JPH0585836B2 - - Google Patents

Info

Publication number
JPH0585836B2
JPH0585836B2 JP63243166A JP24316688A JPH0585836B2 JP H0585836 B2 JPH0585836 B2 JP H0585836B2 JP 63243166 A JP63243166 A JP 63243166A JP 24316688 A JP24316688 A JP 24316688A JP H0585836 B2 JPH0585836 B2 JP H0585836B2
Authority
JP
Japan
Prior art keywords
heat
reactor
reaction
heat storage
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63243166A
Other languages
Japanese (ja)
Other versions
JPH0293294A (en
Inventor
Tetsuji Horie
Kenji Yasuda
Shiro Inoe
Yoshinori Wakyama
Toshihiko Yasuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUPER HEAT PUMP ENERGY SYST
SUUPAA HIITO HONPU ENERUGII SHUSEKI SHISUTEMU GIJUTSU KENKYU KUMIAI
Original Assignee
SUPER HEAT PUMP ENERGY SYST
SUUPAA HIITO HONPU ENERUGII SHUSEKI SHISUTEMU GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUPER HEAT PUMP ENERGY SYST, SUUPAA HIITO HONPU ENERUGII SHUSEKI SHISUTEMU GIJUTSU KENKYU KUMIAI filed Critical SUPER HEAT PUMP ENERGY SYST
Priority to JP63243166A priority Critical patent/JPH0293294A/en
Publication of JPH0293294A publication Critical patent/JPH0293294A/en
Publication of JPH0585836B2 publication Critical patent/JPH0585836B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/003Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using thermochemical reactions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、潮解性を有する無機化合物を蓄熱
媒体として用い、高温熱源流体による水和蓄熱媒
体の脱水反応によつて蓄熱を行い、蓄熱媒体と水
蒸気との水和反応で生じる反応熱を利用して放熱
を行う化学蓄熱法に関し、さらに詳しくは、同蓄
熱法に使用される反応装置の構造的改良に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention uses a deliquescent inorganic compound as a heat storage medium, stores heat through a dehydration reaction of a hydrated heat storage medium with a high-temperature heat source fluid, and combines the heat storage medium and water vapor. The present invention relates to a chemical heat storage method for dissipating heat using the reaction heat generated in a hydration reaction with a chemical heat storage method, and more specifically, to structural improvements of a reaction device used in the heat storage method.

従来技術およびその問題点 上記原理の化学蓄熱法に使用される蓄熱媒体と
しては、塩化カルシウム、塩化マグネシウム、臭
化カルシウム、硫化ナトリウムなどがあるが、こ
れらはいずれも水との親和力が大きいためそれ自
体潮解性を有する。
Prior art and its problems Heat storage media used in the chemical heat storage method based on the above principle include calcium chloride, magnesium chloride, calcium bromide, and sodium sulfide, but these all have a high affinity for water and are therefore It itself has deliquescent properties.

蓄熱媒体として臭化カルシウムを用いた場合、
臭化カルシウム水和物の飽和水蒸気気圧は、第3
図に示す通りである。同図によれば、水蒸気圧
23.8mmHgにおいて、臭化カルシウムの無水物を
高温雰囲気に置いてこれを非常にゆつくり降温し
て行くと、雰囲気温度153℃以上で臭化カルシウ
ム1水塩が生成するが、2水塩以上の多水和物は
生成せず、雰囲気温度118℃以上では臭化カルシ
ウム1水塩および2水塩は生成するが、4水塩以
上の多水和物は生成せず、雰囲気温度86℃以上で
は臭化カルシウムの4水塩以下では生成するが、
6水塩は生成しないことがわかる。換言すれば、
水蒸気圧が23.8Hgに保たれている大きな容器内
に、86℃,118℃および153℃に温度コントロール
された小皿を置いて、これらの小皿にそれぞれ臭
化カルシウムの無水物を入れて長時間放置した場
合、86℃の容器には4水塩が、118℃の容器には
2水塩が、および153℃の容器には1水塩がそれ
ぞれ生成することがわかる。このことは、水和反
応器の内部に局部的に上記の如き温度分布があつ
た場合、目的とする水和物のほかに様々の水和物
が生成することを意味し、これが効率のよい蓄
熱・放熱操作を妨げる原因となる。
When calcium bromide is used as a heat storage medium,
The saturated water vapor pressure of calcium bromide hydrate is the third
As shown in the figure. According to the same figure, water vapor pressure
At 23.8 mmHg, if anhydrous calcium bromide is placed in a high-temperature atmosphere and cooled down very slowly, calcium bromide monohydrate will be formed at an ambient temperature of 153°C or higher, but calcium bromide monohydrate will form when dihydrate or higher Polyhydrates are not formed, and calcium bromide monohydrate and dihydrate are formed at ambient temperatures of 118°C or higher, but polyhydrates of tetrahydrate or higher are not formed, and at ambient temperatures of 86°C or higher, calcium bromide monohydrate and dihydrate are formed. It is produced below the tetrahydrate salt of calcium bromide,
It can be seen that hexahydrate salt is not generated. In other words,
Place small plates whose temperatures are controlled at 86°C, 118°C, and 153°C in a large container whose water vapor pressure is maintained at 23.8 Hg, and place anhydrous calcium bromide in each of these small plates and leave it for a long time. In this case, it can be seen that tetrahydrate is produced in the 86°C container, dihydrate is produced in the 118°C container, and monohydrate is produced in the 153°C container. This means that if there is a local temperature distribution as described above inside the hydration reactor, various hydrates will be produced in addition to the desired hydrate, and this will lead to the production of more efficient This may cause interference with heat storage and heat dissipation operations.

