JPH058575Y2 - - Google Patents

Info

Publication number
JPH058575Y2
JPH058575Y2 JP2913086U JP2913086U JPH058575Y2 JP H058575 Y2 JPH058575 Y2 JP H058575Y2 JP 2913086 U JP2913086 U JP 2913086U JP 2913086 U JP2913086 U JP 2913086U JP H058575 Y2 JPH058575 Y2 JP H058575Y2
Authority
JP
Japan
Prior art keywords
light
aperture value
resistor
amplifier
aperture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2913086U
Other languages
Japanese (ja)
Other versions
JPS62142032U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP2913086U priority Critical patent/JPH058575Y2/ja
Publication of JPS62142032U publication Critical patent/JPS62142032U/ja
Application granted granted Critical
Publication of JPH058575Y2 publication Critical patent/JPH058575Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Focusing (AREA)

Description

【考案の詳細な説明】 [産業上の利用分野] 本考案は、自動焦点カメラの測距装置に関す
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a distance measuring device for an autofocus camera.

[従来の技術] 従来、この種の測距装置として、発光素子から
発せられた光を測距対象に向けて投射し、その反
射光を隣接配置された2つの受光素子で受光する
三角測距方式の測距装置が知られている。
[Prior Art] Conventionally, as this type of distance measuring device, a triangular distance measuring device is used, in which light emitted from a light emitting element is projected toward a distance measurement target, and the reflected light is received by two adjacently arranged light receiving elements. A distance measuring device based on this method is known.

第3図は、従来の自動焦点カメラに使用されて
いる測距装置の受光回路部分を示す。同図の回路
は、フオトダイオード等の受光素子S1,S2、
受光素子S1,S2のそれぞれに直列接続された
光信号検出用抵抗R1,R2、受光素子S1,S
2と抵抗R1,R2との各直列回路に直流電圧
Vccを供給するバツテリ(図示せず)、受光素子
S1,S2と抵抗R1,R2との接続点に一端を
接続されたコンデンサC1,C2、このコンデン
サC1,C2の他端に入力端を接続された増幅器
A1,A2、増幅器A1,A2の出力端とバツテ
リの負側端子との間に順方向接続された対数圧縮
ダイオードD1,D2、差動増幅器A3、そして
コンパレータCP1〜CP4等を備えている。
FIG. 3 shows a light receiving circuit portion of a distance measuring device used in a conventional autofocus camera. The circuit in the figure includes light receiving elements S1, S2 such as photodiodes,
Optical signal detection resistors R1 and R2 connected in series to the light receiving elements S1 and S2, respectively, and the light receiving elements S1 and S2.
DC voltage is applied to each series circuit of 2 and resistors R1 and R2.
A battery (not shown) that supplies Vcc, capacitors C1 and C2 whose one ends are connected to the connection points between light receiving elements S1 and S2 and resistors R1 and R2, and input terminals connected to the other ends of these capacitors C1 and C2. The circuit includes amplifiers A1 and A2, logarithmic compression diodes D1 and D2 connected in the forward direction between the output terminals of the amplifiers A1 and A2 and the negative terminal of the battery, a differential amplifier A3, and comparators CP1 to CP4. .

