の周囲には半転位が形成さ
れ、通常半転位はそのバーガースベクトルにおいて、ら
せん転位成分をもっているため、その積層欠陥がらせん
転位の発生源となり、スパイラル成長が生じたものと考
えられる。一方、クラスタ状に集合した原子を核とし
た、針状単結晶の成長は、クラスタ径から判断してSn
−Ga液滴が形成できる大きさである。この液滴が形成
されると、成長雰囲気中のひ素が液滴に解け込み過飽和
状態になると、基板結晶上にエピタキシャル成長する。
この成長メカニズムはVLS機構によるものである。従
って、本方法では、針状単結晶のメカニズム自体を針先
に加える電圧と、印加時間によって制御できることが示
された。また、この実施例では、導電性の針先の形状が
極めて重要であり、先端を電解研磨したのちイオンミリ
ングによって尖らしたもので、曲率半径が10nm程度
のものを用いた。これ以上の曲率半径では、クラスタを
形成することができるが、らせん転位の発生を制御する
には印加電圧の制御が必ずしも容易ではない。
The voltage applied to the needle when forming the nucleus is 15 to
When the voltage is set to 20 V and the time is set to about 500 ms, the tin atoms form a cluster having a diameter of about 80 nm and form a kind of island in the substrate crystal. When acicular single crystals are grown with these islands as nuclei, crystals with a diameter of several tens nm grow. Considering these crystal growth mechanisms, when tin is a nucleus of several atomic layers, the volume is not enough to form droplets of tin and gallium, and the surface of the substrate crystal is laminated between 1 and 2 atomic layers. Forming a defect. In cubic crystals of diamond structure, such as gallium arsenide and silicon, half dislocations are formed around stacking faults. Usually, since half dislocations have a screw dislocation component in their Burgers vector, the stacking faults are the source of screw dislocations. It is thought that spiral growth occurred. On the other hand, the growth of a needle-shaped single crystal having nuclei of atoms gathered in a cluster form is judged from the cluster diameter to Sn.
-The size is such that Ga droplets can be formed. When this droplet is formed, when arsenic in the growth atmosphere is dissolved into the droplet and becomes supersaturated, epitaxial growth occurs on the substrate crystal.
This growth mechanism is due to the VLS mechanism. Therefore, it was shown that this method can control the mechanism of the needle-shaped single crystal itself by the voltage applied to the needle tip and the application time. Further, in this embodiment, the shape of the conductive needle tip is extremely important, and the tip was electrolytically polished and then sharpened by ion milling, and the radius of curvature was about 10 nm. When the radius of curvature is larger than this, clusters can be formed, but controlling the applied voltage is not always easy to control the generation of screw dislocations.

【0015】実施例2 実施例1で示したように錫原子をGaAs基板表面の結
晶層に埋め込むことにより、針状単結晶の核を形成でき
るが、埋め込む方法として収束(フォーカスド)イオン
ビームを用いることができる。図2は、錫をイオン源と
する収束イオン注入装置であり、イオン源12,イオン
源の収束用磁石13,イオンビーム走査用電磁石14、
および基板ステージ15から形成している。基板ステー
ジ15の収容されているチャンバ16はゲートバルブ1
7を介して成長チャンバ18と水平方向に接続されてお
り、チャンバ16において錫イオンを基板結晶1の所定
の位置に注入したあと、基板結晶を成長チャンバ18に
移動させ、ゲートバルブを閉じてからGaAsの成長を
行う構造になっている。
Example 2 As shown in Example 1, by embedding tin atoms into the crystal layer on the surface of the GaAs substrate, nuclei of needle-like single crystals can be formed, but a focused (focused) ion beam is used as the embedding method. Can be used. FIG. 2 shows a focused ion implantation apparatus using tin as an ion source, which includes an ion source 12, a focusing magnet 13 of the ion source, an ion beam scanning electromagnet 14,
And the substrate stage 15. The chamber 16 in which the substrate stage 15 is housed is a gate valve 1
7 is connected to the growth chamber 18 in the horizontal direction via 7, and after injecting tin ions into a predetermined position of the substrate crystal 1 in the chamber 16, the substrate crystal is moved to the growth chamber 18 and the gate valve is closed. It has a structure for growing GaAs.