蓄熱媒体として臭化カルシウムを良い、臭化カ
ルシウムの1水塩と2水塩との間の脱水/水和反
応熱を利用した蓄熱/放熱は、つぎの反応式で示
すとおりである。
Calcium bromide is used as the heat storage medium, and heat storage/radiation using the heat of dehydration/hydration reaction between monohydrate and dihydrate of calcium bromide is as shown in the following reaction formula.

[蓄熱時] 反応器側、高温熱源温度118℃の場合 CaBr2・2H2O(固体)+Q1→CaBr2・H2O(固体)
+H2O(気体) 凝縮/蒸発用容器側 冷却水温度25℃の場合 H2O(気体)→H2O(液体)+Q2+Q3 [放熱時] 凝縮/蒸発用容器側 補助熱源温度25℃の場合 H2O(液体)+Q3→H2O(気体) 反応器側 熱回収用流体温度118℃の場合 CaBr2・H2O(固体)+H2O(気体)→CaBr2
2H2O(固体)+Q1−Q2 ここで、 Q1は118℃での反応熱=61.4(Kcal/媒体Kg)、 Q2は118〜25℃の間での水蒸気顕熱=3.2
(Kcal/媒体Kg)、および Q3は25℃での水の凝縮/蒸発潜熱=44.3
(Kcal/媒体Kg)である。
[During heat storage] On the reactor side, when the high temperature heat source temperature is 118°C, CaBr 2 2 H 2 O (solid) + Q1 → CaBr 2 2 H 2 O (solid)
+H 2 O (gas) Condensation/evaporation container side When cooling water temperature is 25℃ H 2 O (gas) → H 2 O (liquid) +Q2+Q3 [During heat dissipation] Condensation/evaporation container side When auxiliary heat source temperature is 25℃ H 2 O (liquid) + Q3 → H 2 O (gas) Reactor side When the heat recovery fluid temperature is 118°C, CaBr 2・H 2 O (solid) + H 2 O (gas) → CaBr 2
2H 2 O (solid) + Q1 − Q2 Where, Q1 is the heat of reaction at 118℃ = 61.4 (Kcal/Kg of medium), Q2 is the sensible heat of water vapor between 118 and 25℃ = 3.2
(Kcal/Kg of medium), and Q3 is the latent heat of condensation/evaporation of water at 25°C = 44.3
(Kcal/Kg of medium).

上記の如き反応を利用した蓄熱法の場合、放熱
操作時に反応器内では、25℃で蒸発した水蒸気を
水和反応温度まで昇温するための顕熱によつて、
水和反応熱の一部が消費されることになる。
In the case of the heat storage method using the reaction described above, during the heat dissipation operation, in the reactor, sensible heat is used to raise the temperature of water vapor evaporated at 25°C to the hydration reaction temperature.
A portion of the heat of hydration reaction will be consumed.