次に、第3図の回路の動作を説明する。測距時
は、図示しない発光素子がパルス的に駆動され、
単数または複数のパルス光を出射する。この光は
図示しない被写体に照射され、該被写体で反射さ
れる。被写体からの反射光は図示しないレンズを
介して受光素子S1,S2に入射し、各受光素子
S1,S2の抵抗値が変化して抵抗R1,R2の
端子間に被写体の距離に応じたパルス信号VP1
VP2が発生する。これらのパルス信号VP1,VP2
コンデンサC1,C2によつて被写体等からの外
光による直流電圧成分VD1,VD2から分離され、
増幅器A1,A2によつて増幅され、ダイオード
D1,D2によつて対数圧縮された後、差動増幅
器A3に入力される。これにより、差動増幅器A
3は上記2つのパルス信号電圧の比VP2/VP1
すなわち被写体までの距離に応じた電圧VAを出
力する。コンパレータCP1〜CP4ではこの出力
電圧VAをそれぞれ異なる参照電圧VS1〜VS4と比
較する。各コンパレータCP1〜CP4の出力は図
示しないレンズ駆動回路に供給される。レンズ駆
動回路においてはこれらのコンパレータCP1〜
CP4の出力の論理演算を行ない、その演算結果
に応じて撮影レンズを駆動し、自動焦点合せ
(AF)を実行する。
Next, the operation of the circuit shown in FIG. 3 will be explained. During distance measurement, a light emitting element (not shown) is driven in a pulsed manner.
Emit single or multiple pulsed light. This light is irradiated onto an object (not shown) and reflected by the object. The reflected light from the object enters the light receiving elements S1 and S2 through a lens (not shown), and the resistance value of each light receiving element S1 and S2 changes, and a pulse signal corresponding to the distance of the object is generated between the terminals of the resistors R1 and R2. V P1 ,
V P2 occurs. These pulse signals V P1 and V P2 are separated from the DC voltage components V D1 and V D2 caused by external light from the subject etc. by capacitors C1 and C2.
After being amplified by amplifiers A1 and A2 and logarithmically compressed by diodes D1 and D2, it is input to differential amplifier A3. As a result, the differential amplifier A
3 is the ratio of the above two pulse signal voltages V P2 /V P1 ,
That is, it outputs a voltage V A according to the distance to the subject. Comparators CP1 to CP4 compare this output voltage V A with different reference voltages V S1 to V S4 , respectively. The outputs of the comparators CP1 to CP4 are supplied to a lens drive circuit (not shown). In the lens drive circuit, these comparators CP1~
It performs logical calculations on the output of the CP4, drives the photographing lens according to the results of the calculations, and executes automatic focusing (AF).

[考案が解決しようとする問題点] ところで、上記構成において、AFの精度を上
げるためには、 発光パワーを上げ被写体からの距離信号光を
大きくする 受光素子S1およびS2の光電変換効率を上
げる 系全体、特に入力側のノイズ成分を下げる 等の対策が考えられる。しかし、,は原理的
に、は物理的に限界がある。
[Problems to be solved by the invention] By the way, in the above configuration, in order to improve the accuracy of AF, increase the light emitting power and increase the distance signal light from the subject.Increase the photoelectric conversion efficiency of the light receiving elements S1 and S2. Countermeasures can be taken to reduce the overall noise component, especially on the input side. However, there are theoretical limits to , and there are physical limits to .

また、の代替手段として、R1,R2の抵抗
値を大きくして距離信号光を見掛上大きくする方
法もしばしば採られる。しかし、この方法にも限
界がある。つまり、三角測距を行なう2個の受光
素子S1,S2には外光による電流IDと被写体距
離信号光によるIP1,IP2が発生し、信号検出抵抗
R1,R2の端子間にはそれぞれ V1=(ID+IP1)および V2=(ID+IP2)なる電圧が発生する。
As an alternative to the above, the resistance values of R1 and R2 are often increased to make the distance signal light appear larger. However, this method also has its limitations. In other words, the two light-receiving elements S1 and S2 that perform triangulation generate a current ID due to external light and IP1 and IP2 due to the subject distance signal light, and voltages V1 = ( ID + IP1 ) and V2 = ( ID + IP2 ) are generated between the terminals of the signal detection resistors R1 and R2, respectively.

しかしながら、この抵抗R1に流れる電流は最
大でもVcc/R1であるから、外光量がID1=R1
以上になると、抵抗R1の端子間電圧はV1=
Vccで飽和してしまい、信号光IP1が流れようとし
ても電圧V1は変化せず、信号光IP1は検出され
なくなつてしまう。これは、もう一方の受光素子
S2および抵抗R2についても同様である。つま
り、このような測距装置において、抵抗R1は、
外光耐力(ダイナミツクレンジ)を増すためには
小さく、かつ信号光検出能力(S/N比)を大き
くするためには大きくした方が良いという相反す
る条件がある。このため、従来の測距装置におい
ては信号光検出能力を高めようとすると外光耐力
が低下してしまい、外光輝度が高いとき、測距不
能に陥つて自動焦点機能を果たさず、撮つた写真
がピンボケになる場合が生じるという不都合があ
つた。
However, since the maximum current flowing through this resistor R1 is Vcc/R1, the amount of external light is I D1 = R1
If it becomes more than that, the voltage between the terminals of resistor R1 is V1=
It is saturated at Vcc, and even if the signal light I P1 tries to flow, the voltage V1 does not change, and the signal light I P1 is no longer detected. This also applies to the other light receiving element S2 and resistor R2. In other words, in such a distance measuring device, the resistance R1 is
There are conflicting conditions: it is better to be small in order to increase external light resistance (dynamic range), and it is better to be large in order to increase signal light detection ability (S/N ratio). For this reason, in conventional distance measuring devices, when trying to improve the signal light detection ability, the tolerance to external light decreases, and when the brightness of external light is high, distance measurement becomes impossible and the autofocus function does not function, making it difficult to take pictures. There was an inconvenience that the photos were sometimes out of focus.