【0016】まずイオン源12および磁石13によって
収束イオンビーム12Aを形成し、走査用電磁石14を
用い、基板結晶の所定の位置にイオンを打ち込む。通常
のイオンビームの最小収束直径は20nm程度である。
イオン注入による基板結晶の損傷があるため、40kV
程度の低速で30秒間注入された場合でも、その周辺2
0〜30nmのガリウムとひ素の原子配列は乱れてい
る。このため、基板結晶1を成長チャンバ18に移動さ
せてから、加熱機構16Aによって600℃数分間のア
ルシン中アニールを行って表面の結晶の原子配列をもと
の状態に戻す必要がある。このようにして、イオン注入
によって核となる箇所を所定の位置に形成したのち、実
施例1と同じ条件でGaAsの結晶成長を行うと、根元
の直径が50〜100nmの針状結晶が成長する。この
場合の、成長メカニズムは、核となる錫の注入箇所が、
アニールによって広がるため50nm程度になってお
り、充分にSn−Ga液滴が形成される大きさであるこ
とから、VLS機構によるものである。しかし、このイ
オン注入法では、収束イオンの直径が20nmと大きい
ため、実施例1で示したような、らせん転位によるスパ
イラル成長機構と、VLS機構とを区別して針状結晶を
成長させることはできない。将来、ビーム径を1nm程
度にまで収束できる技術ができれば、原理的にはイオン
注入法で、らせん転位を人為的に導入することも可能で
ある。
First, a focused ion beam 12A is formed by the ion source 12 and the magnet 13, and the scanning electromagnet 14 is used to implant ions at a predetermined position in the substrate crystal. The minimum convergent diameter of an ordinary ion beam is about 20 nm.
40kV due to substrate crystal damage due to ion implantation
Even if it is injected at a low speed for about 30 seconds, the surrounding area 2
The atomic arrangement of 0 to 30 nm gallium and arsenic is disordered. Therefore, it is necessary to move the substrate crystal 1 to the growth chamber 18 and then perform annealing in arsine at 600 ° C. for several minutes by the heating mechanism 16A to restore the atomic arrangement of the crystal on the surface to the original state. In this way, after forming a nucleus portion at a predetermined position by ion implantation, and then performing GaAs crystal growth under the same conditions as in Example 1, needle-like crystals having a root diameter of 50 to 100 nm grow. .. In this case, the growth mechanism is as follows:
It is about 50 nm because it spreads by annealing, and it is due to the VLS mechanism because it is a size enough to form Sn-Ga droplets. However, in this ion implantation method, since the diameter of the focused ions is as large as 20 nm, it is not possible to distinguish the spiral growth mechanism due to the screw dislocation and the VLS mechanism as shown in Example 1 to grow needle crystals. .. In the future, if a technique capable of converging the beam diameter to about 1 nm can be developed, it is possible to artificially introduce the screw dislocation by the ion implantation method in principle.

【0017】以上説明したことから判るように、針状結
晶の成長機構において主要な二つの機構、すなわち、ら
せん転位を核としてスパイラル成長による場合と、VL
S機構による場合のどちらに対しても、本発明が適用で
きることは明らかであるが、核とする原子種は、らせん
転位を核とする場合には原子面にステップを作るような
原子であればよいので、基板結晶を構成する原子であっ
てもよく、原子種を特定するものではない。一方、VL
S機構によるものは、針状結晶として成長する結晶組成
の少なくとも一つの元素と合金を形成し、その融点が成
長させる単結晶の融点より低いことが前提となる。従っ
て、これらの条件を満足するような、原子種(同時に複
数も可能)を選択する必要がある。また、成長させる針
状単結晶は基板と同種のホモエピタキシャル成長の例を
上記に示したが、シリコン上へのGaAs、あるいはI
nPなどの化合物半導体といったヘテロエピタキシャル
成長による針状単結晶も成長できる。
As can be seen from the above explanation, the two main growth mechanisms of needle-like crystals are spiral growth with screw dislocations as nuclei, and VL.
It is clear that the present invention can be applied to either of the cases of the S mechanism, but the atomic species as the nucleus are atoms that make steps on the atomic plane when the screw dislocation is the nucleus. Since it is good, it may be an atom constituting the substrate crystal and does not specify the atomic species. On the other hand, VL
The S mechanism is based on the assumption that it forms an alloy with at least one element of the crystal composition that grows as needle crystals, and its melting point is lower than the melting point of the single crystal to be grown. Therefore, it is necessary to select an atomic species (a plurality of atoms can be simultaneously used) that satisfy these conditions. Further, the needle-like single crystal to be grown has been shown in the above as an example of homoepitaxial growth of the same kind as the substrate, but GaAs or I on silicon is used.
It is also possible to grow a needle-shaped single crystal by heteroepitaxial growth such as a compound semiconductor such as nP.