蓄熱操作の終了後、1水塩の形態にある蓄熱媒
体の粒子層に、今度は水蒸気を通して放熱操作を
行う。水和反応器内の蓄熱媒体粒子充填層におい
て水蒸気との当初の接触部分すなわち同層の表層
部は、水和反応熱によつて速やかに118℃に昇温
し、Q1−Q2(蓄熱媒体自体の昇温顕熱)に相当
する熱量を熱回収用流体に放熱する。
After the heat storage operation is completed, a heat release operation is performed by passing water vapor through the particle layer of the heat storage medium in the form of monohydrate. In the heat storage medium particle packed bed in the hydration reactor, the initial contact area with water vapor, that is, the surface layer of the layer, quickly rises in temperature to 118°C due to the heat of hydration reaction, and Q1−Q2 (heat storage medium itself) The amount of heat equivalent to the sensible heat of temperature increase) is radiated to the heat recovery fluid.

水和反応器内においてその奥行き方向に多くの
蓄熱媒体粒子が充填されていると、この内部の充
填粒子と反応すべき水蒸気は、水和反応の進行如
何に係わらず、蓄熱媒体粒子の表層部を通過する
ことになる。水和反応の初期において反応速度が
大きい間は、生成した反応熱が通過水蒸気に顕熱
として与えられ、かつ熱回収用流体に放熱されて
も、粒子温度はなお118℃を維持することができ
る。しかしながら、反応の末期において反応速度
が低下した段階になると、蓄熱媒体粒子充填層の
表層部を通過する水蒸気が表層部の粒子から顕熱
を奪う。その結果、粒子温度は118℃を維持する
ことができなくなつて、温度低下をきたす。粒子
温度が86℃まで低下すると4水塩の生成領域とな
つて、蓄熱媒体粒子である臭化カルシウムの水和
物は水蒸気を吸収して4水塩に変化する。さらに
粒子温度が低下すると臭化カルシウムの水和物は
6水塩に変化する。こうして生じた臭化カルシウ
ム4水塩は、80℃付近に融点を持つので、80〜86
℃の温度で生成すると液状となる性質があり、蓄
熱媒体粒子充填層が溶け出すことがある。このこ
とは、水和反応器内において熱交換部から蓄熱媒
体粒子が移動したり消失したりするトラブルの原
因になる。
When a large number of heat storage medium particles are filled in the depth direction in the hydration reactor, the water vapor to react with the filled particles inside the hydration reactor will reach the surface layer of the heat storage medium particles regardless of the progress of the hydration reaction. will pass through. While the reaction rate is high at the beginning of the hydration reaction, the particle temperature can still be maintained at 118°C even if the generated reaction heat is given to the passing steam as sensible heat and radiated to the heat recovery fluid. . However, at the end of the reaction, when the reaction rate has decreased, the water vapor passing through the surface layer of the heat storage medium particle packed bed removes sensible heat from the particles in the surface layer. As a result, the particle temperature can no longer be maintained at 118° C., resulting in a temperature drop. When the particle temperature drops to 86° C., the region becomes a tetrahydrate generation region, and the calcium bromide hydrate, which is a heat storage medium particle, absorbs water vapor and changes to tetrahydrate. When the particle temperature further decreases, the calcium bromide hydrate changes to hexahydrate. Calcium bromide tetrahydrate produced in this way has a melting point around 80℃, so it is 80~86℃.
When generated at a temperature of °C, it has the property of becoming liquid, and the packed layer of heat storage medium particles may start to melt. This causes troubles such as movement or disappearance of heat storage medium particles from the heat exchange section within the hydration reactor.

この発明は、上記の如き問題を解消した蓄熱反
応装置を提供することを目的とする。
An object of the present invention is to provide a heat storage reaction device that solves the above-mentioned problems.

問題点の解決手段 この発明による蓄熱反応装置は、上記目的の達
成のために、潮解性を有する無機化合物を蓄熱媒
体として用い、高温熱源流体による蓄熱媒体の脱
水反応によつて蓄熱を行い、蓄熱媒体と水蒸気と
の水和反応で生じる反応熱を利用して放熱を行う
化学蓄熱法に使用される反応装置において、反応
器の内部または反応器に通じる水蒸気通路に水蒸
気過熱用の熱交換器を設け、水和反応熱を回収す
る流体を上記熱交換器に通す導管を設け、反応器
へ流入する水蒸気を水和反応前に同流体によつて
過熱するようにしたことを特徴とする。
Means for Solving Problems In order to achieve the above object, the heat storage reaction device according to the present invention uses a deliquescent inorganic compound as a heat storage medium, stores heat through a dehydration reaction of the heat storage medium with a high-temperature heat source fluid, and stores heat. In a reaction device used for a chemical heat storage method that radiates heat by using the reaction heat generated by the hydration reaction between a medium and steam, a heat exchanger for steam superheating is installed inside the reactor or in the steam passageway leading to the reactor. A conduit is provided for passing a fluid for recovering the heat of the hydration reaction through the heat exchanger, and the water vapor flowing into the reactor is superheated by the fluid before the hydration reaction.