本考案の目的は、上記従来形における問題点に
鑑み、自動焦点カメラの測距装置において、外光
耐力を損なうことなく信号光検出能力を高めるこ
とにある。
SUMMARY OF THE INVENTION In view of the above-mentioned problems with the conventional type, an object of the present invention is to improve the signal light detection ability of a distance measuring device for an autofocus camera without impairing external light resistance.

[問題点を解決するための手段] 上記目的を達成するため本考案では、発光素子
から発せられた光を測距対象に向けて投射し、そ
の反射光を受光素子で受光し、この受光素子の電
流をこの受光素子と直列に接続した抵抗の端子間
電圧に変換して検出する自動焦点カメラの測距装
置において、カメラレンズの絞り値を検出し、こ
の検出値に応じて上記抵抗の抵抗値を切り換える
ことを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the present invention projects light emitted from a light emitting element toward a distance measurement target, receives the reflected light by a light receiving element, and the light receiving element In an autofocus camera distance measuring device that converts the current of It is characterized by switching values.

[考案の作用および効果] 上記構成によれば、通常時は抵抗値を高くして
信号光検出能力(測距感度)を向上させるととも
に、小絞り(絞り径小、絞り値大)時は抵抗値を
低くすることにより外光耐力を確保している。な
お、小絞り時は測距感度を下げることにより測距
精度も下がるが、カメラレンズの焦点深度が深く
なつているため、多少の測距誤差は問題とならな
い。また。外光輝度が高いときは小絞りとするの
が一般であるから、外光輝度が高いときの外光耐
力にも問題はない。
[Operations and effects of the invention] According to the above configuration, the resistance value is increased in normal times to improve the signal light detection ability (distance measurement sensitivity), and the resistance value is increased when the aperture is small (small aperture diameter, large aperture value). By lowering the value, resistance to external light is ensured. Note that when using a small aperture, the distance measurement accuracy decreases by lowering the distance measurement sensitivity, but since the depth of focus of the camera lens is deep, some distance measurement errors are not a problem. Also. Since it is common to use a small aperture when the brightness of outside light is high, there is no problem with the resistance to outside light when the brightness of outside light is high.

[実施例] 以下、図面により本考案の実施例を説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

第1図は、本考案の一実施例に係る自動焦点
(AF)・自動露出(AE)カメラの回路構成を示
す。なお、第1図において第3図と共通または対
応する部分については同一の符号で表わす。
FIG. 1 shows the circuit configuration of an autofocus (AF)/autoexposure (AE) camera according to an embodiment of the present invention. Note that parts in FIG. 1 that are common or corresponding to those in FIG. 3 are denoted by the same reference numerals.

第1図の測距回路AFは、第3図のものに対し、
受光部1の抵抗R1を抵抗R1AとR1Bとに分割し、
一方の抵抗R1Bの両端子にそれぞれトランジスタ
TR1のコレクタおよびエミツタを接続し、この
トランジスタTR1のベースに自動露出回路AE
で発生する絞り値信号Vfを印加するようにした
ものである。さらに、増幅器A1の増幅率を決定
する帰還抵抗Rg1と並列に抵抗Rg2とトランジ
スタTR2のコレクタ・エミツタとの直列回路を
接続し、トランジスタTR2のベースにもトラン
ジスタTR1と同様に絞り値信号Vfを印加するよ
うにしている。受光部2も同様に構成されてい
る。
The distance measuring circuit AF in Figure 1 is different from the one in Figure 3.
Divide the resistor R1 of the light receiving part 1 into resistors R 1A and R 1B ,
A transistor is connected to both terminals of one resistor R 1B.
Connect the collector and emitter of TR1, and connect the automatic exposure circuit AE to the base of this transistor TR1.
The aperture value signal Vf generated by the aperture value signal Vf is applied. Furthermore, a series circuit of resistor Rg2 and the collector-emitter of transistor TR2 is connected in parallel with feedback resistor Rg1 that determines the amplification factor of amplifier A1, and the aperture value signal Vf is applied to the base of transistor TR2 in the same way as transistor TR1. I try to do that. The light receiving section 2 is similarly configured.