【0018】なお、実施例1では、核となる原子を供給
するのにガスを用いたが、液体でもよい。蓚酸錫と水と
の希釈電解液を基板の上に垂らし、実施例1のように針
で錫原子を基板結晶に埋め込むことが可能である。ま
た、針状結晶を成長させる第二のプロセスにおいても、
本実施例で示した有機金属原料と水素化物を原料とする
以外に、ハイドライドVPE法,ハライドVPE法,液
相法,電解析出法であってもよい。
In the first embodiment, the gas is used to supply the atom serving as the nucleus, but a liquid may be used. It is possible to hang a diluted electrolytic solution of tin oxalate and water on the substrate and embed tin atoms in the substrate crystal with a needle as in Example 1. Also in the second process of growing needle crystals,
In addition to the organometallic raw material and the hydride shown in this embodiment as the raw materials, the hydride VPE method, the halide VPE method, the liquid phase method, and the electrolytic deposition method may be used.

【0019】[0019]

【発明の効果】以上説明したように、本発明によれば基
板結晶の任意の箇所に、直径が10〜100nm程度の
針状単結晶を形成できるので、この結晶を導電性の半導
体で作れば量子細線素子として利用できる。また極めて
曲率半径の小さな先端形状を持つ針が形成できるので、
走査型トネリング顕微鏡(STM)のプローブ、あるい
は電界イオン顕微鏡(FIM)のフィラメントとして使
える。さらに、針状結晶は、基板結晶に対してエピタキ
シャル成長しているので、機械的な結合は極めて強いた
め、マイクロマシンのカンチレバーまたカンチレバー自
体を圧力センサーとして用いることができる。あるいは
針状結晶の針先に電流を流して、溶媒中に浮遊するバク
テリア,ビールスなどを捕獲するピンとして有効であ
る。
As described above, according to the present invention, a needle-shaped single crystal having a diameter of about 10 to 100 nm can be formed at an arbitrary position of a substrate crystal. Therefore, if this crystal is made of a conductive semiconductor, It can be used as a quantum wire device. Also, since a needle with a tip shape with an extremely small radius of curvature can be formed,
It can be used as a probe for a scanning tunneling microscope (STM) or as a filament for a field ion microscope (FIM). Furthermore, since the needle-shaped crystal is epitaxially grown on the substrate crystal, the mechanical coupling is extremely strong, so that the cantilever of the micromachine or the cantilever itself can be used as a pressure sensor. Alternatively, it is effective as a pin that captures bacteria, viruses and the like floating in the solvent by passing an electric current through the needle tip of the needle crystal.

【図面の簡単な説明】[Brief description of drawings]

【図1】針状結晶の核を形成するチャンバと成長チャン
バの構成を示す断面図である。
FIG. 1 is a cross-sectional view showing the configurations of a chamber for forming nuclei of needle crystals and a growth chamber.

【図2】収束型イオン注入による針状結晶の核を形成す
るチャンバと成長チャンバの構成を示す断面図である。
FIG. 2 is a cross-sectional view showing the configurations of a chamber for forming nuclei of needle-like crystals by focused ion implantation and a growth chamber.

【符号の説明】[Explanation of symbols]

1 基板結晶 2 導電製の針 3 針の上下駆動機構部分 4 針状結晶の核となる原子をガス上の原料で供給する
ためのノズル 5 チャンバ6の排気孔 6 針状結晶の核を形成するためのチャンバ 7 針状結晶を成長させるためのチャンバ 8 ゲートバルブ 9 基板加熱ステージ 10 成長原料の供給ノズル 11 成長原料の排気孔 12 針状結晶の核となる原子のイオン源 13 イオンの収束用電磁石 14 収束イオンビームの走査用電磁石 15 基板ステージ 16 収束イオンの注入チャンバ 17 ゲートバルブ 18 収束イオンビーム注入チャンバに取り付けられた
成長チャンバ
1 Substrate Crystal 2 Conductive Needle 3 Vertical Driving Mechanism of Needle 4 Nozzle for Supplying Atoms to Be the Core of Needle Crystal with Raw Material on Gas 5 Exhaust Hole of Chamber 6 6 Core of Needle Crystal Chamber for growing 7 Chamber for growing needle-like crystals 8 Gate valve 9 Substrate heating stage 10 Supply nozzle for growth raw material 11 Exhaust hole for growth raw material 12 Ion source of atoms to be nuclei of needle-like crystals 13 Electromagnet for focusing ions 14 Electromagnet for scanning focused ion beam 15 Substrate stage 16 Focused ion implantation chamber 17 Gate valve 18 Growth chamber attached to focused ion beam implantation chamber