この発明において、水蒸気過熱用の熱交換器の
設置位置は、例えば、脱水/水和反応器の内部に
おける水蒸気の入口部分、または凝縮/蒸発用容
器から同反応器に通じる水蒸気通路における同反
応器寄りの部分などである。要するに、熱交換器
は蓄熱媒体と水蒸気との水和反応が生じる前に水
蒸気を過熱できる位置に設けられればよい。
In this invention, the installation position of the heat exchanger for steam superheating is, for example, at the steam inlet part inside the dehydration/hydration reactor, or at the steam passage leading from the condensation/evaporation vessel to the reactor. This is the closer part. In short, the heat exchanger should just be installed at a position where the steam can be superheated before the hydration reaction between the heat storage medium and the steam occurs.

この発明による蓄熱反応装置は、ケミカルヒー
トポンプ反応器にも適用でき、また凝縮性の気体
と反応して融解性を示す物質を蓄熱媒体として使
用する場合にも適用できる。
The heat storage reaction device according to the present invention can be applied to a chemical heat pump reactor, and can also be applied when a substance that reacts with a condensable gas and exhibits melting properties is used as a heat storage medium.

潮解性を有する無機化合物の代表的な例は、臭
化カルシウムである。蓄熱媒体としてはそのほか
に、塩化カルシウム、塩化マグネシウム、硫化ナ
トリウムなども使用できる。
A typical example of an inorganic compound having deliquescent properties is calcium bromide. In addition, calcium chloride, magnesium chloride, sodium sulfide, etc. can be used as the heat storage medium.

発明の効果 この発明によれば、反応器の内部または反応器
に通じる水蒸気通路に水蒸気過熱用の熱交換器を
設け、水和反応熱を回収した流体を上記熱交換器
に通す導管を設けたので、水蒸気通路を通つて反
応器へ流入する水蒸気を、熱交換器において反応
前に水和反応熱回収後の流体によつて過熱するこ
とができる。したがつて、本書冒頭で述べたよう
な、粒子温度の低下に起因する多水和物の生成を
なくすことができ、よつて熱交換部からの蓄熱媒
体粒子の移動ないし消失といつたトラブルを回避
することができる。
Effects of the Invention According to the present invention, a heat exchanger for steam superheating is provided inside the reactor or in the steam passage leading to the reactor, and a conduit is provided for passing the fluid from which the heat of hydration reaction has been recovered to the heat exchanger. Therefore, the steam flowing into the reactor through the steam passage can be superheated by the fluid from which the heat of the hydration reaction has been recovered in the heat exchanger before the reaction. Therefore, as mentioned at the beginning of this book, it is possible to eliminate the formation of polyhydrates due to a drop in particle temperature, thereby preventing troubles such as migration or disappearance of heat storage medium particles from the heat exchange section. can be avoided.

実施例 つぎに、添付の図面を基に、この発明の実施
例、および従来技術を示す参考例について説明す
る。
Embodiments Next, embodiments of the present invention and reference examples showing the prior art will be described with reference to the accompanying drawings.

実施例 第1図において、脱水/水和反応器1の内部に
は蓄熱媒体として臭化カルシウム水和物粒子2が
充填されている。また凝縮/蒸発用容器3には蓄
熱時に生じた水4が貯えられている。凝縮/蒸発
用容器3と脱水/水和反応器1は、バルブ5を有
する水蒸気通路6によつて連結されている。
Example In FIG. 1, the interior of a dehydration/hydration reactor 1 is filled with calcium bromide hydrate particles 2 as a heat storage medium. Further, water 4 generated during heat storage is stored in the condensation/evaporation container 3. The condensation/evaporation vessel 3 and the dehydration/hydration reactor 1 are connected by a steam passage 6 with a valve 5 .

水蒸気通路6において、脱水/水和反応器1と
バルブ5の間に水蒸気過熱用の熱交換器7が設け
られている。脱水/水和反応器1には、高温熱源
流体/熱回収用流体を通す反応器側導管8が配設
され、同導管8は反応器内に熱交換部8aを有
し、反応器外にバルブ9を有する。
In the steam passage 6, a heat exchanger 7 for steam superheating is provided between the dehydration/hydration reactor 1 and the valve 5. The dehydration/hydration reactor 1 is provided with a reactor-side conduit 8 through which high-temperature heat source fluid/heat recovery fluid passes. It has a valve 9.