自動露出回路AEは、受光素子S3、増幅器A
4、増幅器A4を対数圧縮型増幅器とするための
対数圧縮ダイオードD3、フイルム感度情報とし
ての参照電圧を発生する電圧源VISO、トランジス
タTR3、第2レリーズスイツチSW、時限用コ
ンデンサCt、コンパレータCP5,CP6、ソレノ
イドL、高輝度判別用参照電圧源VAF、低輝度判
別用参照電圧源VAE、参照電圧切り換え用スイツ
チRY、コントローラCNT等を備えている。
The automatic exposure circuit AE includes a light receiving element S3 and an amplifier A.
4. A logarithmic compression diode D3 for making the amplifier A4 a logarithmic compression type amplifier, a voltage source V ISO that generates a reference voltage as film sensitivity information, a transistor TR3, a second release switch SW, a time capacitor Ct, a comparator CP5, It includes a CP6, a solenoid L, a reference voltage source V AF for high brightness discrimination, a reference voltage source V AE for low brightness discrimination, a reference voltage switching switch RY, a controller CNT, and the like.

次に、第1図の回路の作用を説明する。 Next, the operation of the circuit shown in FIG. 1 will be explained.

先ず、自動露出回路AEの動作を説明する。な
お、この回路AEは第2レリーズスイツチSWが
押圧された時(第2レリーズ)から所定の速度で
開き始め外光輝度に応じた時間を経過した時閉じ
始めるため開時間と開度(絞り径)との双方が変
化するいわゆるプログラムシヤツタを制御するも
のである。
First, the operation of the automatic exposure circuit AE will be explained. Note that this circuit AE starts opening at a predetermined speed when the second release switch SW is pressed (second release) and starts closing when a time corresponding to the external light brightness has elapsed, so the opening time and opening degree (aperture diameter ) is used to control a so-called program shutter in which both change.

受光素子S3は外光が入射するとその外光の輝
度に応じた信号を発生する。増幅器A4およびダ
イオードD3からなる対数圧縮増幅器はこの信号
を増幅する。電圧源VISOは、受光素子S3から出
力される外光輝度信号をフイルム感度情報に従つ
てバイアスすることにより上記対数圧縮増幅器に
おける圧縮率を制御する。増幅器A4の出力はア
クテイブ領域で動作するように設定されたトラン
ジスタTR3のベースに供給される。これによ
り、トランジスタTR3のコレクタにはベース電
圧を対数伸張した電流、すなわち受光素子S3で
検出された外光輝度に比例した電流が流れる。
When external light is incident, the light receiving element S3 generates a signal corresponding to the brightness of the external light. A logarithmic compression amplifier consisting of amplifier A4 and diode D3 amplifies this signal. The voltage source V ISO controls the compression rate in the logarithmic compression amplifier by biasing the external light brightness signal output from the light receiving element S3 according to the film sensitivity information. The output of amplifier A4 is fed to the base of transistor TR3, which is set to operate in the active region. As a result, a current obtained by logarithmically expanding the base voltage, that is, a current proportional to the external light brightness detected by the light receiving element S3 flows through the collector of the transistor TR3.

