JPH058562Y2 - - Google Patents

Info

Publication number
JPH058562Y2
JPH058562Y2 JP1987073013U JP7301387U JPH058562Y2 JP H058562 Y2 JPH058562 Y2 JP H058562Y2 JP 1987073013 U JP1987073013 U JP 1987073013U JP 7301387 U JP7301387 U JP 7301387U JP H058562 Y2 JPH058562 Y2 JP H058562Y2
Authority
JP
Japan
Prior art keywords
light
linearly polarized
polarized light
polarization direction
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1987073013U
Other languages
Japanese (ja)
Other versions
JPS63187101U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1987073013U priority Critical patent/JPH058562Y2/ja
Publication of JPS63187101U publication Critical patent/JPS63187101U/ja
Application granted granted Critical
Publication of JPH058562Y2 publication Critical patent/JPH058562Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は不定偏光光から直線偏光光を得る偏光
変換素子に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a polarization conversion element that obtains linearly polarized light from undefined polarized light.

〔従来の技術〕[Conventional technology]

従来、不定偏光光から直線偏光光を得るには、
不定偏光光を偏光子や複屈折性のある結晶を透過
させたり、境界面で反射させることにより、直線
偏光光を選択する素子が用いられている。一例と
して、薄いプラスチツクシート等に沃素等を配向
させて吸着させる等により偏光膜を作成し、両面
に保護プラスチツクシート等を接着した構造のシ
ート・ポラライザや、複屈折性のある結晶中の常
光線と異常光線の光の進行方向の違いから直線偏
光光を取り出すニコル・プリズム、ローシヨン・
プリズム等がある。また、2つの直角プリズムの
斜辺の一方に半透膜をコートして斜辺どうしを接
合し、透過光と反射光とを互いに直交した直線偏
光光として取り出す偏光ビームスプリツタがあ
る。
Conventionally, to obtain linearly polarized light from undefined polarized light,
Elements are used that select linearly polarized light by transmitting undefined polarized light through a polarizer or a birefringent crystal or reflecting it at an interface. For example, a sheet polarizer has a structure in which a polarizing film is created by orienting and adsorbing iodine, etc. to a thin plastic sheet, etc., and a protective plastic sheet, etc. is adhered to both sides, and an ordinary light beam in a birefringent crystal. Nicol prism, which extracts linearly polarized light from the difference in the traveling direction of the light and the extraordinary ray,
There are prisms, etc. There is also a polarizing beam splitter that coats one of the oblique sides of two right-angle prisms with a semi-transparent film to join the oblique sides together, and extracts transmitted light and reflected light as linearly polarized light orthogonal to each other.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

しかし、従来のシート・ポラライザや偏光ビー
ムスプリツタを単独で用いる場合、不用の偏光成
分の光を吸収あるいは反射するため、光源の光利
用効率は半分以下と低くならざるを得ない。直線
偏光光を利用する装置の例として、TN(ツイス
ト・ネマチツク)液晶を用いた液晶表示装置の場
合、偏光子2枚を透過する間に光源からの光は60
%以上が損失する。さらに液晶表示素子の端面反
射、吸収、開口制限により、装置全体の光利用効
率は20%程度になり、表示のために十分な光量を
得るには、光源の輝度を高くしなければならない
ので、消費電力が大きなものになつてしまう。
However, when a conventional sheet polarizer or polarizing beam splitter is used alone, the light utilization efficiency of the light source is inevitably reduced to less than half because unnecessary polarized components of light are absorbed or reflected. As an example of a device that uses linearly polarized light, in the case of a liquid crystal display device that uses TN (twisted nematic) liquid crystal, the light from the light source is transmitted through two polarizers with 60
% or more will be lost. Furthermore, due to edge reflection, absorption, and aperture limitations of the liquid crystal display element, the light utilization efficiency of the entire device is approximately 20%, and in order to obtain a sufficient amount of light for display, the brightness of the light source must be increased. Power consumption becomes large.

本考案の目的は、不定偏光の光から直線偏光光
を得る偏光変換素子であつて、光源の光利用効率
を高めるための素子を提供することにある。
An object of the present invention is to provide a polarization conversion element for obtaining linearly polarized light from irregularly polarized light, and for improving the light utilization efficiency of a light source.