反応器側導管8には反応器1を貫通して出た位
置に分岐管10が設けられている。この分岐管1
0は分岐部寄りにバルブ11を有し、上記熱交換
器7を貫通した後、反応器側導管8の後流部に接
続されている。分岐管10の熱交換器内部分は熱
交換部10aになされている。
A branch pipe 10 is provided in the reactor side conduit 8 at a position that passes through the reactor 1 and exits. This branch pipe 1
0 has a valve 11 near the branch part, and after passing through the heat exchanger 7, is connected to the downstream part of the reactor side conduit 8. The internal portion of the branch pipe 10 is formed into a heat exchange section 10a.

凝縮/蒸発用容器3には容器側導管12が配設
され、同導管12の容器内部分は熱交換部12a
になされている。
A container-side conduit 12 is disposed in the condensation/evaporation container 3, and the inner portion of the conduit 12 is connected to a heat exchange section 12a.
is being done.

つぎに、上記構成の装置を用いる蓄熱/放熱操
作について説明する。
Next, heat storage/heat radiation operations using the apparatus with the above configuration will be explained.

[蓄熱操作] まず、高温熱源の熱を蓄熱するには、バルブ5
およびバルブ9を開くとともにバルブ11を閉
じ、反応器側導管8に温度118℃の高温熱源流体
を供給し、かつ容器側導管12に温度25℃の冷却
水を供給する。その結果、反応器1内の臭化カル
シウム2水塩粒子2は上記熱源によつて加熱さ
れ、脱水されて1水塩になる。この脱水によつて
生じた水蒸気は、蒸気通路6を通つて容器3に導
かれ、冷却水によつて凝縮されて凝縮水となる。
[Heat storage operation] First, in order to store heat from a high-temperature heat source, valve 5
Then, valve 9 is opened and valve 11 is closed to supply high temperature heat source fluid at a temperature of 118°C to the reactor side conduit 8 and supply cooling water at a temperature of 25°C to the vessel side conduit 12. As a result, the calcium bromide dihydrate particles 2 in the reactor 1 are heated by the heat source and dehydrated to become monohydrate. The water vapor generated by this dehydration is led to the container 3 through the steam passage 6, and is condensed by cooling water to become condensed water.

こうして、反応器1から容器3へ所定量の水蒸
気が移動した段階で、蓄熱操作を終了する。
In this way, when a predetermined amount of water vapor has moved from the reactor 1 to the container 3, the heat storage operation is completed.

[放熱操作] ついで、上記の如くして蓄熱した熱を放熱する
には、バルブ5およびバルブ11を開くとともに
バルブ9を閉じ、反応器側導管8に熱回収用流体
を供給し、かつ容器側導管12に温度25℃の補助
熱源流体を供給する。その結果、容器3は蒸発器
として働き、その中の水が補助熱源流体の熱によ
つて水蒸気を発生する。生じた水蒸気は蓄熱の場
合とは逆に水蒸気通路6を通つて反応器1に導か
れ、ここで1水塩の形態にある臭化カルシウム粒
子2と水和反応を起こし、臭化カルシウム粒子2
水塩が生じる。
[Heat dissipation operation] Next, in order to dissipate the heat accumulated as described above, valves 5 and 11 are opened, valve 9 is closed, heat recovery fluid is supplied to the reactor side conduit 8, and the heat recovery fluid is supplied to the reactor side conduit 8. Conduit 12 is supplied with auxiliary heat source fluid at a temperature of 25°C. As a result, the vessel 3 acts as an evaporator, and the water therein generates water vapor by the heat of the auxiliary heat source fluid. The generated water vapor is led to the reactor 1 through the water vapor passage 6, contrary to the case of heat storage, where it undergoes a hydration reaction with the calcium bromide particles 2 in the form of monohydrate, and the calcium bromide particles 2
Water salts are formed.

この水和反応によつて生じた反応熱は、熱交換
部8aにおいて熱回収用流体に回収される。こう
して熱を回収した流体は、ついでバルブ11を経
て熱交換器7を通過し、水蒸気通路6を通つて反
応器へ流入する水蒸気を過熱し、水蒸気顕熱分の
熱を放出した後、系外へ流出される。
The reaction heat generated by this hydration reaction is recovered by the heat recovery fluid in the heat exchange section 8a. The fluid whose heat has been recovered in this way then passes through the heat exchanger 7 via the valve 11, superheats the steam flowing into the reactor through the steam passage 6, releases heat equivalent to the sensible heat of the steam, and then exits the system. leaked to.