コンデンサCtは、このカメラの図示しない第
1レリーズスイツチが押圧されると電源電圧が印
加され、続いて第2レリーズスイツチSWが押圧
されてオフ(開放)されたときこのトランジスタ
TR3のコレクタ電流が流れて充電される。ま
た、この第2レリーズスイツチの押圧により図示
しない絞り羽根駆動機構が動作してシヤツタ(絞
り羽根)が開き始める。一方、上記充電に伴つ
て、コンデンサCtの端子間電圧は上昇し、コン
パレータCP5への入力電圧は下降する。そして、
この入力電圧が所定の参照電圧VRよりも低くな
ると、ソレノイドLがコンパレータCP5により
駆動されて図示しない絞り羽根解除機構を動作さ
せ、絞り羽根は図示へしない復帰ばねによりシヤ
ツタ閉位置に復帰される。以上のようにしてシヤ
ツタは外光輝度に応じた時間だけ開駆動される。
この開駆動速度の変化はシヤツタ開時間に拘らず
一定であるから、シヤツタは外光輝度に応じた開
度(絞り径)まで開くことになる。
When the first release switch (not shown) of this camera is pressed, a power supply voltage is applied to the capacitor Ct, and when the second release switch SW is subsequently pressed and turned off (opened), this transistor is turned off.
The collector current of TR3 flows and is charged. Further, by pressing the second release switch, an aperture blade drive mechanism (not shown) operates, and the shutter (aperture blade) begins to open. On the other hand, with the above charging, the voltage between the terminals of the capacitor Ct increases, and the input voltage to the comparator CP5 decreases. and,
When this input voltage becomes lower than a predetermined reference voltage V R , the solenoid L is driven by the comparator CP5 to operate an aperture blade release mechanism (not shown), and the aperture blades are returned to the shutter closed position by a return spring (not shown). . As described above, the shutter is driven open for a period of time corresponding to the brightness of outside light.
Since this change in opening driving speed is constant regardless of the shutter opening time, the shutter opens to an opening degree (aperture diameter) corresponding to the brightness of external light.

コントローラCNTは、CPU(中央処理装置)
等により構成されており、このカメラ全体の動作
を制御する。つまり、第1レリーズスイツチが押
圧されると、先ず、参照電圧切り換え用スイツチ
RYを高輝度判別側VAFに切り換えてコンパレー
タCP6の出力を検査し、被制御絞り値(増幅器
A3の出力電圧)が第1の設定値VAFより大きい
か小さいかを判別する。次に、スイツチRYを低
輝度判別側VAEに切り換えてコンパレータCP6の
出力を検査し、上記被制御絞り値が第2の設定値
VAEより大きいか小さいかを判別する。続いて、
上記高輝度判別の結果、被制御絞り値が上記第1
の設定絞り値VAFより大きければHレベルの小絞
り検出信号Vfを出力する。さらに、上記引輝度
判別の結果、被制御絞り値が上記第2の設定絞り
値VAEより小さければシヤツタ開時間が長く、手
振れのおそれがあるため、手振れ防止のための低
輝度警告信号を出力する。そして、測距回路AF
に測距開始指令信号を送出して第2レリーズに備
える。なお、第2レリーズ以後の動作は従来のも
のと同じである。
Controller CNT is CPU (Central Processing Unit)
etc., and controls the overall operation of this camera. In other words, when the first release switch is pressed, the reference voltage switching switch is first pressed.
RY is switched to the high brightness discrimination side V AF and the output of the comparator CP6 is inspected to determine whether the controlled aperture value (output voltage of amplifier A3) is larger or smaller than the first set value V AF . Next, switch RY is switched to the low brightness discrimination side V AE , the output of comparator CP6 is checked, and the above-mentioned controlled aperture value is the second set value.
Determine whether it is greater or less than V AE . continue,
As a result of the above-mentioned high brightness discrimination, the controlled aperture value is the above-mentioned first
If the aperture value is larger than the set aperture value V AF , an H level small aperture detection signal Vf is output. Furthermore, as a result of the above brightness determination, if the controlled aperture value is smaller than the second set aperture value V AE , the shutter open time will be longer and there is a risk of camera shake, so a low brightness warning signal will be output to prevent camera shake. do. And distance measuring circuit AF
A distance measurement start command signal is sent to prepare for the second release. Note that the operations after the second release are the same as those of the conventional one.

次に、測距回路AFの作用を、第2図に外光輝
度に対する光信号検出用抵抗R1の端子間電圧V
1で表わした入出力特性図を参照しながら説明す
る。この測距回路においては、受光素子S1に入
射する外光輝度が低く絞り値が小さい間は、トラ
ンジスタTR1がオフする。従つて受光素子S1
の電流を検出するための抵抗値R1(=R1A
R1C)が大きくなり、入出力特性が信号光検出能
力の高い側(第2図の実線)に切り換わる。一
方、受光素子S1に入射する外光輝度が高く絞り
値が上記第1の設定値より大きいときは、コント
ローラCNTからの絞り値検出信号Vf=“H”に
よりトランジスタTR1がオンして抵抗R1Cを短
絡する。このため、受光素子S1の電流を検出す
るための抵抗値R1(=R1A)が低くなり、入出
力特性は外光耐力の高い側(第2図の破線)に切
り換わる。すなわち、通常(大絞り)時の信号光
検出能力を高く設定することができ、かつ小絞
り、すなわち高輝度時の外光耐力を確保すること
ができる。
Next, the action of the distance measuring circuit AF is shown in Fig. 2, which shows the voltage V between the terminals of the optical signal detection resistor R1 with respect to the brightness of external light.
This will be explained with reference to the input/output characteristic diagram shown in 1. In this distance measuring circuit, the transistor TR1 is turned off while the brightness of external light incident on the light receiving element S1 is low and the aperture value is small. Therefore, the light receiving element S1
Resistance value R1 (=R 1A +
R 1C ) increases, and the input/output characteristics switch to the side with higher signal light detection ability (solid line in FIG. 2). On the other hand, when the brightness of external light incident on the light receiving element S1 is high and the aperture value is larger than the first set value, the transistor TR1 is turned on by the aperture value detection signal Vf=“H” from the controller CNT, and the resistor R1C is turned on. short circuit. Therefore, the resistance value R1 (=R 1A ) for detecting the current of the light-receiving element S1 becomes low, and the input/output characteristics are switched to the side with higher resistance to external light (the broken line in FIG. 2). In other words, it is possible to set the signal light detection ability at a normal (large aperture) high, and to ensure external light resistance when a small aperture is used, that is, high brightness.

また、この測距回路では、トランジスタTR2
によつて増幅器A1の増幅率を切り換えるように
している。つまり、トランジスタTR2を上記小
絞り時の絞り値検出信号Vf=“H”によりオンし
て増幅器A1の帰還抵抗Rg1に抵抗Rg2を並列
接続し、上記光検出用抵抗R1を小さくしたこと
により光検出能力(利得)が減少した分だけ増幅
器A1の利得を高くして測距感度の低下を補償し
ている。
In addition, in this distance measuring circuit, transistor TR2
The amplification factor of the amplifier A1 is switched by. In other words, the transistor TR2 is turned on by the aperture value detection signal Vf=“H” at the time of the small aperture, the resistor Rg2 is connected in parallel to the feedback resistor Rg1 of the amplifier A1, and the photodetection resistor R1 is made small, so that light is detected. The gain of the amplifier A1 is increased by an amount corresponding to the decrease in capability (gain) to compensate for the decrease in ranging sensitivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本考案の一実施例に係る自動焦点カ
メラの要部回路図、第2図は、第1図における測
距回路の入出力特性を外光輝度ID対光信号検出用
抵抗端子間電圧V1で表わした図、第3図は、従
来の測距回路の回路図である。 S1,S2,S3……受光素子、R1,R2,
R1A,R1B……光信号検出用抵抗、TR1,TR2
……トランジスタ、A1,A2,A3……増幅
器、Rg1,Rg2……帰還抵抗、D1,D2,D
3……対数圧縮ダイオード、A3……差動増幅
器、CP1〜CP6……コンパレータ、CNT……
コントローラ、Vf……絞り値検出信号。
Fig. 1 is a circuit diagram of the main parts of an autofocus camera according to an embodiment of the present invention, and Fig. 2 shows the input/output characteristics of the distance measuring circuit in Fig. 1 . FIG. 3, which is a diagram expressed in terms of the terminal voltage V1, is a circuit diagram of a conventional distance measuring circuit. S1, S2, S3... Light receiving element, R1, R2,
R 1A , R 1B ...Resistance for optical signal detection, TR1, TR2
...Transistor, A1, A2, A3...Amplifier, Rg1, Rg2...Feedback resistor, D1, D2, D
3... Logarithmic compression diode, A3... Differential amplifier, CP1 to CP6... Comparator, CNT...
Controller, Vf...Aperture value detection signal.