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 基板結晶の表面に近接させた導電性の針
に電圧を印加し、該針の先端と前記基板結晶の表面との
間に存在する気体または液体に含まれる原子をイオン化
して前記針の先端の電界による反発力によって前記基板
結晶の表面に前記イオン化された原子を埋め込み、しか
る後埋め込まれた前記原子を核として前記基板結晶と同
種または異種の針状単結晶を前記基板結晶表面にエピタ
キシャル成長させることを特徴とする針状単結晶の作製
法。
1. A voltage is applied to a conductive needle placed close to the surface of a substrate crystal to ionize atoms contained in a gas or liquid existing between the tip of the needle and the surface of the substrate crystal. The ionized atoms are embedded in the surface of the substrate crystal by the repulsive force due to the electric field at the tip of the needle, and the acicular single crystal of the same type or different species as the substrate crystal is then used as the nucleus of the embedded atoms as the substrate crystal. A method for producing a needle-shaped single crystal, which comprises epitaxially growing the surface.
【請求項2】 収束イオンビームを形成してイオンを基
板結晶の表面に注入し、注入された原子を核として前記
基板結晶と同種または異種の針状単結晶を前記基板結晶
表面にエピタキシャル成長させることを特徴とする針状
単結晶の作製法。
2. A focused ion beam is formed to inject ions into the surface of a substrate crystal, and acicular single crystals of the same kind or different kinds as the substrate crystal are epitaxially grown on the surface of the substrate crystal by using the injected atoms as nuclei. A method for producing a needle-shaped single crystal characterized by:
JP25360591A 1991-10-01 1991-10-01 Preparation of needlelike single crystal Pending JPH0585899A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25360591A JPH0585899A (en) 1991-10-01 1991-10-01 Preparation of needlelike single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25360591A JPH0585899A (en) 1991-10-01 1991-10-01 Preparation of needlelike single crystal

Publications (1)

Publication Number Publication Date
JPH0585899A true JPH0585899A (en) 1993-04-06

Family

ID=17253700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25360591A Pending JPH0585899A (en) 1991-10-01 1991-10-01 Preparation of needlelike single crystal

Country Status (1)

Country Link
JP (1) JPH0585899A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010167560A (en) * 2001-03-30 2010-08-05 Regents Of The Univ Of California Method of fabricating nanostructures and nanowires and device fabricated therefrom
JP2011121862A (en) * 2002-07-08 2011-06-23 Qunano Ab Optelectronic device, solar cell, and photodetector

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010167560A (en) * 2001-03-30 2010-08-05 Regents Of The Univ Of California Method of fabricating nanostructures and nanowires and device fabricated therefrom
US7834264B2 (en) 2001-03-30 2010-11-16 The Regents Of The University Of California Methods of fabricating nanostructures and nanowires and devices fabricated therefrom
US9881999B2 (en) 2001-03-30 2018-01-30 The Regents Of The University Of California Methods of fabricating nanostructures and nanowires and devices fabricated therefrom
JP2011121862A (en) * 2002-07-08 2011-06-23 Qunano Ab Optelectronic device, solar cell, and photodetector
US8772626B2 (en) 2002-07-08 2014-07-08 Qunano Ab Nanostructures and methods for manufacturing the same
US9680039B2 (en) 2002-07-08 2017-06-13 Qunano Ab Nanostructures and methods for manufacturing the same

Similar Documents

Publication Publication Date Title
EP0568316B1 (en) Fabrication method of fine structure
Lau Regrowth of amorphous films
Dubrovskii et al. Role of nonlinear effects in nanowire growth and crystal phase
US20080142926A1 (en) Directionally controlled growth of nanowhiskers
US7229498B2 (en) Nanostructures produced by phase-separation during growth of (III-V)1-x(IV2)x alloys
Chen et al. ZnO thin films synthesized by chemical vapor deposition
Böer et al. Crystal Defects
WO1989011897A1 (en) Silicon dioxide films on diamond
CN112490112A (en) Gallium oxide film and heteroepitaxial growth method and application thereof
JPH0585899A (en) Preparation of needlelike single crystal
Borgstrom et al. Electron beam prepatterning for site control of self-assembled quantum dots
RU2600505C1 (en) Method of forming epitaxial array of monocrystalline nanoislands of silicon on sapphire substrate in vacuum
JPH021115A (en) Formation of crystal
JP2002093720A (en) Formation method of semiconductor layer
JP2010208925A (en) Method for producing semiconductor nanowire, and semiconductor device
Mendelson Growth pips and whiskers in epitaxially grown silicon
US4847216A (en) Process for the deposition by epitaxy of a doped material
JP3527941B2 (en) Method for producing semiconductor superatom and its combination
Sadofyev et al. Silicon-germanium nanostructures with high germanium concentration
US6074485A (en) Crystal growth observing apparatus using a scanning tunneling microscope
CN111893454B (en) Preparation method of germanium tin nano material under normal pressure
KR101121588B1 (en) The growth method of gan on si by modulating the source flux
JPH11295326A (en) Probe and cantilever used for atomic force microscope, tunnelling microscope, and spin polarization tunnelling microscope, and manufacture thereof
JP2847198B2 (en) Compound semiconductor vapor phase growth method
JP2791444B2 (en) Vapor phase epitaxial growth method