こうして、容器3から反応器1へ所定量の水蒸
気が移動した段階で、放熱操作を終了する。
In this way, when a predetermined amount of water vapor has moved from the container 3 to the reactor 1, the heat dissipation operation is completed.

この放熱操作では、水蒸気通路6を通つて反応
器へ流入する水蒸気は、水和反応熱を回収した流
体によつて熱交換器7において反応前に過熱され
るので、熱収支自体を変えることなく、後述する
比較例の場合のような、粒子温度の低下に起因す
る多水和物の生成をなくすことができ、したがつ
て蓄熱媒体粒子の融解によるトラブルを回避する
ことができる。
In this heat dissipation operation, the steam flowing into the reactor through the steam passage 6 is superheated before the reaction in the heat exchanger 7 by the fluid that has recovered the heat of hydration reaction, without changing the heat balance itself. , it is possible to eliminate the formation of polyhydrates due to a decrease in particle temperature, as in the case of the comparative example described later, and therefore it is possible to avoid troubles caused by melting of heat storage medium particles.

比較例 第2図において、脱水/水和反応器21の内部
には蓄熱媒体として臭化カルシウム粒子22が充
填されている。また凝縮/蒸発用容器23には蓄
熱時に生じた水24が蓄えられている。凝縮/蒸
発用容器23と脱水/水和反応器21はバルブ2
5を有する水蒸気通路26によつて連結されてい
る。脱水/水和反応器1には高温熱源流体/熱回
収用流体を通す反応器側導管27が配設され、同
導管27の容器内部分は熱交換部27aになされ
ている。また、凝縮/蒸発用容器23には容器側
導管28が配設され、同導管28の容器内部分は
熱交換部28aになされている。
Comparative Example In FIG. 2, a dehydration/hydration reactor 21 is filled with calcium bromide particles 22 as a heat storage medium. Further, water 24 generated during heat storage is stored in the condensation/evaporation container 23. Condensation/evaporation vessel 23 and dehydration/hydration reactor 21 are connected to valve 2
5 by a water vapor passage 26. The dehydration/hydration reactor 1 is provided with a reactor-side conduit 27 through which the high-temperature heat source fluid/heat recovery fluid passes, and the inner portion of the conduit 27 serves as a heat exchange section 27a. Further, a container-side conduit 28 is provided in the condensation/evaporation container 23, and the inner portion of the conduit 28 is formed into a heat exchange portion 28a.

つぎに、上記構成の装置を用いる蓄熱/放熱操
作について説明する。
Next, heat storage/heat radiation operations using the apparatus with the above configuration will be explained.

[蓄熱操作] まず、高温熱源の熱を蓄熱するには、バルブ2
5を開いておいて、反応器側導管27に温度118
℃の高温熱源流体を供給し、かつ容器側導管28
に温度25℃の冷却水を供給する。その結果、反応
器21内の臭化カルシウム2水塩粒子22は上記
熱源によつて加熱され、脱水されて1水塩にな
る。この脱水によつて生じた水蒸気は、水蒸気通
路26を通つて容器23に導かれ、冷却水によつ
て凝縮されて凝縮水となる。
[Heat storage operation] First, in order to store heat from a high-temperature heat source, valve 2
5 is open and the temperature 118 is supplied to the reactor side conduit 27.
℃, and the container side conduit 28
supply cooling water at a temperature of 25°C. As a result, the calcium bromide dihydrate particles 22 in the reactor 21 are heated by the heat source and dehydrated to become monohydrate. The water vapor generated by this dehydration is led to the container 23 through the water vapor passage 26, and is condensed by cooling water to become condensed water.

こうして、反応器21から容器23へ所定量の
水蒸気が移動した段階で、蓄熱操作を終了する。
In this way, when a predetermined amount of water vapor has moved from the reactor 21 to the container 23, the heat storage operation is completed.

