JPH0585860B2 - - Google Patents

Info

Publication number
JPH0585860B2
JPH0585860B2 JP1334843A JP33484389A JPH0585860B2 JP H0585860 B2 JPH0585860 B2 JP H0585860B2 JP 1334843 A JP1334843 A JP 1334843A JP 33484389 A JP33484389 A JP 33484389A JP H0585860 B2 JPH0585860 B2 JP H0585860B2
Authority
JP
Japan
Prior art keywords
model
wind
wind cylinder
force
cylinder model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1334843A
Other languages
Japanese (ja)
Other versions
JPH03237335A (en
Inventor
Chinko Higashijima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP1334843A priority Critical patent/JPH03237335A/en
Publication of JPH03237335A publication Critical patent/JPH03237335A/en
Publication of JPH0585860B2 publication Critical patent/JPH0585860B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、懸垂支持されている風胴模型の流
体力学特性を計測する方法、より詳しくは風胴中
に風胴模型を線材等で懸垂し、種々の気流の下で
この模型に加わる力及び/又はモーメントを実験
的に測定するために利用される風胴模型の流体力
学特性を計測する方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a method for measuring the hydrodynamic characteristics of a suspended wind cylinder model, more specifically, a method for measuring the hydrodynamic characteristics of a suspended wind cylinder model, and more specifically, a method for measuring the hydrodynamic characteristics of a wind cylinder model suspended in the wind cylinder using wire rods, etc. The present invention relates to a method for measuring the hydrodynamic properties of a wind cylinder model, which is used to experimentally measure the forces and/or moments applied to the model under various airflows.

〔従来の技術〕[Conventional technology]

飛行機、宇宙飛行物体、ビルデイング、橋梁等
の建築構造物、自動車、軌道車両等を開発する
際、実物を作製する前に予め小型な模型を用意
し、この模型を風胴内に設置して種々の姿勢に対
して予想される各種気流条件の下でその模型の流
体力学特性を試験している。この様な計測は、実
物実験に伴う種々の危険を回避でき、安価で迅速
に流体力学特性の傾向を確認することができる。
それ故、開発の初期段階では風胴模型を用いる風
胴試験が必ず採用されている。
When developing airplanes, spaceflight objects, buildings, architectural structures such as bridges, automobiles, orbital vehicles, etc., a small model is prepared in advance before the actual product is manufactured, and this model is installed inside the wind cylinder and used for various purposes. The hydrodynamic properties of the model are being tested under various airflow conditions expected for the attitude of the model. Such measurements can avoid various risks associated with actual experiments, and can quickly and inexpensively confirm trends in fluid dynamic characteristics.
Therefore, wind cylinder tests using a wind cylinder model are always used in the early stages of development.

懸垂支持された風胴模型の流体力学特性を計測
する方法には、大別して二つの方法がある。即
ち、複数の細い線材で懸垂した模型を用いる計測
方法とスチング等に固定した模型を用いる計測方
法である。前者の支持方式では、模型の懸垂線材
に伝わる重量を計測して模型に加わる力及びモー
メントを測定している。後者の支持方式では、模
型内部に保持部材と共に装着した多分力検出器で
力及びモーメントを直接測定している。風胴模型
の試験測定でどちらの支持方式を採用するかは、
その目的、外的条件等によつて決定される。前者
の支持方式は、模型に対する気流の相対速度が比
較的遅いけれども、模型の姿勢が多岐にわたる場
合に有利である。これに反して、後者の支持方式
は模型の姿勢をある特定な状況に限定して、特に
強い気流に曝すときの流体力学特性を高い精度で
計測する場合に有利である。
There are two main methods for measuring the hydrodynamic characteristics of a suspended wind cylinder model. That is, there are two methods: a measurement method using a model suspended from a plurality of thin wire rods, and a measurement method using a model fixed to a string or the like. In the former support method, the force and moment applied to the model are measured by measuring the weight transmitted to the catenary wire of the model. In the latter support method, forces and moments are directly measured using a multi-force detector mounted inside the model along with a holding member. Which support method should be adopted for test measurements of the wind cylinder model?
It is determined by the purpose, external conditions, etc. The former support method is advantageous when the model has a wide variety of postures, although the relative speed of the airflow to the model is relatively slow. On the other hand, the latter support method is advantageous when limiting the posture of the model to a certain specific situation and measuring the hydrodynamic characteristics with high precision especially when exposed to strong air currents.

この発明では、前者の支持方式を採用して風胴
模型の流体力学特性を計測する方法を改良するこ
とに係わる。この発明の模型懸垂支持方式と従来
の支持方式の相違点を明確にするために、従来の
支持方式をここに簡単に概括する。
The present invention is concerned with improving a method of measuring the hydrodynamic characteristics of a wind cylinder model by adopting the former support method. In order to clarify the differences between the model suspension support system of the present invention and the conventional support system, the conventional support system will be briefly summarized here.