Claims (1)

【実用新案登録請求の範囲】 1 測距対象に向けてパルス光を投射する発光素
子と、該測距対象からの反射光を受光する受光
素子と、該受光素子に直列に接続された第1の
抵抗と、該受光素子および抵抗の直列回路に電
圧を印加する直流電源と、上記反射光により第
1の抵抗に生じるパルス電圧を増幅する増幅器
と、該増幅器の出力を基に被写体までの距離を
検出する距離検出回路と、カメラレンズの設定
絞り値を検出する絞り値検出回路と、該絞り値
に応じて上記第1の抵抗の抵抗値を切り換える
手段とを具備することを特徴とする自動焦点カ
メラの測距装置。 2 前記抵抗値切換手段が、前記絞り値検出回路
の出力に基づいてオン・オフするスイツチング
素子と、該スイツチング素子を介して前記第1
の抵抗と直列もしくは並列に接続される第2の
抵抗とを具備する実用新案登録請求の範囲第1
項記載の測距装置。 3 自動露出装置とともにカメラに取付けられて
おり、前記絞り値検出回路が該自動露出装置で
発生する絞り制御信号を基に前記絞り値を検出
するものである実用新案登録請求の範囲第2項
記載の測距装置。 4 前記スイツチング素子のオン・オフによる抵
抗値切換えと連動して前記増幅器の利得を切り
換える実用新案登録請求範囲第3項記載の測距
装置。
[Claims for Utility Model Registration] 1. A light-emitting element that projects pulsed light toward a distance measurement object, a light-receiving element that receives reflected light from the distance-measuring object, and a first light-emitting element connected in series to the light-receiving element. a DC power supply that applies a voltage to the series circuit of the light receiving element and the resistor, an amplifier that amplifies the pulse voltage generated in the first resistor by the reflected light, and a distance to the subject based on the output of the amplifier. an aperture value detection circuit for detecting a set aperture value of a camera lens; and means for switching the resistance value of the first resistor in accordance with the aperture value. Focus camera ranging device. 2. The resistance value switching means includes a switching element that is turned on and off based on the output of the aperture value detection circuit, and a switching element that is turned on and off based on the output of the aperture value detection circuit;
Utility model registration claim 1 comprising a resistor and a second resistor connected in series or in parallel.
Distance measuring device described in section. 3. A utility model registration according to claim 2, which is attached to a camera together with an automatic exposure device, and the aperture value detection circuit detects the aperture value based on an aperture control signal generated by the automatic exposure device. distance measuring device. 4. The distance measuring device according to claim 3, wherein the gain of the amplifier is switched in conjunction with switching the resistance value by turning on and off the switching element.
JP2913086U 1986-03-03 1986-03-03 Expired - Lifetime JPH058575Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2913086U JPH058575Y2 (en) 1986-03-03 1986-03-03

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2913086U JPH058575Y2 (en) 1986-03-03 1986-03-03

Publications (2)

Publication Number Publication Date
JPS62142032U JPS62142032U (en) 1987-09-08
JPH058575Y2 true JPH058575Y2 (en) 1993-03-03

Family

ID=30832738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2913086U Expired - Lifetime JPH058575Y2 (en) 1986-03-03 1986-03-03

Country Status (1)

Country Link
JP (1) JPH058575Y2 (en)

Also Published As

Publication number Publication date
JPS62142032U (en) 1987-09-08

Similar Documents

Publication Publication Date Title
US4773751A (en) Infinite level setting device for a distance measuring device
US5008695A (en) Rangefinder for camera
JPH0376722B2 (en)
JPH0151819B2 (en)
US6259514B1 (en) Rangefinder apparatus
JPH058575Y2 (en)
US4573783A (en) Focusing controlling device
US6292256B1 (en) Distance measurement system
JPH08327890A (en) Range finder for camera
US6192199B1 (en) Rangefinder apparatus
JPS62203137A (en) Automatic focusing device for camera
JPS62203010A (en) Distance measuring apparatus
US4494848A (en) Distance measuring device
JP2836025B2 (en) Focus adjustment signal processor
JPH0675131B2 (en) Zone focus camera distance measuring device
JPS6360884B2 (en)
JPH0545926Y2 (en)
JP2802785B2 (en) Camera exposure control method
US6195510B1 (en) Rangefinder apparatus
JPS62165613A (en) Auto focusing device
JP3332948B2 (en) camera
JPH06258569A (en) Automatic focusing device
JPS60189520A (en) Power supply device
JP3749639B2 (en) Ranging device
JPH0715544B2 (en) Camera photometer