〔問題点を解決するための手段〕[Means for solving problems]

本考案の偏光変換素子は、光源からの不定偏光
光を主にP−偏光成分の直線偏光光とS−偏光成
分の直線偏光光とに空間的分離を行うための偏光
ビームスプリツタと、前記P−偏光成分の直線偏
光光と前記S−偏光成分の直線偏光光のどちらか
一方の直線偏光光の偏光方向と、もう一方の直線
偏光光の偏光方向とが等しくなるように、どちら
か一方の偏光方向を90°回転させ、2つの前記直
線偏光光を合成する2個の直角プリズムを含む少
なくとも2個以上の直角プリズムとから構成され
ることを特徴とする。
The polarization conversion element of the present invention includes a polarization beam splitter for spatially separating undefined polarization light from a light source into linearly polarized light mainly having a P-polarized component and linearly polarized light having an S-polarized component; Either one of the linearly polarized light of the P-polarized component and the linearly polarized light of the S-polarized component such that the polarization direction of the linearly polarized light of either one is equal to the polarization direction of the other linearly polarized light. The polarization direction of the polarized light is rotated by 90 degrees, and the polarization direction of the polarized light is rotated by 90 degrees, and the polarization direction is rotated by 90 degrees, and the polarization direction of the polarized light is rotated by 90 degrees.

〔作用〕[Effect]

第5図は本考案の原理を説明するための図であ
る。偏光方向51の直線偏光である入射光50は
全反射ミラー52,53,54で3回反射を行う
と、各反射光55,56,57の偏光方向は光の
進行方向に対し偏光方向58,59,60のよう
に変化する。第5図から明らかなように光学系を
通過した反射光57は進行方向が入射光50と等
しく、かつ、偏光方向が入射光50の偏光方向5
1と直交する偏光方向61になる。このように全
反射ミラーを用いることにより、直線偏光光の偏
光方向を任意に変換することが可能である。
FIG. 5 is a diagram for explaining the principle of the present invention. When the incident light 50, which is linearly polarized light with a polarization direction 51, is reflected three times by the total reflection mirrors 52, 53, and 54, the polarization direction of each reflected light 55, 56, and 57 becomes the polarization direction 58, with respect to the traveling direction of the light. It changes like 59,60. As is clear from FIG. 5, the traveling direction of the reflected light 57 that has passed through the optical system is the same as that of the incident light 50, and the polarization direction is the polarization direction 5 of the incident light 50.
The polarization direction 61 is perpendicular to 1. By using a total reflection mirror in this way, it is possible to arbitrarily convert the polarization direction of linearly polarized light.

本考案は、以上の原理を利用し、光源からの不
定偏光を偏光ビームスプリツタに入射させ、互い
に直交する直線偏光の透過光と反射光とに空間的
に分離した後、透過光と反射光のどちらか一方を
少なくとも2個以上の直角プリズムで複数回反射
させることにより、2つの光の偏光方向が等しく
なるように合成することで光源の光利用効率の高
い偏光変換素子を得ている。
Utilizing the above principle, the present invention makes undefined polarized light from a light source enter a polarizing beam splitter, spatially separates it into transmitted light and reflected light that are linearly polarized orthogonal to each other. By reflecting one of the two lights a plurality of times with at least two or more right-angle prisms, the two lights are combined so that the polarization directions are equal, thereby obtaining a polarization conversion element with high light utilization efficiency of the light source.

〔実施例〕〔Example〕

第1図は本考案の第1の実施例を示す図であ
る。この偏光変換素子は、キセノンランプやハロ
ゲンランプ等の光源1と、光源1からの光を平行
光束にするコンデンサレンズ2と、偏光ビームス
プリツタ4と、2個の直角プリズム5,6とから
構成されている。なお、2個の直角プリズム5と
6とは、反射法線方向が直交するように配置して
いる。偏光ビームスプリツタ4は2個の直角プリ
ズムの斜辺の一方に、金属膜や誘電体多層膜等か
ら成る半透膜をコートして斜辺どうしを接合した
もので、特に可視域内で有効にP−偏光とS−偏
光とに分離できるものを用いた。また、直角プリ
ズム5及び6は、斜辺において可視域の波長の光
に対して全反射条件を満足するものである。
FIG. 1 is a diagram showing a first embodiment of the present invention. This polarization conversion element is composed of a light source 1 such as a xenon lamp or a halogen lamp, a condenser lens 2 that converts the light from the light source 1 into a parallel beam, a polarizing beam splitter 4, and two right-angle prisms 5 and 6. has been done. Note that the two right-angle prisms 5 and 6 are arranged so that their reflection normal directions are perpendicular to each other. The polarizing beam splitter 4 is made by coating one of the hypotenuses of two right-angled prisms with a semi-transparent film made of a metal film, a dielectric multilayer film, etc., and joining the hypotenuses together, and is effective especially in the visible range. A device that can be separated into polarized light and S-polarized light was used. Further, the rectangular prisms 5 and 6 satisfy the total reflection condition for light having wavelengths in the visible range at the oblique sides.

偏光ビームスプリツタ4と直角プリズム5及び
6を第1図に示す構成で貼り合わすには、端面で
の光の損失が生じないように、ガラス材と屈折率
の整合がとれている光学用接着材(レンズボン
ド、紫外線硬化型接着剤等)を用いて接着した。
To bond the polarizing beam splitter 4 and the right-angle prisms 5 and 6 together in the configuration shown in Figure 1, an optical adhesive whose refractive index is matched to that of the glass material is used to prevent light loss at the end faces. It was attached using a material (lens bond, ultraviolet curing adhesive, etc.).

このような構成の偏光変換素子において、光源
1から不定偏光の光を放射し、コンデンサレンズ
2で平行光束にし、入射光3を得る。入射光3を
偏光ビームスプリツタ4に入射させると、透過光
7はP−偏光(偏光方向9)の直線偏光、反射光
8はS−偏光(偏光方向10)の直線偏光にな
る。反射光8は直角プリズム5及び6で全反射す
ることにより、それぞれ偏光方向が偏光方向1
1,12のように変化する。直角プリズム6から
出射される反射光15は、透過光7と同一の進行
方向であり、かつ、偏光方向13と14は等し
い。したがつて反射光15と透過光7を合成する
ことにより、光源1からの不定偏光光を直線偏光
光に変換する際の光利用効率は合成した反射光1
5の分だけ高めることができた。
In the polarization conversion element having such a configuration, light of undefined polarization is emitted from the light source 1 and converted into a parallel light beam by the condenser lens 2 to obtain incident light 3. When the incident light 3 is made incident on the polarizing beam splitter 4, the transmitted light 7 becomes P-polarized light (polarization direction 9) and linearly polarized light, and the reflected light 8 becomes S-polarized light (polarization direction 10) linearly polarized light. The reflected light 8 is totally reflected by the right angle prisms 5 and 6, so that the polarization direction becomes polarization direction 1.
It changes like 1, 12. The reflected light 15 emitted from the right-angle prism 6 travels in the same direction as the transmitted light 7, and the polarization directions 13 and 14 are the same. Therefore, by combining the reflected light 15 and the transmitted light 7, the light utilization efficiency when converting the undefined polarized light from the light source 1 into linearly polarized light is equal to the combined reflected light 1.
I was able to increase it by 5.

第2図は本考案の第2の実施例を示す図であ
る。この偏光変換素子は、偏光ビームスプリツタ
24と、4個の直角プリズム25,26,27,
28とを図示のように貼り合わせたものである。
FIG. 2 is a diagram showing a second embodiment of the present invention. This polarization conversion element includes a polarization beam splitter 24, four right angle prisms 25, 26, 27,
28 are pasted together as shown in the figure.

このような構成の偏光変換素子において、第1
の実施例と同様にして得られた入射光21を偏光
ビームスプリツタ24に入射させると透過光22
はP−偏光(偏光方向29)の直線偏光、反射光
はS−偏光の直線偏光になる。反射光は、4個の
直角プリズム25,26,27,28で4回全反
射させることにより、それぞれ偏光方向が変化
し、直角プリズム28から出射された反射光23
の偏光方向は30で示す方向となる。反射光23
は、透過光22と同一の進行方向であり、かつ、
偏光方向29と30とは等しい。従つて、第1の
実施例と同様に、反射光23と透過光22を合成
することにより、光源からの不定偏光光を直線偏
光光に変換する際の光利用効率は合成した反射光
23の分だけ高めることができた。さらに第1の
実施例に比べて、透過光22と反射光23の光軸
間の距離を小さくすることができた。
In the polarization conversion element having such a configuration, the first
When the incident light 21 obtained in the same manner as in the embodiment is made to enter the polarizing beam splitter 24, the transmitted light 22
The reflected light becomes linearly polarized P-polarized light (polarization direction 29), and the reflected light becomes linearly polarized S-polarized light. The reflected light is totally reflected four times by the four right-angle prisms 25, 26, 27, and 28, so that the polarization direction changes, and the reflected light 23 is emitted from the right-angle prism 28.
The polarization direction of is the direction indicated by 30. reflected light 23
is the same traveling direction as the transmitted light 22, and
Polarization directions 29 and 30 are equal. Therefore, similarly to the first embodiment, by combining the reflected light 23 and the transmitted light 22, the light utilization efficiency when converting the undefined polarized light from the light source into linearly polarized light is the same as that of the combined reflected light 23. I was able to increase it by that amount. Furthermore, compared to the first embodiment, the distance between the optical axes of the transmitted light 22 and the reflected light 23 could be made smaller.

第3図は本考案の第3の実施例を示す図であ
る。本実施例は、偏光ビームスプリツタ34と、
4個の直角プリズム35,36,37,38とを
図示のように貼り合わせた、第2の実施例と同様
の構成のものに、さらに反射光33の出射面に、
くさび型プリズム39を貼り合わせ、かつ、偏光
度の良い直線偏向光を得るために光学系にシー
ト・ポラライザ42を挿入している。
FIG. 3 is a diagram showing a third embodiment of the present invention. In this embodiment, a polarizing beam splitter 34,
A structure similar to that of the second embodiment in which four right angle prisms 35, 36, 37, and 38 are bonded together as shown in the figure, and furthermore, on the output surface of the reflected light 33,
A wedge prism 39 is pasted together, and a sheet polarizer 42 is inserted into the optical system to obtain linearly polarized light with a good degree of polarization.

このような構成の偏光変換素子において、第1
の実施例と同様にして得られた入射光31を偏光
ビームスプリツタ34に入射させると透過光32
はP−偏光(偏光方向40)の直線偏光、反射光
はS−偏光の直線偏光になる。反射光は、4個の
直角プリズム35,36,37,38で4回全反
射させることにより、それぞれ偏光方向が変化
し、直角プリズム38からの反射光33は、くさ
び型プリズム39で光路を変えられ出射される。
反射光33の偏光方向は41で示す方向であり、
透過光32の偏光方向40と等しい。
In the polarization conversion element having such a configuration, the first
When the incident light 31 obtained in the same manner as in the embodiment is made to enter the polarizing beam splitter 34, the transmitted light 32
The reflected light becomes linearly polarized P-polarized light (polarization direction 40), and the reflected light becomes linearly polarized S-polarized light. The reflected light is totally reflected four times by the four right-angle prisms 35, 36, 37, and 38, so that the polarization direction changes, and the reflected light 33 from the right-angle prism 38 changes its optical path by the wedge-shaped prism 39. is emitted.
The polarization direction of the reflected light 33 is the direction indicated by 41,
It is equal to the polarization direction 40 of the transmitted light 32.

本実施例では、任意の位置で透過光32と反射
光33を合成することができ、また、シート・ポ
ラライザ42が光学系に挿入されているので、偏
光度の良い直線偏光光が得られた。
In this example, the transmitted light 32 and the reflected light 33 can be combined at any position, and since the sheet polarizer 42 is inserted into the optical system, linearly polarized light with a good degree of polarization can be obtained. .

なお、第3の実施例において、くさび型プリズ
ム39は反射光33の光路中だけでなく、透過光
32の光路中に挿入しても同様の効果が得られ
る。
In the third embodiment, the same effect can be obtained even if the wedge prism 39 is inserted not only in the optical path of the reflected light 33 but also in the optical path of the transmitted light 32.

第4図a,bは第3の実施例の効果を説明する
ための図である。第4図aはシート・ポラライザ
を単独で使用した場合の光利用効率を示し、40%
弱と低いものである。第4図bは第3の実施例の
偏光変換素子を用いた場合の光利用効率を示すレ
べルダイヤグラムである。プリズムの全反射を利
用しているため、光学系での損失は少なく、最後
にシート・ポラライザを挿入しても76%の光利用
効率が得られた。
FIGS. 4a and 4b are diagrams for explaining the effects of the third embodiment. Figure 4a shows the light utilization efficiency when the sheet polarizer is used alone, which is 40%.
weak and low. FIG. 4b is a level diagram showing the light utilization efficiency when the polarization conversion element of the third embodiment is used. Since total reflection of the prism is used, there is little loss in the optical system, and even with the insertion of a sheet polarizer at the end, a light utilization efficiency of 76% was achieved.

〔考案の効果〕[Effect of idea]

以上説明したように、本考案によれば、不定偏
光の光から直線偏光光を得る偏光変換素子におい
て、光源の光利用効率の高い偏光変換素子を得る
ことができた。
As explained above, according to the present invention, it was possible to obtain a polarization conversion element that obtains linearly polarized light from undefined polarized light and has high light utilization efficiency of a light source.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の第1の実施例を示す図、第2
図は本考案の第2の実施例を示す図、第3図は本
考案の第3の実施例を示す図、第4図a,bは第
3の実施例の効果を説明するための図、第5図は
本考案の原理を説明するための図である。 1……光源、2……コンデンサレンズ、3,2
1,31……入射光、4,28,38……偏光ビ
ームスプリツタ、5,6……直角プリズム、7,
22,32……透過光、9,10,11,12,
13,14……偏光方向、15,23,33……
反射光、42……シート・ポラライザ。
FIG. 1 is a diagram showing the first embodiment of the present invention, and FIG.
The figure shows a second embodiment of the present invention, Figure 3 shows a third embodiment of the present invention, and Figures 4a and b are diagrams for explaining the effects of the third embodiment. , FIG. 5 is a diagram for explaining the principle of the present invention. 1...Light source, 2...Condenser lens, 3,2
1, 31...Incoming light, 4,28,38...Polarizing beam splitter, 5,6...Right angle prism, 7,
22, 32... transmitted light, 9, 10, 11, 12,
13, 14... Polarization direction, 15, 23, 33...
Reflected light, 42...Sheet polarizer.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 光源からの不定偏光光を主にP−偏光成分の直
線偏光光とS−偏光成分の直線偏光光とに空間的
分離を行うための偏光ビームスプリツタと、前記
P−偏光成分の直線偏光光と前記S−偏光成分の
直線偏光光のどちらか一方の直線偏光光の偏光方
向と、もう一方の直線偏光光の偏光方向とが等し
くなるように、どちらか一方の偏光方向を90°回
転させ、2つの前記直線偏光光を合成する2個の
直角プリズムを含む少なくとも2個以上の直角プ
リズムとから構成されることを特徴とする偏光変
換素子。
a polarizing beam splitter for spatially separating undefined polarized light from a light source into linearly polarized light mainly having a P-polarized component and linearly polarized light having an S-polarized component; The polarization direction of one of the linearly polarized lights of the S-polarized light component is rotated by 90 degrees so that the polarization direction of one of the linearly polarized lights is equal to the polarization direction of the other linearly polarized light. , at least two or more right-angle prisms including two right-angle prisms that combine the two linearly polarized lights.
JP1987073013U 1987-05-18 1987-05-18 Expired - Lifetime JPH058562Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1987073013U JPH058562Y2 (en) 1987-05-18 1987-05-18

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1987073013U JPH058562Y2 (en) 1987-05-18 1987-05-18

Publications (2)

Publication Number Publication Date
JPS63187101U JPS63187101U (en) 1988-11-30
JPH058562Y2 true JPH058562Y2 (en) 1993-03-03

Family

ID=30916972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1987073013U Expired - Lifetime JPH058562Y2 (en) 1987-05-18 1987-05-18

Country Status (1)

Country Link
JP (1) JPH058562Y2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5975220A (en) * 1982-10-22 1984-04-27 Jeol Ltd Optical prism
JPS6190584A (en) * 1984-10-09 1986-05-08 Sony Corp Projection-type display device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5975220A (en) * 1982-10-22 1984-04-27 Jeol Ltd Optical prism
JPS6190584A (en) * 1984-10-09 1986-05-08 Sony Corp Projection-type display device

Also Published As

Publication number Publication date
JPS63187101U (en) 1988-11-30

Similar Documents

Publication Publication Date Title
US4913529A (en) Illumination system for an LCD display system
US5327270A (en) Polarizing beam splitter apparatus and light valve image projection system
JP2765471B2 (en) Projection type liquid crystal display
JP2913864B2 (en) Polarization conversion optical system, polarization beam splitter, and liquid crystal display device
US5245472A (en) High-efficiency, low-glare X-prism
JPH04230705A (en) Polarized light conversion device, polarized light illuminating device having this polarized light conversion device and projection type display device having polarized light illuminating device
JPH03132603A (en) Polarizer
WO2017198239A2 (en) Three-dimensional projection light modulation device capable of increasing light utilisation
JP3080693B2 (en) Polarizing beam splitter array
CN111158205B (en) Projector and projection system
WO2020113743A1 (en) Small integrated free space circulator
JP2830534B2 (en) Polarization conversion element
JP2861187B2 (en) Polarization conversion element for light source
JPH058562Y2 (en)
JPS63197913A (en) Polarization converting element
JP2859303B2 (en) Color liquid crystal display
JPH04267203A (en) Polarization converting element
JPH0526561Y2 (en)
Baur A new type of beam-splitting polarizer cube
JP2775103B2 (en) Polarizing prism
JPH02189504A (en) Polarized light converting element
JPH01201693A (en) Projection type liquid crystal display device
JP2002296544A (en) 3-port miniaturized optical circulator
CN217034502U (en) High light efficiency polarizing device
JPH02264904A (en) Light source for linearly polarized light