第4図には、試験気流によつて風胴模型(この
場合、簡単のため飛行機の模型にしてある)に加
わる6分力、即ち抵抗力(この逆が推力)、横力、
揚力である三種の力(以下、それぞれFX,FY
FZと記す)、及び横揺、縦揺と偏揺モーメントで
ある三種のモーメント(以下、それぞれMX
MYZと記す)を測定する従来技術による伝統的
な支持方法が示してある。図示のように、横型は
この上方に設置した6箇所の支持位置F1〜F6
ら線材を吊るし、その内の支持位置F4,F5及び
F6から懸垂される三本の線材の先端にそれぞれ
飛行機の三個の懸垂点2,1及び3を連結し、懸
垂点2,1には同様な線材で垂直にそれぞれ重錘
W3,W4を吊るす。更に、上記懸垂点2,1から
X軸に平行(即ち水平)に細い線材を引き出し、
前記支持位置F1とF2から垂直に下ろした支点C1
C2を経由して前記水平に引き出した線材を45°斜
め下に案内して固定箇所G1とG2に止める。その
場合、水平な線材に対して力の均衡を保つため支
持位置F6から垂直に降りる線材の懸垂点3から
X軸方向に45°斜め下に出て、滑車Q1を経由する
線材の先端に重錘W1を吊るす。同様な均衡はY
軸方向にも適用される。即ち、飛行機の懸垂点2
からY軸方向に水平に引き出した線材を支点C3
でY軸方向に45°斜め下に引き出して固定箇所G3
に止める。その場合、支持位置F3から垂直に線
材を支点C3に接続する。また、懸垂点1からY
軸に水平に線材を引き出し、滑車Q2を介して吊
るした重錘W2でY軸方向の均衡を保たせる。気
流はX軸に平行に吹き付けるので、飛行機の姿勢
を変える場合には、支持位置F1〜F6と固定箇所
G1〜G3は同じ架台のフレームに設置されている。
その場合、支持位置F1〜F6は垂直方向の重さを
測定する天秤を介してフレームに固定してある。
Figure 4 shows the six components of force exerted by the test airflow on the wind body model (in this case, it is a model of an airplane for simplicity), that is, the resistance force (the opposite is the thrust force), the lateral force,
The three types of forces that are lift forces (hereinafter, F X , F Y , respectively)
three types of moments (hereinafter referred to as M
A traditional support method according to the prior art for measuring M Y , Z ) is shown. As shown in the figure, in the horizontal type, wire rods are hung from six support positions F 1 to F 6 installed above, and among these, support positions F 4 , F 5 , and
The three suspension points 2, 1, and 3 of the airplane are connected to the tips of three wire rods suspended from F 6 , respectively, and the same wire rods are connected vertically to the suspension points 2 and 1 with weights.
Hang W 3 and W 4 . Furthermore, a thin wire is pulled out parallel to the X axis (that is, horizontally) from the suspension points 2 and 1,
A fulcrum C 1 vertically lowered from the support positions F 1 and F 2 ,
The wire pulled out horizontally via C 2 is guided diagonally downward by 45 degrees and fixed at fixing points G 1 and G 2 . In that case, in order to maintain the balance of force against the horizontal wire, the wire goes down vertically from the support position F6 , and from the suspension point 3, the end of the wire comes out diagonally 45 degrees downward in the X-axis direction and passes through the pulley Q1. Hang a weight W 1 on the. A similar equilibrium is Y
Also applies in the axial direction. That is, suspension point 2 of the airplane
The wire pulled out horizontally in the Y-axis direction from the fulcrum C 3
Pull it diagonally downward by 45 degrees in the Y-axis direction and fix it at the fixing point G3.
Stop at. In that case, connect the wire vertically from the support position F 3 to the fulcrum C 3 . Also, from suspension point 1 to Y
Pull out the wire horizontally to the shaft, and maintain balance in the Y-axis direction with a weight W2 suspended via a pulley Q2 . Airflow blows parallel to the X-axis, so when changing the airplane 's attitude, it is necessary to
G 1 to G 3 are installed on the same frame.
In that case, the support positions F 1 to F 6 are fixed to the frame via a balance that measures the weight in the vertical direction.

この配置では、懸垂点2,1,3に働く垂直力
はそれぞれ支持位置F4,F5,F6に設置した天秤
により測定される。懸垂点2,1に働くX軸方向
の水平力はそれぞれ支持位置F1,F2に設置した
天秤により、またY方向に働く力は支持位置F1
に設置した天秤によつて測定される。
In this arrangement, the normal forces acting on the suspension points 2, 1, 3 are measured by balances placed at support positions F 4 , F 5 , F 6 respectively. The horizontal force in the X-axis direction acting on the suspension points 2 and 1 is applied by the balances installed at the support positions F 1 and F 2 , respectively, and the force acting in the Y direction is applied to the support position F 1
It is measured by a balance installed at

この模型支持方式には、第4図の配置から容易
に想像できるように、種々の難点があり、測定条
件と測定精度に限界がある。これ等の難点は以下
に要約できる。
As can be easily imagined from the arrangement shown in FIG. 4, this model support method has various drawbacks, and there are limits to measurement conditions and measurement accuracy. These difficulties can be summarized as follows.

(1) 懸垂点に対する支持線材の水平・垂直方向の
バランスを取るのに、極めて長時間を称し、一
個所の支持が不完全な場合、他の支持点にもそ
の効果が波及し、全体の支持を再度やり直す必
要がしばしば生じる。それ故、風胴模型の設置
には、経験と習熟を要する。
(1) It takes an extremely long time to balance the support wire in the horizontal and vertical directions with respect to the suspension point, and if the support at one point is incomplete, the effect will spread to other support points, and the overall It is often necessary to redo the support. Therefore, installing a wind fuselage model requires experience and skill.

(2) 最終的には、上記の模型設置にあつてはある
程度不完全なバランスで我慢する必要がある。
それに基づく測定誤差を校正するため、支持配
置を完成する毎に、予め6分力検出器の出力か
ら合成される最終データを補正するプログラム
を作成しておく必要がある。
(2) In the end, when setting up the model mentioned above, it is necessary to endure a certain degree of imperfect balance.
In order to calibrate measurement errors based on this, it is necessary to create a program in advance to correct the final data synthesized from the outputs of the six-component force detector each time the support arrangement is completed.

(3) 支持フレーム用の架台が非常に大規模にな
る。何故なら、支持位置F1〜F6とその天秤を
天井で支持し、固定箇所G1〜G3を下部に設け、
しかも側面には重錘W1,W2用の滑車Q2,Q1
を設ける必要があるからである。つまり、この
模型支持方法では、上下にも左右にも広いスペ
ースを要し、大きな風胴設備を準備する必要が
ある。
(3) The mount for the support frame becomes very large. This is because the support positions F 1 to F 6 and their balances are supported on the ceiling, and the fixing points G 1 to G 3 are provided at the bottom.
Moreover, pulleys Q 2 and Q 1 for weights W 1 and W 2 are installed on the side.
This is because it is necessary to provide In other words, this model support method requires a large space both vertically and horizontally, and requires the preparation of large wind tunnel equipment.

(4) 種々の飛行姿勢に対して風胴試験を行うに
は、飛行機のX軸、Y軸及びZ軸の周りに回転
させる必要がある。その場合、支持位置F1
F6と固定箇所G1,G2及び滑車Q2,Q1を同時に
移動させる必要があり、架台の設ける移動機構
も大掛かりになる。
(4) To conduct wind barrel tests for various flight positions, it is necessary to rotate the airplane around its X, Y, and Z axes. In that case, the support position F 1 ~
It is necessary to move F 6 , the fixed points G 1 and G 2 , and the pulleys Q 2 and Q 1 at the same time, and the moving mechanism provided for the frame becomes large-scale.

(5) 姿勢の可変範囲が極めて低い。何故なら、第
4図で例えばZ軸周りに回転させる場合、支点
C1又はC2が飛行機の正面を覆い、気流の流れ
を乱すため測定不能になるからである。もちろ
ん、飛行機の真横に気流が当たる場合にも、支
点C3あるいは滑車Q2又はQ1が気流の乱れを発
生させ測定不能になる。
(5) The range of posture variation is extremely low. This is because in Figure 4, for example, when rotating around the Z axis, the fulcrum
This is because C 1 or C 2 covers the front of the airplane and disrupts the airflow, making measurement impossible. Of course, even if the airflow hits right next to the airplane, the fulcrum C 3 or the pulley Q 2 or Q 1 will cause turbulence in the airflow, making measurement impossible.

上に例示的に述べた従来技術による伝統的な懸
垂支持方式の難点は、飛行機以外の他の構造物の
模型にも当然見られる。また、6分力測定の場合
で説明したが、分解すべき力の成分が6分力より
少ない場合でも、同じ傾向に遭遇する。
The disadvantages of the traditional suspension support systems according to the prior art, as exemplified above, are of course also found in models of other structures other than airplanes. Further, although the explanation has been given in the case of six-component force measurement, the same tendency is encountered even when the force components to be resolved are less than six-component forces.

特に、最近の技術の進歩は風胴試験でも測定条
件及び測定の範囲を拡大させ、益々高い精度と恒
常的な再現性を要求している。しかしながら、こ
の要求に応える風胴模型の懸垂方式、及びそれに
対応する流体力学特性の計測方法は未だに満足な
発展が提示されていない。
In particular, recent advances in technology have expanded the measurement conditions and range of measurements in wind cylinder tests, requiring increasingly high precision and constant reproducibility. However, satisfactory developments have not yet been proposed in a suspension system for a wind cylinder model that meets this demand, and in a corresponding method for measuring hydrodynamic characteristics.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上に述べた従来の風胴模型の懸垂方式に見られ
る種々の難点に鑑み、この発明の課題は、初期調
整と予備校正の操作を容易にし、測定の精度と再
現性に優れ、懸垂支持架台、風胴設備及び姿勢制
御機構を小型化することができ、それにもかかわ
らず風胴模型の姿勢範囲を大幅に可変できる、懸
垂支持された風胴模型の流体力学特性を計測方法
を提供することにある。
In view of the various drawbacks found in the conventional suspension system for wind cylinder models mentioned above, an object of the present invention is to facilitate the initial adjustment and preliminary calibration operations, provide excellent measurement accuracy and reproducibility, and provide a suspension support mount. To provide a method for measuring the hydrodynamic characteristics of a suspended wind cylinder model, which allows the wind cylinder equipment and attitude control mechanism to be miniaturized, and the attitude range of the wind cylinder model to be largely variable. It is in.

〔問題点を解決するための手段〕[Means for solving problems]

上記の課題は、この発明により、風胴内の架台
をフレームに三組の対にした固定点を設け、各固
定点にそれぞれ一個の多分力検出器を固定し、各
検出器にそれぞれ一本接続された線材を用いて、
上記三組の固定点に対応して配置された風胴模型
の三個の懸垂点を懸垂し、風胴模型は模型重量に
より上記線材が無風及び試験気流中で緊張状態に
あるように所望の姿勢に懸垂・支持され、無風時
に各検出器が検出した測定分力から風胴模型の原
点に働く直交三成分の力及び/又はモーメントを
算出し、試験時の風の下で各検出器が検出した測
定分力から風胴模型の原点に働く直交三成分の力
及び/又はモーメントを算出し、両方の力及び/
又はモーメントから風胴模型に作用する実効力及
び/又はモーメントを算出することをことを特徴
とする懸垂支持された風胴模型の流体力学特性を
計測する方法によつて解決されている。
The above problem can be solved by the present invention, in which three pairs of fixed points are provided on the frame of the mount in the wind cylinder, one multi-force detector is fixed to each fixed point, and one multi-force detector is fixed to each fixed point. Using connected wires,
The three suspension points of the wind cylinder model, which are arranged corresponding to the three sets of fixed points, are suspended, and the wind cylinder model is adjusted to the desired position so that the wire rods are under tension in the calm wind and test airflow due to the weight of the model. The orthogonal three-component forces and/or moments acting on the origin of the wind cylinder model are calculated from the measured force components detected by each detector while suspended and supported in a windless state. Calculate the orthogonal three component forces and/or moments acting on the origin of the wind cylinder model from the detected measured force components, and calculate both forces and/or moments.
Alternatively, the problem has been solved by a method for measuring the hydrodynamic characteristics of a suspended wind model, which is characterized by calculating the effective force and/or moment acting on the model from the moment.

他の有利な構成は、特許請求の範囲第2〜4項
に記載されている。
Further advantageous embodiments are described in the claims 2-4.

〔作用〕[Effect]

この発明による風胴模型の支持方法では、模型
を三点の懸垂点で静定支持し、三直交成分の力を
測定できる対にした検出器から延びる線材で各懸
垂点を支持している。そして、この風胴模型に働
く流体力学特性量は、上記検出器によつて測定さ
れた力を所定の算術式に従つて導いている。ま
た、無風時と風を加えた試験状態での上記算出値
から風胴模型に働く6分力を算出している。
In the method for supporting a wind cylinder model according to the present invention, the model is statically supported at three suspension points, and each suspension point is supported by a wire rod extending from a pair of detectors capable of measuring trigonometric components of force. The hydrodynamic characteristic amount acting on this wind barrel model derives the force measured by the detector according to a predetermined arithmetic formula. In addition, the 6-component force acting on the wind cylinder model was calculated from the above calculated values in the test state with no wind and with wind.

〔実施例〕〔Example〕

この発明を以下に好適実施例を示す図面に基づ
きより詳しく説明する。
The present invention will be explained in more detail below based on the drawings showing preferred embodiments.

第1A図には、この発明による風胴模型Aの流
体力学特性を測定する配置が斜視図にして示して
ある。
FIG. 1A shows a perspective view of the arrangement for measuring the hydrodynamic characteristics of the wind cylinder model A according to the present invention.

ここでも、風胴模型Aを飛行機で例示する。風
胴模型Aの異なる三点1,2,3に対し、それぞ
れ架台のフレーム(図示せず)の対にした3組の
固定点11,12,21,22,31,32に固
定連結された三分力検出器(図示せず、以後これ
等の固定点にはそれぞれ一個の分力検出器が付属
している)から下したピアノ線ないしはケブラー
のようなる強化合成樹脂から成る二対づつの懸垂
用線材(図面を煩雑にしないため、参照符号を省
略する)によつて、この模型Aを所定の姿勢に保
持してある。その場合、6本の線材が弛まなく、
また測定範囲内のどんな風速及び/又はどんな風
向に対して全ての懸垂用線材が緊張して弛まな
く、例えば舞い上がることもないように模型の重
量を調節する。
Here, too, the wind fuselage model A is illustrated as an airplane. The three different points 1, 2, and 3 of the wind cylinder model A are fixedly connected to three pairs of fixed points 11, 12, 21, 22, 31, and 32 of the mount frame (not shown), respectively. Two pairs each made of piano wire or a reinforced synthetic resin such as Kevlar are attached from three-component force detectors (not shown; henceforth each of these fixed points will be accompanied by one component-force detector). This model A is held in a predetermined position by suspension wires (reference numerals are omitted to avoid complicating the drawing). In that case, the six wires will not slacken,
In addition, the weight of the model is adjusted so that all the suspension wires are taut and do not loosen, for example, do not fly up, regardless of the wind speed and/or wind direction within the measurement range.

上記の重量調節で模型自体の重量が不足する場
合には、模型内に補助重錘を固定設置するか、模
型材料及び、例えば肉厚等を適当に選択して所望
重量に調節する。この処置で未だ重量が不足する
場合には、模型の下部に更に一個又はそれ以上の
重錘を線材で吊るしてもよい。6個の固定点1
1,12,21,22,31,32は、必ずしも
同一平面内に設置する必要はない。
If the weight of the model itself is insufficient due to the weight adjustment described above, the weight may be adjusted to a desired value by fixing an auxiliary weight within the model or by appropriately selecting the model material and, for example, the wall thickness. If this procedure still results in insufficient weight, one or more additional weights may be suspended from wire rods at the bottom of the model. 6 fixed points 1
1, 12, 21, 22, 31, and 32 do not necessarily need to be installed in the same plane.

上記多分力検出器は、いづれもモーメント成分
は測定できなくてもよいが、力の直交三成分を測
定できるものを使用する。更に、これ等の多分力
検出器の測定許容範囲は、鉛直方向(第1A図の
場合、Z軸方向に相当する)に向けて静止及び試
験時の重力を受け止める必要がある。
The multi-force detector described above does not need to be able to measure moment components, but one that can measure three orthogonal force components is used. Furthermore, the measurement tolerance range of these multi-force detectors needs to accommodate gravity during rest and testing in the vertical direction (corresponding to the Z-axis direction in the case of FIG. 1A).

第1B図は第1A図の配置をXY平面上に投影
した各多分力検出器と風胴模型Aの幾何学配置を
示す。今、模型Aの二つの懸垂点1,2を結ぶ直
線の二等分点に計測の原点Oがあるとし、二点間
の距離を2L1とする。模型A上の三番目の懸垂点
3は上記直線に直交し、原点Oの延長上にあり、
原点Oと第三懸垂点3との間の距離をL2とする。
Fig. 1B shows the geometrical arrangement of each multi-force detector and the wind cylinder model A, which is the arrangement of Fig. 1A projected onto the XY plane. Now, assume that the measurement origin O is at the bisecting point of the straight line connecting the two suspension points 1 and 2 of model A, and the distance between the two points is 2L 1 . The third suspension point 3 on model A is perpendicular to the above straight line and is on an extension of the origin O,
Let the distance between the origin O and the third suspension point 3 be L2 .

更に、鉛直方向をZ軸として第1A及び1B図
のような直交座標で考え、各多分力検出器を添字
ijで指定することにする。この場合、iは懸垂点
を、またjは対の多分力検出器の一方を指定す
る。即ちi=1〜3,j=1,2である。多分力
検出器ijの受ける三直交成分の力をFKij(K=x,
y,z)で表し、更に検出器i1,i2のK方向
の分力を FKi≡FKi1+FKi2 で表す。
Furthermore, considering the vertical direction as the Z axis, orthogonal coordinates as shown in Figures 1A and 1B, and subscripting each multiforce detector.
Let's specify it by ij. In this case, i specifies the suspension point and j specifies one of the pair of multiforce detectors. That is, i=1-3, j=1,2. Let F Kij (K=x,
Furthermore, the component force in the K direction of the detectors i1 and i2 is expressed as F Ki ≡F Ki1 +F Ki2 .

風胴模型Aの原点Oに作用する三方向の力FX
FY,FZとモーメントMX,MY,MZは、 FX=FX1+FX2+FX3 FY=FY1+FY2+FY3 FZ=FZ1+FZ2+FZ3 MX=FZ1*L1−FZ2*L1 MY=FZ3*L2 MX=−FX1*L1+FX2*L1−FX3*L2 となる。
Forces in three directions acting on the origin O of the wind cylinder model A,
F Y , F Z and moments M X , M Y , M Z are F _ _ L 1 −F Z2 *L 1 M Y =F Z3 *L 2 M X =−F X1 *L 1 +F X2 *L 1 −F X3 *L 2 .

懸垂点iが第1A,B図と異なり更に一般な配
置の場合、それを(Xi,Yi,Zi)で表すと、模型
の原点Oに関する6分力FX,FY,FZ,MX,MY
MZは、 FX=FX1+FX2+FX3 FY=FY1+FY2+FY3 FZ=FZ1+FZ2+FZ3 MX=FZ1*Y1−FZ2*Y2+FZ3*Y3 −FY1*Z1−FY2*Z2+FY3*Z3 MY=FX1*Z1−FX2*Z2+FX3*Z3 −FZ1*X1−FZ2*X2+FZ3*X3 MZ=FY1
X1−FY2*X2+FY3*X3 −FX1*Y1−FX2*Y2+FX3*Y3 となる。
If the suspension point i is in a more general arrangement than in Figures 1A and B, and it is expressed as (X i , Y i , Z i ), the 6 component forces F X , F Y , F Z with respect to the origin O of the model , M X , M Y ,
M Z is F X = F X1 +F X2 + F X3 F Y =F Y1 +F Y2 +F Y3 F Z =F Z1 + F Z2 + F Z3 M −F Y1 *Z 1 −F Y2 *Z 2 +F Y3 *Z 3 M Y =F X1 *Z 1 −F X2 *Z 2 +F X3 *Z 3 −F Z1 *X 1 −F Z2 *X 2 +F Z3 *X 3 M Z =F Y1 *
X 1 −F Y2 *X 2 +F Y3 *X 3 −F X1 *Y 1 −F X2 *Y 2 +F X3 *Y 3 .

第2図には、この発明による第二実施例の懸垂
支持配置が示してある。懸垂点1,2,3には、
それぞれ線材を介して重錘W1,W2,W3が垂直
に吊るしてある。対の検出器i1,i2及び対応
する懸垂点iの成す三角形の面はそれぞれ懸垂点
1でXZ面に、懸垂点2でYZ面に、及び懸垂点3
でYZ面に平行である。即ち、二つの線材と懸垂
点が成す三角形の平面は懸垂点を通る鉛直線を含
む。このような配置であれば、多分力検出器はそ
れぞれ鉛直方向とこの方向に直交し上記懸垂三角
形の面内にある二分力を検出できれば充分であ
る。
FIG. 2 shows a second embodiment of a suspended support arrangement according to the invention. At suspension points 1, 2, and 3,
Weights W 1 , W 2 , and W 3 are suspended vertically via wire rods, respectively. The triangular surfaces formed by the pair of detectors i1, i2 and the corresponding suspension point i are respectively XZ plane at suspension point 1, YZ plane at suspension point 2, and YZ plane at suspension point 3.
and is parallel to the YZ plane. That is, the triangular plane formed by the two wire rods and the suspension point includes a vertical line passing through the suspension point. With such an arrangement, it is sufficient that the multi-force detectors can respectively detect the vertical direction and the bicomponent force perpendicular to this direction and within the plane of the above-mentioned hanging triangle.

結局、第2図の配置では風胴模型の原点Oに作
用する6分力は、 FX=FX1 FY=FY2+FY3 FZ=FZ1+FZ2+FZ3 MX=(FZ1−FZ2)・L1 MY=FZ3・L2 MZ=−FX1・L1+FY3・L2 となる。ここで、L1とL2は第2図に図示しする
ように、それぞれ原点Oから懸垂点1又は2まで
の長さと懸垂点3までの長さである。
After all, in the arrangement shown in Figure 2, the six component forces acting on the origin O of the wind cylinder model are: F X = F X1 F Y = F Y2 + F Y3 F Z = F Z1 + F Z2 + F Z3 M X = (F Z1 − F Z2 )・L 1 M Y = F Z3・L 2 M Z = −F X1・L 1 +F Y3・L 2 . Here, L 1 and L 2 are the length from the origin O to the suspension point 1 or 2 and the length to the suspension point 3, respectively, as shown in FIG.

第3図には、この発明による第三実施例の懸垂
支持配置が示してある。この場合、模型は図示さ
れていないが、第2図の模型と同じもので、各懸
垂点も同一である。ただ、二対の分力検出器11
と12及び21と22の設置位置が異なるので、
この配置をXY面に投影して示してある。第3図
の場合では、上記二対の検出器は両検出器と対応
する懸垂点の成す三角形の面がXZ面ともYZ面と
も交差している。即ち、中心点O′を中心とする
円Rの円周上に各分力検出器11,12,21,
22,31,32を設置し、分力検出器の対1
1,12及び21,22の中間点P1及びP2と
Y軸との成す角度をθとする。
FIG. 3 shows a third embodiment of a suspended support arrangement according to the invention. In this case, although the model is not shown, it is the same as the model in FIG. 2, and each suspension point is also the same. However, two pairs of component force detectors 11
Since the installation positions of 12, 21 and 22 are different,
This arrangement is shown projected onto the XY plane. In the case of FIG. 3, in the two pairs of detectors, the triangular planes formed by both detectors and the corresponding suspension points intersect both the XZ plane and the YZ plane. That is, each component force detector 11, 12, 21,
22, 31, and 32 are installed, and pair 1 of component force detectors is installed.
The angle between the intermediate points P1 and P2 of 1, 12 and 21, 22 and the Y axis is θ.

第3図の場合でも、分力検出器11,12,2
1,22は少なくとも二分力を計測可能な検出器
であつて、Z軸方向の力と、上記三角形の面内に
ありZ軸に直交する力を検出するものとする。検
出器ijに対する後者の力をFP ijで表すと、 FXij=FP ijcpsθ FYij=FP ijsioθ となる。
Even in the case of Fig. 3, component force detectors 11, 12, 2
1 and 22 are detectors capable of measuring at least two component forces, and detect a force in the Z-axis direction and a force that is within the plane of the triangle and perpendicular to the Z-axis. Denoting the latter force on the detector ij by F P ij , F Xij = F P ijcps θ F Yij = F P ijsio θ .

模型の原点Oに働く6分力は、 FX=FX1+FX2 FY=FY1+FY2+FY3 FZ=FZ1+FZ2+FZ3 MX=(FZ1−FZ2)・L1 MY=FZ3・L2 MZ=(FX2−FX1)・L1+FZ3・L2 となる。 The 6-component force acting on the model's origin O is F X = F X1 +F X2 F Y = F Y1 +F Y2 +F Y3 F Z = F Z1 + F Z2 + F Z3 M Y = F Z3・L 2 M Z = (F X2 −F X1 )・L 1 +F Z3・L 2 .

結局、三種の実施例で算出した分力を用いて模
型原点Oに働く実効6分力XYXX
YZを算定するには、無風時に検出される6
分力をFO X,FO Y,FO X,MO X,MO Y,MO Zとし、試
験時の6分力FX,FY,FX,MX,MY,MZから、 抵抗力 X=FX−FO X 横力 Y=FX−FO X 揚力 Z=FX−FO X 横揺モーメント X=MX−MO X 縦揺モーメント Y=MX−MO X 偏揺モーメント Z=MX−MO X として求まる。
In the end, using the component forces calculated in the three examples, the effective six component forces acting on the model origin O are X , Y , X , X ,
To calculate M Y , Z , 6 detected when there is no wind
Let the component forces be F O X , F O Y , F O X , M O From Z , resistance force X = F X F O X Lateral force Y = F X − F O X Lift force Z = F X F O −M O X Yaw moment Z = M X −M O X.

〔発明の効果〕〔Effect of the invention〕

この発明による風胴模型の懸垂方式を示す第1
A,1B,2及び3図と従来の技術による懸垂方
式を示す第4図を対比すれば、当業者でなくても
直ちに理解できる。この発明による著しい利点
は、以下の点にある。
The first diagram showing the suspension method of the wind cylinder model according to the present invention.
By comparing Figures A, 1B, 2, and 3 with Figure 4, which shows a suspension system according to the prior art, even those who are not skilled in the art can easily understand the present invention. The significant advantages of this invention are as follows.

(1) 風胴模型を旋回させても、風の流れの上流に
は従来の懸垂方式に使用されているような支点
も滑車も存在しないため、広い旋回範囲にわた
つて流体力学的特性を測定できる。事実、水平
状態で模型を±180°、即ち全方位に旋回させる
ことができる(これに反し従来の計測方法(第
4図)では、高々±30°である)。
(1) Even when the wind cylinder model is rotated, there are no fulcrums or pulleys like those used in conventional suspension systems upstream of the wind flow, so hydrodynamic characteristics can be measured over a wide range of rotation. can. In fact, it is possible to turn the model in a horizontal state by ±180°, ie in all directions (in contrast, with the conventional measurement method (Fig. 4), it is at most ±30°).

(2) 懸垂点相互に関連して調節されるY及びX方
向の線材が不要であるから、面倒で微妙な模型
の初期設定が短時間で済み、この作業に習熟と
経験は殆ど不要である。特に、姿勢を変える場
合、従来の方法ではその都度互いに関連してい
る懸垂線材の調整を繰り返す必要が全く不要で
ある。
(2) Since there is no need for wire rods in the Y and X directions that are adjusted in relation to the suspension points, the troublesome and delicate initial setting of the model can be done in a short time, and this work requires almost no skill or experience. . In particular, when changing positions, the conventional method does not require any repeated adjustment of the catenary wires associated with each other.

(3) 模型の姿勢を変えるには、懸垂点を支える多
分力検出器の位置を変えるのみで、風胴模型の
下部にも横にも架台ないし支持構造物がないの
で、大掛かりな付属部品ないしは移動可変機構
が不要である。
(3) To change the attitude of the model, simply change the position of the multi-force detector that supports the suspension point; there are no mounts or support structures at the bottom or sides of the wind cylinder model, so there is no need for large-scale accessories or other support structures. No variable movement mechanism is required.

(4) 上記(2)と(3)から風胴設備自体の大きさ及び姿
勢可変用の架台の大きさも大幅に縮小できる
か、一定の既存設備であれば、より大きめの模
型で試験ができる。
(4) From (2) and (3) above, it is possible to significantly reduce the size of the wind cylinder equipment itself and the size of the stand for changing its attitude, or if it is a certain amount of existing equipment, it is possible to test with a larger model. .

(5) 複雑な手順による初期測定を基にした検出・
測定系の校正が不要である。
(5) Detection and detection based on initial measurements through complex procedures
No need to calibrate the measurement system.

(6) 上記の事項は何れも最終的な試験の測定結果
に高い精度を保証し、同時に信頼性と再現性を
向上させる。
(6) All of the above ensure a high degree of accuracy in the final test measurement results and at the same time improve reliability and reproducibility.

【図面の簡単な説明】[Brief explanation of the drawing]

第1A図、この発明による懸垂支持された風胴
模型の流体力学特性を計測する方法の第一実施例
を示す模式斜視図。第1B図、第1A図の配置を
XY平面に投影した平面図。第2図、この発明に
よる懸垂支持された風胴模型の流体力学特性を計
測する方法の第二実施例を示す模式斜視図。第3
図、この発明による懸垂支持された風胴模型の流
体力学特性を計測する方法の第三実施例を示す平
面図。第4図、従来の技術による懸垂支持された
風胴模型の流体力学特性を計測する方法を示す模
式斜視図。 図中参照符号、1,2,3……懸垂点、A……
風胴模型、W1,W2,W3……重錘、Q1,Q2……
滑車、C1,C2,C3……支点、G1,G2,G3……固
定箇所。
FIG. 1A is a schematic perspective view showing a first embodiment of a method for measuring the hydrodynamic characteristics of a suspended wind model according to the present invention. The arrangement of Figure 1B and Figure 1A
A plan view projected onto the XY plane. FIG. 2 is a schematic perspective view showing a second embodiment of the method for measuring the hydrodynamic characteristics of a suspended wind cylinder model according to the present invention. Third
FIG. 3 is a plan view showing a third embodiment of the method for measuring the hydrodynamic characteristics of a suspended wind cylinder model according to the present invention. FIG. 4 is a schematic perspective view illustrating a conventional method for measuring the hydrodynamic characteristics of a suspension-supported wind cylinder model. Reference numbers in the figure, 1, 2, 3...suspension point, A...
Wind fuselage model, W 1 , W 2 , W 3 ... Weight, Q 1 , Q 2 ...
Pulley, C 1 , C 2 , C 3 ... fulcrum, G 1 , G 2 , G 3 ... fixed point.

Claims (1)

【特許請求の範囲】 1 風胴内の架台のフレームに三組の対にした固
定点11,12,21,22,31,32を設
け、各固定点にそれぞれ一個の多分力検出器を固
定し、各検出器にそれぞれ一本接続された線材を
用いて、上記三組の固定点に対応して配置された
風胴模型Aの三個の懸垂点1,2,3を懸垂し、
風胴模型は模型重量により上記線材が無風及び試
験気流中で緊張状態にあるように所望の姿勢に懸
垂・支持され、無風時に各検出器が検出した測定
分力から風胴模型の原点に働く直交三成分の力及
び/又はモーメントを算出し、試験時の風の下で
各検出器が検出した測定分力から風胴模型の原点
に働く直交三成分の力及び/又はモーメントを算
出し、両方の力及び/又はモーメントから風胴模
型に作用する実効力及び/又はモーメントを算出
することを特徴とする懸垂支持された風胴模型の
流体力学特性を計測する方法。 2 懸垂点とこの懸垂点に対応する二つの固定点
のなす三角形平面が鉛直方向の直線を含み、上記
固定点に対応する多分力検出器は前記鉛直方向と
この方向に直交し、前記三角形平面内にある方向
の二方向の力成分のみ計測できることを特徴とす
る請求項1に記載の方法。 3 風胴模型の重量としては、風胴模型自体の重
量に等しいことを特徴とする請求項1又は2に記
載の方法。 4 風胴模型の重量としては、風胴模型自体の重
量と、この風胴模型Aの内部に設置した重錘ある
いは風胴模型Aに吊るした重錘の重量との加算値
に等しいことを特徴とする請求項1又は2に記載
の方法。
[Claims] 1. Three pairs of fixed points 11, 12, 21, 22, 31, 32 are provided on the frame of the mount in the wind cylinder, and one multi-force detector is fixed to each fixed point. Then, by using a wire connected to each detector, the three suspension points 1, 2, and 3 of the wind cylinder model A, which are arranged corresponding to the three sets of fixed points, are suspended,
The wind cylinder model is suspended and supported in a desired posture so that the wire rod is under tension in no wind and test airflow due to the weight of the model, and the measured force detected by each detector in no wind is applied to the origin of the wind cylinder model. Calculate the force and/or moment of three orthogonal components, calculate the force and/or moment of three orthogonal components acting on the origin of the wind cylinder model from the measured force components detected by each detector under the wind during the test, A method for measuring the hydrodynamic characteristics of a suspended wind cylinder model, the method comprising calculating an effective force and/or moment acting on the wind cylinder model from both forces and/or moments. 2. A triangular plane formed by a suspension point and two fixed points corresponding to this suspension point includes a straight line in the vertical direction, and a multi-force detector corresponding to the fixed point is perpendicular to the vertical direction and this direction, and the triangular plane includes a straight line in the vertical direction. 2. The method according to claim 1, wherein only force components in two directions within the range can be measured. 3. The method according to claim 1 or 2, wherein the weight of the wind cylinder model is equal to the weight of the wind cylinder model itself. 4. The weight of the wind cylinder model is equal to the sum of the weight of the wind cylinder model itself and the weight of the weight installed inside this wind cylinder model A or the weight suspended from the wind cylinder model A. The method according to claim 1 or 2, wherein:
JP1334843A 1989-11-22 1989-12-26 Method for measuring hydrodynamic characteristic of suspended and supported wind channel model Granted JPH03237335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1334843A JPH03237335A (en) 1989-11-22 1989-12-26 Method for measuring hydrodynamic characteristic of suspended and supported wind channel model

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP30205589 1989-11-22
JP1-302055 1989-11-22
JP1334843A JPH03237335A (en) 1989-11-22 1989-12-26 Method for measuring hydrodynamic characteristic of suspended and supported wind channel model

Publications (2)

Publication Number Publication Date
JPH03237335A JPH03237335A (en) 1991-10-23
JPH0585860B2 true JPH0585860B2 (en) 1993-12-09

Family

ID=17904370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1334843A Granted JPH03237335A (en) 1989-11-22 1989-12-26 Method for measuring hydrodynamic characteristic of suspended and supported wind channel model

Country Status (1)

Country Link
JP (1) JPH03237335A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103018002A (en) * 2012-11-26 2013-04-03 华南理工大学 Testing device and method for measuring wind drag of automobile model
CN104406764A (en) * 2014-10-29 2015-03-11 中国航空工业集团公司哈尔滨空气动力研究所 Low-speed wind tunnel bracing wire oscillation mechanism based on space parallelogram principle

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004063096B4 (en) 2004-12-22 2006-10-26 Airbus Deutschland Gmbh Method and device for improving the accuracy of wind tunnel measurements, for correcting the influence of a suspension device
CN110441022A (en) * 2019-07-01 2019-11-12 大连理工大学 A kind of connection and measuring device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103018002A (en) * 2012-11-26 2013-04-03 华南理工大学 Testing device and method for measuring wind drag of automobile model
CN103018002B (en) * 2012-11-26 2015-03-11 华南理工大学 Testing device and method for measuring wind drag of automobile model
CN104406764A (en) * 2014-10-29 2015-03-11 中国航空工业集团公司哈尔滨空气动力研究所 Low-speed wind tunnel bracing wire oscillation mechanism based on space parallelogram principle

Also Published As

Publication number Publication date
JPH03237335A (en) 1991-10-23

Similar Documents

Publication Publication Date Title
US9052250B1 (en) Method of calibrating a force balance
CN105423910B (en) Deflection angle of airplane control surface degree measuring device and method
CN109141805B (en) Parachute aerodynamic coefficient and moment coefficient calculation method and system
CN109580163B (en) Torsion balance type two-degree-of-freedom force measuring balance and calibration and force measuring method thereof
CN108519103A (en) Utilize the stabilized platform multi-pose accurate synchronization evaluation device and method of autocollimator
CN107390155B (en) Magnetic sensor calibration device and method
CN112611511B (en) Method for acquiring inertia parameters of complex component based on acceleration frequency response function
CN111175223B (en) System and method for calibrating friction coefficient between rope of rope-driven mechanical arm and via hole
JPH0585860B2 (en)
CN209910943U (en) Wind tunnel balance terminal attitude measuring device
CN110967522B (en) Wind field gradient measuring method
CN209570080U (en) Vertical pylon, target drone center of gravity measurement frame
CN115219141B (en) Wind tunnel force measurement test method of double-support-rod double-balance
US5533380A (en) Automatic force balance calibration system
JP2668030B2 (en) Weightless simulator
CN111380476B (en) Beam type structure deformation measuring method and device based on strain measurement data
CN113092006B (en) Measuring device and measuring method for rotational inertia of airplane model
CN111272546B (en) Torsion-tension coupling effect measuring device and method
CN115535285A (en) Thrust line adjusting device and method for boosting rocket of unmanned aerial vehicle
KR100934860B1 (en) External wind tunnel calibration device
CN112098038B (en) Rigid body model multipoint synchronous force measuring method under three-dimensional wind action
JPH0555811B2 (en)
CN113255167B (en) Method for lofting stressed length of cable clamp position of suspension bridge
CN220524945U (en) High-precision wing deflection angle tester
CN111874260B (en) Aircraft lifting force and torque testing device and method