[放熱操作] ついで、上記の如くして蓄熱した熱を放熱する
には、反応容器側導管27に熱回収用流体を供給
し、かつ容器側導管28に温度25℃の補助熱源流
体を供給する。その結果、容器23は蒸発器とし
て働き、その中の水が補助熱源流体の熱によつて
水蒸気を発生する。生じた水蒸気は蓄熱の場合と
は逆に水蒸気通路26を通つて反応器21に導か
れ、ここで1水塩の形態にある臭化カルシウム粒
子22と水和反応を起こし、臭化カルシウム粒子
2水塩が生じる。
[Heat dissipation operation] Next, in order to dissipate the heat stored as described above, a heat recovery fluid is supplied to the reaction vessel side conduit 27, and an auxiliary heat source fluid at a temperature of 25° C. is supplied to the vessel side conduit 28. . As a result, the vessel 23 acts as an evaporator, and the water therein generates water vapor by the heat of the auxiliary heat source fluid. The generated water vapor is led to the reactor 21 through the water vapor passage 26, contrary to the case of heat storage, where it undergoes a hydration reaction with the calcium bromide particles 22 in the form of monohydrate, and the calcium bromide particles 2 Water salts are formed.

この水和反応によつて生じた反応熱は、熱交換
部27aにおいて熱回収用流体に回収される。
The reaction heat generated by this hydration reaction is recovered by the heat recovery fluid in the heat exchange section 27a.

こうして、容器23から反応器21へ所定量の
水蒸気が移動した段階で、放熱操作を終了する。
In this way, when a predetermined amount of water vapor has moved from the container 23 to the reactor 21, the heat dissipation operation is completed.

この放熱操作では、容器23から水蒸気通路2
6を通つて反応器21に導かれる水蒸気は、容器
23内の水24の蒸発温度であるので低温であ
る。そのため、水和反応の初期において反応速度
が大きい間は、生成した反応熱が通過水蒸気に顕
熱として与えられかつ熱回収用流体に放熱されて
も、粒子温度はなお118℃を維持することができ
る。しかしながら、反応の末期において反応速度
が低下した段階になると、蓄熱媒体粒子充填層の
表層部を通過する水蒸気が表層部の粒子から顕熱
を奪う。その結果、粒子温度は118℃を維持する
ことができなくなつて、温度低下をきたす。この
ように、粒子温度が低下すると4水塩の生成領域
となつて、臭化カルシウムの水和物は4水塩に変
化する。こうして生じた臭化カルシウム4水塩
は、80℃付近に融点を持つので、80〜86℃の温度
で生成すると液状となる性質があり、蓄熱媒体粒
子充填層が溶け出すことがあり、反応器内の熱交
換部からの蓄熱媒体粒子の移動ないし消失といつ
たトラブルの原因になる。
In this heat dissipation operation, from the container 23 to the steam passage 2
The water vapor introduced into the reactor 21 through the reactor 21 has a low temperature since it is the evaporation temperature of the water 24 in the container 23. Therefore, while the reaction rate is high in the early stage of the hydration reaction, even if the generated reaction heat is given to the passing steam as sensible heat and radiated to the heat recovery fluid, the particle temperature may still remain at 118°C. can. However, at the end of the reaction, when the reaction rate has decreased, the water vapor passing through the surface layer of the heat storage medium particle packed bed removes sensible heat from the particles in the surface layer. As a result, the particle temperature can no longer be maintained at 118° C., resulting in a temperature drop. As described above, when the particle temperature decreases, the region becomes a tetrahydrate generation region, and the calcium bromide hydrate changes to tetrahydrate. Calcium bromide tetrahydrate produced in this way has a melting point around 80°C, so if it is produced at a temperature of 80 to 86°C, it has the property of becoming liquid, and the packed bed of heat storage medium particles may melt out, causing the reactor to melt. This may cause problems such as movement or disappearance of heat storage medium particles from the heat exchange section inside the tank.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例を示す蓄熱反応装置
の垂直断面図、第2図は従来技術を示す蓄熱反応
装置の垂直断面図、第3図は臭化カルシウム水和
物および水の蒸気圧曲線を示すグラフである。 1……脱水/水和反応器、2……臭化カルシウ
ム水和物粒子、3……凝縮/蒸発用容器、4……
水、5……バルブ、6……水蒸気通路、7……水
蒸気過熱用の熱交換器、8……反応器側導管、9
……バルブ、10……分岐管(導管)、11……
バルブ、12……容器側導管。
Fig. 1 is a vertical sectional view of a heat storage reaction device showing an embodiment of the present invention, Fig. 2 is a vertical sectional view of a heat storage reaction device showing a prior art, and Fig. 3 is a vapor pressure of calcium bromide hydrate and water. It is a graph showing a curve. 1... Dehydration/hydration reactor, 2... Calcium bromide hydrate particles, 3... Condensation/evaporation container, 4...
Water, 5... Valve, 6... Steam passage, 7... Heat exchanger for steam superheating, 8... Reactor side conduit, 9
... Valve, 10 ... Branch pipe (conduit), 11 ...
Valve, 12...container side conduit.

Claims (1)

【特許請求の範囲】[Claims] 1 潮解性を有する無機化合物を蓄熱媒体として
用い、高温熱源流体による蓄熱媒体の脱水反応に
よつて蓄熱を行い、蓄熱媒体と水蒸気との水和反
応で生じる反応熱を利用して放熱を行う化学蓄熱
法に使用される反応装置において、反応器の内部
または反応器に通じる水蒸気通路に水蒸気過熱用
の熱交換器を設け、水和反応熱を回収する流体を
上記熱交換器に通す導管を設け、反応器へ流入す
る水蒸気を水和反応前に同流体によつて過熱する
ようにしたことを特徴とする、水和反応を利用し
た蓄熱反応装置。
1 A chemistry that uses a deliquescent inorganic compound as a heat storage medium, stores heat through a dehydration reaction of the heat storage medium with a high-temperature heat source fluid, and radiates heat using the reaction heat generated from the hydration reaction between the heat storage medium and water vapor. In the reaction apparatus used for the heat storage method, a heat exchanger for steam superheating is provided inside the reactor or in the steam passage leading to the reactor, and a conduit is provided for passing the fluid for recovering the heat of hydration reaction to the heat exchanger. A heat storage reaction device utilizing a hydration reaction, characterized in that water vapor flowing into the reactor is superheated by the same fluid before the hydration reaction.
JP63243166A 1988-09-28 1988-09-28 Heat storage and reactor device using hydration reaction Granted JPH0293294A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63243166A JPH0293294A (en) 1988-09-28 1988-09-28 Heat storage and reactor device using hydration reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63243166A JPH0293294A (en) 1988-09-28 1988-09-28 Heat storage and reactor device using hydration reaction

Publications (2)

Publication Number Publication Date
JPH0293294A JPH0293294A (en) 1990-04-04
JPH0585836B2 true JPH0585836B2 (en) 1993-12-08

Family

ID=17099791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63243166A Granted JPH0293294A (en) 1988-09-28 1988-09-28 Heat storage and reactor device using hydration reaction

Country Status (1)

Country Link
JP (1) JPH0293294A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101395439B (en) * 2006-03-01 2011-04-06 松下电器产业株式会社 Method of heat accumulation and heat accumulation system
JP6251616B2 (en) * 2014-03-20 2017-12-20 株式会社デンソー Chemical heat storage device
US11512847B1 (en) * 2019-02-19 2022-11-29 Alan Rose Steam generation apparatuses, processes, and methods
FR3105379B1 (en) * 2019-12-20 2022-09-23 Commissariat Energie Atomique thermochemical storage of electrical energy for housing and heating networks

Also Published As

Publication number Publication date
JPH0293294A (en) 1990-04-04

Similar Documents

Publication Publication Date Title
JP5021597B2 (en) Thermal storage method and thermal storage system
JP5698056B2 (en) Chemical heat storage device
JPH03106437A (en) Thermostatic cycle process
US4309980A (en) Closed vaporization heat transfer system
JP4377963B2 (en) Chemical heat storage device
JPH0585836B2 (en)
JPH0432318B2 (en)
US5507158A (en) Device for indirect production of cold for refrigerating machine
JP4752618B2 (en) Heat storage system
JPWO2016076030A1 (en) Chemical heat pump
JPH0332709B2 (en)
KR101866943B1 (en) Heat storage and radiation device and heat storage and radiation methods using the same
US3187515A (en) Method and apparatus for control of temperature in absorption refrigeration systems
JPH0146799B2 (en)
RU2728272C1 (en) Methanol regeneration unit
JPH0571887A (en) Heat accumulation method
JP2573862B2 (en) Heat storage device
US4365661A (en) Enhanced vaporization/condensation heat pipe
JPH11148788A (en) Heat accumulator
JPH07113590A (en) Heat accumulation device for chemical heat accumulating material
JPH0115796B2 (en)
JP5123666B2 (en) Generation of cryogenic cooling in thermochemical equipment.
JPS6048467A (en) Method of driving heat pump device
JPH036440B2 (en)
JP2021001717A (en) Chemical heat storage device and chemical heat storage method for chemical heat storage material

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees