JPS6190584A - Projection-type display device - Google Patents

Projection-type display device

Info

Publication number
JPS6190584A
JPS6190584A JP59211843A JP21184384A JPS6190584A JP S6190584 A JPS6190584 A JP S6190584A JP 59211843 A JP59211843 A JP 59211843A JP 21184384 A JP21184384 A JP 21184384A JP S6190584 A JPS6190584 A JP S6190584A
Authority
JP
Japan
Prior art keywords
light
polarizing
line
component
beam splitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59211843A
Other languages
Japanese (ja)
Other versions
JP2580104B2 (en
Inventor
Masami Himuro
氷室 昌美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP59211843A priority Critical patent/JP2580104B2/en
Publication of JPS6190584A publication Critical patent/JPS6190584A/en
Application granted granted Critical
Publication of JP2580104B2 publication Critical patent/JP2580104B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To improve the utilization factor of light from a light source by converting one polarizing surface among an S polarizing component Lintegral and P polarizing component LP, both of which are obtained from a polarizing beam splitter, into the other polarizing surface with the use of a lambda/2 optical phase plate and setting their synthetic light beams to the illumination light of a light valve. CONSTITUTION:A total reflection prism 18 is disposed at the side where the P polarizing component of the polarizing beam splitter 7 is obtained through the reflection. The P polarizing component LP is reflected orthogonally against the total reflection prism 18 and projected in the same direction as the S polarizing component LS obtained by passing through the polarizing beam splitter 7. Light paths of the S polarizing component LS obtained in such a way and the S polarizing component LS* converted by the lambda/2 optical phase plate 19 are changed in each optical path, and synthesized so as to coincide at the prescribed position P0. The synthetic light of the S polarizing components LS and LS* is made flux having a narrow band-like flattening section extending in the horizontal direction with the aid of a semicylindrical lens 8, and supplied to a line right valve 10 as illumination light.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ライトバルブを使用した投射型ディスプレイ
装置に関する〇 〔従来の技術〕 投射型ディスプレイ装置として、第6図に示すようにラ
インライトバルブを使用した装置が提案されている。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a projection type display device using a light valve. [Prior Art] As a projection type display device, a line light valve as shown in FIG. A device using this has been proposed.

同図において、(1)は光源で発光部(2)及び反射器
(3)を有している。発光部(2)Kは、例えば中セノ
ンアークランプが用いられ、また反射器(3)は可視光
を反射し、熱線を通過せしめるものとされる。
In the figure, (1) is a light source which has a light emitting part (2) and a reflector (3). The light emitting unit (2) K is, for example, a medium senon arc lamp, and the reflector (3) is configured to reflect visible light and allow heat rays to pass through.

光源(1)からの光は、熱線を反射し、可視光を通過さ
せる熱線反射板(4)を通過してコンデンサレン、l”
 (5)に供給され、平行光束とされる。このコンデン
サレンズ(5)からの光は、絞り板(6)を通過して偏
光子を構成する偏光ビームスプリッタ(7)に供給され
、所定の偏光面を有する偏光、即ちS偏光Lsのみが通
過して得られる。この偏光ビームスプリッタ(7)から
の偏光は、カマボブ形レンズ(8)に供給され、水平方
向に伸びる細帯状の偏光断面を有した光束とされた後、
透明支持板(9)に支持されたラインライトバルブαQ
に照明光として供給される。このラインライトバルブα
0は、例えばPLZT電気光学セラミック材よりなり、
512光弁で形成され、カマ?コ形レンズ(8)より供
給される細帯状の偏平断面の光束に対して各光弁部分で
夫々所定角度だけ偏光面が回転させられる・ このラインライトバルブ(10で所定角度だけ偏光面が
回転させられた光は、縮小レンズα埠を通過し、垂直方
向に偏向走査せしめる可動ミラー(6)で光路変更され
た後、フィールドレンズ0を通過して検光子を構成する
偏光ビームスイリツタαゆに供給され、上述ラインライ
トバルブαQにおける偏光面の回転角度に対応した量だ
け通過させられる。
The light from the light source (1) passes through a heat ray reflection plate (4) that reflects heat rays and passes visible light, and then passes through a condenser lens, l"
(5) and is made into a parallel light beam. The light from this condenser lens (5) passes through an aperture plate (6) and is supplied to a polarizing beam splitter (7) that constitutes a polarizer, and only polarized light having a predetermined plane of polarization, that is, S-polarized light Ls passes through. It can be obtained by The polarized light from this polarizing beam splitter (7) is supplied to a kamabob-shaped lens (8), and after being made into a light beam having a strip-shaped polarization cross section extending in the horizontal direction,
Line light bulb αQ supported by transparent support plate (9)
is supplied as illumination light. This line light bulb α
0 is made of, for example, PLZT electro-optic ceramic material,
It is formed by 512 light valves, and is a kama? The plane of polarization is rotated by a predetermined angle in each light valve part for the light beam with a narrow strip-like flat cross section supplied from the U-shaped lens (8).The plane of polarization is rotated by a predetermined angle in this line light valve (10). The emitted light passes through the reduction lens α, has its optical path changed by the movable mirror (6) that deflects and scans in the vertical direction, and then passes through the field lens 0 and enters the polarizing beam switcher α that constitutes the analyzer. The light is supplied to the line light valve αQ and is allowed to pass by an amount corresponding to the rotation angle of the plane of polarization in the line light valve αQ.

この偏光ビームスプリッタα→からの光は、投射レンズ
α谷でスクリーン(図示せず)K投射される。
The light from the polarizing beam splitter α→ is projected onto a screen (not shown) K by the projection lens α valley.

また1、第6図において、aQは制御回路部で、その入
力端子(16a) Kは映像信号Sマが供給される。そ
して、ラインライトバルブαQの512光弁は、映像信
号Svの名水平期間内の512点のサンプル信号で順次
駆動され、夫々の光弁部分がその信号内容に応じた角度
だけの偏光面の回転を生ぜしめるように、映像信号Sv
の水平周期に同期して制御される。
1. In FIG. 6, aQ is a control circuit section, and its input terminal (16a) K is supplied with a video signal S. The 512 light valves of the line light valve αQ are sequentially driven by sample signals at 512 points within the horizontal period of the video signal Sv, and each light valve portion rotates the plane of polarization by an angle corresponding to the signal content. The video signal Sv
is controlled in synchronization with the horizontal period of

また、ミラー駆動部α乃が制御され、可動ミラー(2)
が映像信号SVの垂直周期に同期して偏向走査動作を行
なうようにされる。
In addition, the mirror drive unit α is controlled, and the movable mirror (2)
performs a deflection scanning operation in synchronization with the vertical period of the video signal SV.

以上の構成から、この第6図に示すディスプレイ装置に
よれば、スクリーン上に映像信号Svによる画像を得る
ことができる・ 〔発明が解決しようとする問題点〕 こ、の第6図に示すディスグレイ装置においては、光源
(1)からの光のうち、偏光ビームスプリッタ(7)を
通過して得られるS偏光成分L8のみ照明光として利用
され、光源(1)からの光のうちS偏光成分L8と直交
する偏光面を有するP偏光成分り、は偏光ビームスプリ
ッタ(7)で反射され、照明光として利用されていない
。従って、この第6図に示すディスプレイ装置によれば
、光源(1)からの光の利用率が50%以下と少ない欠
点があった。
From the above configuration, according to the display device shown in FIG. 6, an image based on the video signal Sv can be obtained on the screen. [Problems to be solved by the invention] The display device shown in FIG. In the gray device, of the light from the light source (1), only the S-polarized component L8 obtained by passing through the polarizing beam splitter (7) is used as illumination light, and the S-polarized component of the light from the light source (1) The P-polarized light component having a plane of polarization perpendicular to L8 is reflected by the polarizing beam splitter (7) and is not used as illumination light. Therefore, the display device shown in FIG. 6 has a disadvantage that the utilization rate of light from the light source (1) is as low as 50% or less.

そ・こて、本発明は光源からの光の利用率の改善を図る
ものである・ 〔問題点を解決するための手段〕 本発明は上述問題点を掌決するため、偏光ビームスプリ
ッタより得られるS偏光成分り、及びP偏  1構成分
り、の一方の偏光面を丁光学位相板を用いて他方の偏光
面に変換し、これらの合成光をライトバルブの照明光と
するものである。
Therefore, the present invention aims to improve the utilization efficiency of light from a light source. [Means for solving the problems] In order to solve the above-mentioned problems, the present invention aims to improve the utilization efficiency of light from a light source. One polarization plane of the S-polarized component and one P-polarized component is converted into the other polarization plane using an optical phase plate, and the combined light is used as illumination light for a light valve.

〔作用〕    5 偏光ビームスプリッタより得られるS偏光成分L8及び
P偏光成分LPの双方とも照明光として利用されるので
、光源からの光の利用率が改善される。
[Operation] 5. Since both the S-polarized light component L8 and the P-polarized light component LP obtained from the polarizing beam splitter are used as illumination light, the utilization rate of light from the light source is improved.

〔実施例〕〔Example〕

以下、第1図を参照しながら本発明の一実施例について
説明しよう。本例は、第6図に示すようなライイライト
バルブを使用したディスプレイ装置に適用しに例である
。この第1図において第6図と対応する部分には同一符
号を付し、その詳細説明は省略する。
Hereinafter, one embodiment of the present invention will be described with reference to FIG. This example is applied to a display device using a light bulb as shown in FIG. In FIG. 1, parts corresponding to those in FIG. 6 are designated by the same reference numerals, and detailed explanation thereof will be omitted.

第1図は、垂直方向より見た、図である。同図において
、偏光ビームスプリッタ(7)のP偏光成分が反射して
得られる側には全反射プリズムα→が配され、P偏光成
分t、pはこの全反射プリズム0峰で直角に反射して、
偏光ビームスプリッタ(7)を通過して得られる3偏構
成分L8と同一方向に耐用される。
FIG. 1 is a view seen from the vertical direction. In the figure, a total reflection prism α→ is arranged on the side of the polarization beam splitter (7) where the P polarization component is reflected, and the P polarization components t and p are reflected at right angles at the zero peak of this total reflection prism. hand,
It is used in the same direction as the three-polarized component L8 obtained by passing through the polarizing beam splitter (7).

λ まだ、全反射プリズムQ棒の射出側には丁光学位相板(
至)が配され、全反射グリズムα峰より射出されたP偏
光成分LPはこのま光学位相板(2)によりその偏光面
が90°回転され、S偏光成分L8に変換される。
λ There is still an optical phase plate (
), and the P-polarized light component LP emitted from the total reflection grism α peak has its polarization plane rotated by 90 degrees by the optical phase plate (2), and is converted into the S-polarized light component L8.

また、偏光ビームスプリッタ(7)及び主光学位相板(
2)の前面には夫々光路変更用のクサビ形レンズ(プリ
ズム)■及びQ力が配され、偏光ビームスゲλ リッタ(7)を通過して得られるS偏光成分L8及びI
光学位相板(2)で変換されたS偏光成分L:は夫々光
路変更され、所定位置P0で一致するように合成される
。   ゛ また、ラインライトバルブαQは、所矩位置P0より手
前に配され、さらに、このラインライトバルブ←Qの手
前にカマゴブ形レンズ(8)が配される。そして、S偏
光成分り、及びL8の合成光は、カマゴブ形レンズ(8
)で水平方向に伸びる細帯状の偏平断面を有した光束と
されて、ラインライトバルブu1に照明光として供給さ
れる・ また、本発明には直接関係しないが、本例において、制
御回路部0Qは、例えば、第2図に示すように構成され
る。この第2図において、第1図と対応する部分には同
一符号を付して示している。
In addition, a polarizing beam splitter (7) and a main optical phase plate (
2) are provided with a wedge-shaped lens (prism) for changing the optical path and a Q force, respectively, and the S polarized light components L8 and I obtained by passing through the polarizing beam
The S-polarized light components L: converted by the optical phase plate (2) have their respective optical paths changed and are combined so as to match at a predetermined position P0.゛Also, the line light valve αQ is disposed in front of the predetermined rectangular position P0, and furthermore, a kamagob-shaped lens (8) is disposed in front of this line light valve←Q. Then, the S-polarized component and the combined light of L8 are transmitted through a kamagob-shaped lens (8
) is converted into a light beam having a narrow strip-like flat cross section extending in the horizontal direction, and is supplied to the line light valve u1 as illumination light.Although not directly related to the present invention, in this example, the control circuit unit 0Q is configured, for example, as shown in FIG. In FIG. 2, parts corresponding to those in FIG. 1 are designated by the same reference numerals.

第2図において、入力端子(16a)に供給される映像
信号SVは映像増幅回路(イ)を介して同期分離回路に
)に供給される。この同期分離回路に)より得られる垂
直同期信号Pvは偏向制御回路(ハ)に供給され、この
偏向制御回路(ハ)によりミラー駆動部α力が制御され
、可動ミラー(1り(第6図参照)が映像信号SVの香
石周期に同期し七偏向走査動作を行なうようにされる。
In FIG. 2, the video signal SV supplied to the input terminal (16a) is supplied to the synchronization separation circuit via the video amplification circuit (A). The vertical synchronization signal Pv obtained by this synchronization separation circuit) is supplied to a deflection control circuit (c), which controls the mirror driving part α force, ) is configured to perform a seven-deflection scanning operation in synchronization with the incense period of the video signal SV.

また、同期分離回路−より得られる水平同期信号P、は
発振器(ハ)に基準信号として供給され、この発振器(
ハ)より例えば1024fa (fHは水平周波数)の
周波数信号が得られ、これがサンプルパルス発生器(ハ
)に供給される。そして、サングルパルス発生器(ハ)
には64の出力端子OH* (h r・・・064が設
けられ、これら夫々の出力端子01 + Ox *・・
・l064より、1水平期間(IH)を64期間に分割
した夫々の終りのタイミングのサンプルパルスSPI 
t SF3 s・・・。
In addition, the horizontal synchronization signal P obtained from the synchronization separation circuit is supplied to the oscillator (c) as a reference signal, and this oscillator (c)
From c), a frequency signal of, for example, 1024fa (fH is the horizontal frequency) is obtained, and this is supplied to the sample pulse generator (c). And a sangur pulse generator (c)
is provided with 64 output terminals OH* (hr...064, and these respective output terminals 01 + Ox *...
・From l064, sample pulse SPI at the timing of the end of each horizontal period (IH) divided into 64 periods
tSF3s...

5P64 (第3図Bに図示)が得られる。尚、第3図
Aは水平同期信号PRを示している。
5P64 (illustrated in FIG. 3B) is obtained. Incidentally, FIG. 3A shows the horizontal synchronization signal PR.

また、第2図において、映像増幅回路(イ)より得られ
る映像信号SVは、r補正回路勾、時間調整用の遅延回
路−を介して遅延線−に供給される。この遅延線−には
8個のタッグpt l PZ +・・・+P8が設けら
れ、タッグpsには映像信号Svの現在の信号が得られ
ると共に、タップP7 + Pg *・・・、pl[は
順次引了水平期間(512H)ずつ前の信号が得られる
。タラf PH+ P2+・・・+PBは夫々アンプ(
30t)。
Further, in FIG. 2, the video signal SV obtained from the video amplification circuit (a) is supplied to the delay line through the r correction circuit and the delay circuit for time adjustment. This delay line - is provided with eight tags pt l PZ +...+P8, and the current signal of the video signal Sv is obtained from the tag ps, and the taps P7 + Pg *..., pl[ are The signals of the previous completed horizontal period (512H) are sequentially obtained. Tara f PH+ P2+...+PB are respective amplifiers (
30t).

(302)、・・・、(30・)に接続され、これらア
ンプ(300(30z)−・・・、(30s)より得ら
れる信号は、夫々電界効果形トランジスタ(以下FET
という) Ts・T、1・・・+Tgのドレイン−ソー
スを介して、第4図に示すように512個の光弁4 +
 12 +・・・+ zstz  よりなるラインライ
トバルブα1の光弁zt # 4 +・・・l t。
(302), .
As shown in FIG. 4, 512 light valves 4 +
Light valve zt of line light valve α1 consisting of 12 +...+ zstz #4 +...lt.

の信号電極に供給される。また、アンプ(301) 。is supplied to the signal electrode. Also, an amplifier (301).

(30g) 、 = 、(30a)より得られる信号は
、夫々FETTs + TH)+・・・+ Ttaのド
レインーソースを介して光弁ze l 4o l・・・
、t16の信号電極に供給され、以   □下向様に7
 :/7″(301) 、C30z) 、・” 、 (
30g)より得られる信号は、順次ラインライトバルブ
四の8個の光弁の信号電極に供給される。
The signals obtained from (30g), =, (30a) are transmitted through the light valve ze l 4o l... through the drain-source of FETs + TH) +...+ Tta, respectively.
, is supplied to the signal electrode of t16, and then □7 in a downward direction.
:/7″(301), C30z),・”, (
The signals obtained from 30g) are sequentially supplied to the signal electrodes of the eight light valves of line light valve four.

また、サンプルパルス発生器(1)の出力端子01に得
られるサンプルパルスsp1は、FET Tl ? T
2 +・・・、T8のデートに供給され、これらFET
 Tl * T21・・・+T8はこのサンプルノ4ル
スSPiのタイミングでオンとされる。また、出力端子
02に得られるサンプルノ4ルスSP、は、FET T
g 1T1o l ”” r T16のペースに供給さ
れ、これらFET Tg r Tso y ”・e T
tsはこのサンプルノ4ルスSP2のタイミングでオン
とされ、以下同様に、出力端子03 r 04 +・・
・、o64に得られるサンプルパルスSP3 * SP
a +・・・l 5P64は、夫々8個単位のFETの
e−)に供給され、8個単位のFETは夫々サンプルパ
ルスSP3 ! SF3 *・・・。
Further, the sample pulse sp1 obtained at the output terminal 01 of the sample pulse generator (1) is generated by the FET Tl? T
2 +..., supplied to the date of T8, these FETs
Tl*T21...+T8 are turned on at the timing of this sample pulse SPi. In addition, the sample current SP obtained at the output terminal 02 is the FET T
g 1T1o l "" r T16 pace, these FETs Tg r Tso y "・e T
ts is turned on at the timing of this sample signal SP2, and the output terminals 03 r 04 +...
・Sample pulse SP3 * SP obtained at o64
a+...l 5P64 is supplied to e-) of each of the 8 FETs, and each of the 8 FETs receives a sample pulse SP3! SF3 *...

SF3.のタイミングでオンとされる。SF3. It is turned on at the timing of

従って、ラインライトバルブα0の光弁4 + Z2+
・・・l taの信号電極には、FET Tt r T
2 +・・・+Tsを夫々介して映像信号SVの各水平
期間信号のうち、水平同期信号PHからサンプルパルス
5Pttf(7)π水平期間(πH)に含まれる8つの
サンプル信号S2’ r S2 #・・・、S8が供給
される。また、ラインライトバルブαQの光弁4 p 
tlo +・・・、t16 の信号電極には、FET 
To * Tto * −a Ttsを夫々介して映像
信号Svの各水平期間信号のうち、サンプルパルスSP
lからSF3までのπ水平期間に含まれる8つのサンプ
ル信号so l sio l・・・、S16が供給され
、以下同様にしてラインライトバルブα0のi弁4y+
411 +・・・l ’!−511の信号電極にはサン
プル信号s17゜S18.・・・l 5stz が供給
される。そして、ラインライトバルブ(10の512個
の光弁zt l t2 * ・・・ts12は、夫々信
号81 * s、 e・・・t 5stz  で駆動さ
れる。
Therefore, light valve 4 + Z2+ of line light valve α0
...The signal electrode of l ta is FET Tt r T
2 +...+Ts, among the horizontal period signals of the video signal SV, the sample pulses 5Pttf (7) π of the horizontal period signals of the video signal SV are extracted from the horizontal synchronization signal PH to the eight sample signals S2' r S2 # included in the π horizontal period (πH), respectively. ..., S8 is supplied. In addition, light valve 4 p of line light valve αQ
tlo +..., t16 signal electrodes are equipped with FETs.
To * Tto * -a Sample pulse SP of each horizontal period signal of the video signal Sv through Tts, respectively.
Eight sample signals so l sio l..., S16 included in the π horizontal period from l to SF3 are supplied, and thereafter in the same manner, the i valve 4y+ of the line light valve α0
411 +...l'! The sample signal s17°S18. ...l 5stz is supplied. The line light valves (10 512 light valves zt l t2 *...ts12 are driven by signals 81*s, e...t 5stz, respectively).

制御回路部aQをこのように構成するものによれば、ラ
インライトバルブ<10の各光弁zt l 12 * 
”・。
According to the control circuit unit aQ configured in this way, each light valve zt l 12 * of line light valve<10
”・.

ts1!の信号電極への信号を8個ずつ並列サンプリン
グするので、順次サンプリング方式に比ベサンプリング
周波数を低くでき、例えばシフトレジスタより構成され
るサングルパルス発生器(ハ)ノシフトレジスタ段数を
著しく低減でき、部品点数及び消費電力を大幅に少なく
することができる。また、タラ7°PI r PZ *
・・・、P8 を利用してデジタル信号(1,01を順
次供給し、ラインライトバルブuQの各光弁4 + t
2 *・・・11611  をデジタル信号で駆動する
ことも容易に可能となる。
ts1! Since eight signals to the signal electrodes are sampled in parallel, the sampling frequency can be lowered compared to the sequential sampling method, and for example, the number of shift register stages of the sample pulse generator (c) consisting of shift registers can be significantly reduced. The number of parts and power consumption can be significantly reduced. Also, Tara 7°PI r PZ *
..., P8 is used to sequentially supply digital signals (1, 01) to each light valve 4 + t of the line light valve uQ.
2*...11611 can be easily driven with a digital signal.

第1図に示すように構成された本例によれば、偏光ビー
ムスプリッタより得られるS偏光成分り。
According to this example configured as shown in FIG. 1, the S-polarized light component obtained from the polarizing beam splitter.

及びP偏、光成分LPの双方ともラインライトバルブO
Qの照明光として利用されるので、光源(1)からの光
の利用率が改善される。また、本例のように、ラインラ
イトバルブα0を所定位置P0より手前に配することに
より、縦横比の極端に大きいラインライトバルブα0の
照明をS偏光成分L8及びLs*の共働でカバーするこ
とになり、原照明径を小さくでき、従って偏光ビームス
プリッタ(7)等に寸法の小さなものを利用でき、安価
に構成できる利益がある。また、本例の場合、S偏光成
分Ls及びLs*は内屈折条件となるので、クサビ形し
ンズ翰、(ハ)の設定により、所定位置P0を縮小レン
ズ(Ill(第6図参照)の入射瞳中心に設定すること
により、フィールドレンズ効果を持たせることができ有
効である。
Both P polarization and light component LP are line light valves O.
Since it is used as the illumination light of Q, the utilization rate of the light from the light source (1) is improved. Furthermore, as in this example, by arranging the line light valve α0 in front of the predetermined position P0, the illumination of the line light valve α0, which has an extremely large aspect ratio, is covered by the cooperation of the S-polarized light components L8 and Ls*. Therefore, the diameter of the original illumination can be made small, and therefore, a polarizing beam splitter (7) etc. with small dimensions can be used, and there is an advantage that it can be constructed at a low cost. In addition, in the case of this example, since the S-polarized components Ls and Ls* are subject to internal refraction, by setting the wedge-shaped lens (c), the predetermined position P0 is moved to the reduction lens (Ill (see Figure 6)). By setting it at the center of the entrance pupil, it is effective to have a field lens effect.

次に、第5図は本発明の他の実施例を示すものであり、
第1図と対応する部分には同一符号を付し、その詳細説
明は省略する。
Next, FIG. 5 shows another embodiment of the present invention,
Components corresponding to those in FIG. 1 are designated by the same reference numerals, and detailed explanation thereof will be omitted.

第5図例においては、クサビ形しンズ翰及びぐηλ の手前に丁光学位相板0壇が配され、偏光ビームスプリ
ッタ(7)を通過して得られるS偏光成分LH及びこの
区光学位相板0揮よりその偏光面が45°回転される。
In the example shown in FIG. 5, an optical phase plate 0 is arranged in front of the wedge-shaped lens ηλ, and the S-polarized light component LH obtained by passing through the polarizing beam splitter (7) and the optical phase plate in this area are The plane of polarization is rotated by 45 degrees from zero.

その他は、第1図例と同様に構成される。The rest of the structure is the same as the example shown in FIG.

この第5図例のようにS偏光成分L8及びり、の偏光面
を45°回転させることにより、これらの偏光面がライ
ンライトバルブα0の各光弁の印加電界と45°の角度
をなすようになるので、ラインライトバルブα1におい
て最大偏光感度を得ることができる。
By rotating the polarization planes of the S-polarized light components L8 and L8 by 45 degrees as shown in the example in Fig. 5, these polarization planes form an angle of 45 degrees with the electric field applied to each light valve of the line light valve α0. Therefore, the maximum polarization sensitivity can be obtained in the line light valve α1.

尚、上述実施例においては、ラインライトバルブαQを
光が通過する透過型のものを示したが、ラインライトバ
ルブより光が反射される反射型のものにも同様に適用す
ることができる。また、上述与 実施例においては、ラインライトバルブαQを使用した
ものであるが、二次元のライトバルブを用いるものにも
、同様に適用することができる。また上述実施例におい
ては、偏光ビームスプリッタ(7)より得られるP偏光
成分LPの偏光面を90°回転させ、S偏光成分の合成
光としたものであるが、この逆に偏光ビームスプリッタ
(7)より得られるS偏光成分L8の偏光面を90°回
転させ、P偏光成分の合成光として利用することも考え
られる。さらに上述実施例において、全反射プリズムα
→の代りにミラーを用いてもよい。
In the above-mentioned embodiments, a transmissive type light valve in which light passes through the line light valve αQ is shown, but it can be similarly applied to a reflective type in which light is reflected from the line light valve αQ. Further, although the above-mentioned embodiment uses a line light valve αQ, the present invention can be similarly applied to those using a two-dimensional light valve. Further, in the above embodiment, the polarization plane of the P-polarized light component LP obtained from the polarized beam splitter (7) is rotated by 90 degrees to form a composite light of the S-polarized light component. ) It is also possible to rotate the polarization plane of the S-polarized light component L8 obtained by 90 degrees and use it as a composite light of the P-polarized light component. Furthermore, in the above embodiment, the total reflection prism α
A mirror may be used instead of →.

〔発明の効果〕〔Effect of the invention〕

以上述べた本発明によれば、偏光ビームスプリッタより
得られるS偏光成分L8及びP偏光成分LPの双方とも
ライトバルブの照明光として利用されるので、光源の光
の利用率が改善される。従って、従来と同じ光源を用い
るとすれば、スクリーン上に一層高輝度の画像を得るこ
とができる0
According to the present invention described above, since both the S-polarized light component L8 and the P-polarized light component LP obtained from the polarizing beam splitter are used as illumination light for the light valve, the utilization rate of light from the light source is improved. Therefore, if the same light source as before is used, it is possible to obtain an even higher brightness image on the screen.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す構成図、第2図は制御
回路部の具体構成図、第3図及び第4図は夫々その説明
のための図、第5図は本発明の他の実施例を示す構成図
、第6図は従来例を示す構成図である@ (1)は光源、(7)は偏光ビームスプリッタ、(8)
はカマ?コ形レンズ、<11はラインライトバルブ、α
υは全反射!リズム、(至)及び0ηは夫々了光学位相
板、翰及びぐ■は夫々クサビ形レンズである。 手続補正書 昭和59年 特 許 願 第211843号3、補正を
する者 事件との関係   特許出願人 住 所 東京部品用区北品用6丁目7番35号名称(2
18)ソニー株式会社 代表取締役 大 賀 典 雄 4、代理人 住 所 東京都新宿区西新宿1丁目8番1号置 03−
343−5821tl切 (新宿ビル)6、補正にjり
増加する発明の数              1(1
)  明細書中、第2頁11頁、第4頁7行、8行、第
5頁19行、第6頁3行、7行、8行、14行、第11
頁10行、14行、第12頁4行、5行、8行、第13
頁3行及び4行rsJとあるをrPJに夫夫訂正する。 (2)  同、第2頁11行、第4頁7行1.8行、第
5頁19行、第6頁7行、14行、第11頁10行、1
4行、第12頁4行、8行及び第12頁4行rLs J
とあるをrt、p Jに夫々訂正する。 (3)  −同、第2頁20行「所定角度」の前に「映
像信号に対応、して」を加入する。 (4)  同、第4頁9行、第5頁15行、17行、第
6頁2行、第13頁2行及び5行r’P’Jとあるをr
SJに夫々訂正する。 (5)同、第4頁9行、第5頁17行、第6頁2行及び
第13頁2行rL、pJとあるをrLsJに夫々訂正す
る。 (6)同、第4頁lO行「反射され」とあるを「45゜
反射され」に訂正する。 (7)同、第6頁3行、8行、14行、第11頁10行
、14行、第12頁5行及び8行rLs”Jとあるをr
Lp町に夫々訂正する。 (8)図面中、第1図、第6図及び第6図を夫々別紙の
通り訂正する。 以上
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a specific block diagram of a control circuit section, FIGS. 3 and 4 are diagrams for explaining the same, and FIG. A block diagram showing another embodiment, and FIG. 6 is a block diagram showing a conventional example. (1) is a light source, (7) is a polarizing beam splitter, (8)
Kama? U-shaped lens, <11 is line light bulb, α
υ is total reflection! Rhythm, (to) and 0η are respectively optical phase plates, and cylindrical lenses and 0η are wedge-shaped lenses, respectively. Procedural amendment written in 1982 Patent Application No. 211843 3, Relationship with the case of the person making the amendment Patent applicant address 6-7-35, Kitashinyo, Tokyo Parts Co., Ltd. Name (2)
18) Sony Corporation Representative Director Norio Ohga 4, Agent Address: 1-8-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 03-
343-5821tl cut (Shinjuku Building) 6. Number of inventions increasing due to correction 1 (1
) In the specification, page 2, page 11, page 4, line 7, line 8, page 5, line 19, page 6, line 3, line 7, line 8, line 14, line 11
Page 10, line 14, page 12, line 4, line 5, line 8, page 13
Page 3 and 4 lines rsJ are corrected to rPJ. (2) Same, page 2, line 11, page 4, line 7, line 1.8, page 5, line 19, page 6, line 7, line 14, page 11, line 10, 1
Line 4, page 12, line 4, line 8 and page 12, line 4 rLs J
Correct the text to rt and p J. (3) - Add "corresponding to the video signal" before "predetermined angle" on page 2, line 20. (4) Same, page 4 line 9, page 5 lines 15 and 17, page 6 line 2, page 13 line 2 and 5 r'P'J
Correct each to SJ. (5) In the same document, the words rL and pJ are corrected to rLsJ in line 9 on page 4, line 17 on page 5, line 2 on page 6, and line 2 on page 13. (6) Same, page 4, line 10, "reflected" is corrected to "reflected at 45 degrees." (7) Same, page 6 lines 3, 8, and 14, page 11 lines 10 and 14, page 12 lines 5 and 8 r
Correct each to Lp town. (8) In the drawings, Figures 1, 6, and 6 are corrected as shown in the attached sheets. that's all

Claims (1)

【特許請求の範囲】[Claims] ライトバルブを使用した投射型ディスプレイ装置におい
て、光源からの光を偏光ビームスプリッタに供給して第
1のS偏光成分及び第1のP偏光成分を得ると共に、上
記第1のS偏光成分または第1のP偏光成分をλ/2光
学位相板により第2のP偏光成分または第2のS偏光成
分に変換し、上記第1及び第2のS偏光成分の合成光ま
たは上記第1及び第2のP偏光成分の合成光を上記ライ
トバルブの照明光とすることを特徴とする投射型ディス
プレイ装置。
In a projection display device using a light valve, light from a light source is supplied to a polarizing beam splitter to obtain a first S-polarized light component and a first P-polarized light component, and the first S-polarized light component or the first P-polarized light component is The P-polarized light component of is converted into a second P-polarized light component or a second S-polarized light component by a λ/2 optical phase plate, and a composite light of the first and second S-polarized light components or a composite light of the first and second S-polarized light components is generated. A projection type display device characterized in that the combined light of the P-polarized light component is used as the illumination light of the light valve.
JP59211843A 1984-10-09 1984-10-09 Projection type display device Expired - Fee Related JP2580104B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59211843A JP2580104B2 (en) 1984-10-09 1984-10-09 Projection type display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59211843A JP2580104B2 (en) 1984-10-09 1984-10-09 Projection type display device

Publications (2)

Publication Number Publication Date
JPS6190584A true JPS6190584A (en) 1986-05-08
JP2580104B2 JP2580104B2 (en) 1997-02-12

Family

ID=16612504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59211843A Expired - Fee Related JP2580104B2 (en) 1984-10-09 1984-10-09 Projection type display device

Country Status (1)

Country Link
JP (1) JP2580104B2 (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63121821A (en) * 1986-11-12 1988-05-25 Hitachi Ltd Liquid crystal display device
JPS63197913A (en) * 1987-02-13 1988-08-16 Nec Corp Polarization converting element
JPS63271313A (en) * 1987-04-30 1988-11-09 Nikon Corp Polarizing device
JPS63187101U (en) * 1987-05-18 1988-11-30
EP0418084A2 (en) * 1989-09-14 1991-03-20 Sony Corporation Laser beam deflection apparatus
EP0443586A2 (en) * 1990-02-22 1991-08-28 Canon Kabushiki Kaisha Projector
EP0470369A2 (en) * 1990-08-08 1992-02-12 GRUNDIG E.M.V. Elektro-Mechanische Versuchsanstalt Max Grundig holländ. Stiftung & Co. KG. Projecting unit for large picture projection
FR2669127A1 (en) * 1990-11-09 1992-05-15 Thomson Csf TWO-BEAM POLARIZED IMAGE PROJECTOR BY MATRIX SCREEN.
EP0518111A1 (en) * 1991-05-29 1992-12-16 Matsushita Electric Industrial Co., Ltd. Projection image display system
US5267029A (en) * 1989-12-28 1993-11-30 Katsumi Kurematsu Image projector
US5298986A (en) * 1987-01-27 1994-03-29 Canon Kabushiki Kaisha Video projection apparatus
US5381278A (en) * 1991-05-07 1995-01-10 Canon Kabushiki Kaisha Polarization conversion unit, polarization illumination apparatus provided with the unit, and projector provided with the apparatus
US5387953A (en) * 1990-12-27 1995-02-07 Canon Kabushiki Kaisha Polarization illumination device and projector having the same
US5446510A (en) * 1989-12-20 1995-08-29 Canon Kabushiki Kaisha Image display apparatus
US5566367A (en) * 1991-04-09 1996-10-15 Canon Kabushiki Kaisha Plate-like polarizing element, a polarizing conversion unit provided with the element, and a projector provided with the unit
US5570209A (en) * 1990-09-18 1996-10-29 Mitsubishi Denki Kabushiki Kaisha Color projection type display apparatus having three liquid crystal displays of same structure
US5590942A (en) * 1992-09-11 1997-01-07 Canon Kabushiki Kaisha Polarizing conversion unit, illuminating device and projector using them
WO1997034173A1 (en) * 1996-03-12 1997-09-18 Seiko Epson Corporation Polarized light separator, method of manufacturing the same, and projection display
JPH09274449A (en) * 1997-01-20 1997-10-21 Seiko Epson Corp Projection type display device
US5729306A (en) * 1994-09-30 1998-03-17 Sharp Kabushiki Kaisha Light splitting and synthesizing device and liquid crystal display apparatus including the same
US5751480A (en) * 1991-04-09 1998-05-12 Canon Kabushiki Kaisha Plate-like polarizing element, a polarizing conversion unit provided with the element, and a projector provided with the unit
EP0848274A1 (en) * 1996-06-25 1998-06-17 Seiko Epson Corporation Polarization conversion element, polarization illuminator, display using the same illuminator, and projection type display
US5926316A (en) * 1992-03-25 1999-07-20 Canon Kabushiki Kaisha Projection lens system
US6139157A (en) * 1997-02-19 2000-10-31 Canon Kabushiki Kaisha Illuminating apparatus and projecting apparatus
US6147802A (en) * 1994-12-28 2000-11-14 Seiko Epson Corporation Polarization luminaire and projection display
US6206532B1 (en) 1996-10-17 2001-03-27 New Exciting Designs Limited High efficiency light source projection apparatus
US6257726B1 (en) 1997-02-13 2001-07-10 Canon Kabushiki Kaisha Illuminating apparatus and projecting apparatus
WO2003052487A3 (en) * 2001-12-19 2003-10-23 Koninkl Philips Electronics Nv Polarization conversion method for liquid crystal displays
EP1436545A1 (en) * 2001-10-19 2004-07-14 3M Innovative Properties Company Illumination polarization conversion system
US6882476B2 (en) 1992-06-11 2005-04-19 Au Optronics, Inc. High efficiency electromagnetic beam projector, and systems and methods for implementation thereof
JP2010506199A (en) * 2006-09-29 2010-02-25 リアル・ディ Polarization conversion system for stereoscopic projection
JP2012185480A (en) * 2011-02-17 2012-09-27 Nikon Corp Illumination optical system and projector device
CN102809830A (en) * 2012-08-30 2012-12-05 武汉光迅科技股份有限公司 Polarization beam splitter with optical path difference compensation structure
JP2016173574A (en) * 2006-10-18 2016-09-29 リアルディー インコーポレイテッドRealD Inc. Combining p and s rays for bright stereoscopic projection

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2830534B2 (en) 1991-09-18 1998-12-02 日本電気株式会社 Polarization conversion element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58117534A (en) * 1981-12-28 1983-07-13 ヒューズ・エアクラフト・カンパニー Projector
JPS59127019A (en) * 1983-01-11 1984-07-21 Canon Inc Printer head

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58117534A (en) * 1981-12-28 1983-07-13 ヒューズ・エアクラフト・カンパニー Projector
JPS59127019A (en) * 1983-01-11 1984-07-21 Canon Inc Printer head

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63121821A (en) * 1986-11-12 1988-05-25 Hitachi Ltd Liquid crystal display device
US5298986A (en) * 1987-01-27 1994-03-29 Canon Kabushiki Kaisha Video projection apparatus
JPS63197913A (en) * 1987-02-13 1988-08-16 Nec Corp Polarization converting element
JPS63271313A (en) * 1987-04-30 1988-11-09 Nikon Corp Polarizing device
JPH058562Y2 (en) * 1987-05-18 1993-03-03
JPS63187101U (en) * 1987-05-18 1988-11-30
EP0418084A2 (en) * 1989-09-14 1991-03-20 Sony Corporation Laser beam deflection apparatus
US5446510A (en) * 1989-12-20 1995-08-29 Canon Kabushiki Kaisha Image display apparatus
US5267029A (en) * 1989-12-28 1993-11-30 Katsumi Kurematsu Image projector
EP0443586A2 (en) * 1990-02-22 1991-08-28 Canon Kabushiki Kaisha Projector
EP0470369A3 (en) * 1990-08-08 1992-09-02 Grundig E.M.V. Elektro-Mechanische Versuchsanstalt Max Grundig Hollaend. Stiftung & Co. Kg. Projecting unit for large picture projection
EP0470588A3 (en) * 1990-08-08 1992-09-02 Grundig E.M.V. Elektro-Mechanische Versuchsanstalt Max Grundig Hollaend. Stiftung & Co. Kg. Projecting unit for large picture projection
EP0470588A2 (en) * 1990-08-08 1992-02-12 GRUNDIG E.M.V. Elektro-Mechanische Versuchsanstalt Max Grundig holländ. Stiftung & Co. KG. Projecting unit for large picture projection
EP0470369A2 (en) * 1990-08-08 1992-02-12 GRUNDIG E.M.V. Elektro-Mechanische Versuchsanstalt Max Grundig holländ. Stiftung & Co. KG. Projecting unit for large picture projection
US5691785A (en) * 1990-09-18 1997-11-25 Mitsubishi Denki Kabushiki Kaisha Color projection type display apparatus having three liquid displays of same structure
US5570209A (en) * 1990-09-18 1996-10-29 Mitsubishi Denki Kabushiki Kaisha Color projection type display apparatus having three liquid crystal displays of same structure
FR2669127A1 (en) * 1990-11-09 1992-05-15 Thomson Csf TWO-BEAM POLARIZED IMAGE PROJECTOR BY MATRIX SCREEN.
US5387953A (en) * 1990-12-27 1995-02-07 Canon Kabushiki Kaisha Polarization illumination device and projector having the same
US5566367A (en) * 1991-04-09 1996-10-15 Canon Kabushiki Kaisha Plate-like polarizing element, a polarizing conversion unit provided with the element, and a projector provided with the unit
US6229646B1 (en) 1991-04-09 2001-05-08 Canon Kabushiki Kaisha Plate-like polarizing element, a polarizing conversion unit provided with the element, and a projector provided with the unit
US5751480A (en) * 1991-04-09 1998-05-12 Canon Kabushiki Kaisha Plate-like polarizing element, a polarizing conversion unit provided with the element, and a projector provided with the unit
US5381278A (en) * 1991-05-07 1995-01-10 Canon Kabushiki Kaisha Polarization conversion unit, polarization illumination apparatus provided with the unit, and projector provided with the apparatus
US5513035A (en) * 1991-05-29 1996-04-30 Matsushita Electric Industrial Co., Ltd. Infrared polarizer
US5357370A (en) * 1991-05-29 1994-10-18 Matsushita Electric Industrial Co., Ltd. Polarizer and light valve image projector having the polarizer
EP0518111A1 (en) * 1991-05-29 1992-12-16 Matsushita Electric Industrial Co., Ltd. Projection image display system
US5926316A (en) * 1992-03-25 1999-07-20 Canon Kabushiki Kaisha Projection lens system
US6882476B2 (en) 1992-06-11 2005-04-19 Au Optronics, Inc. High efficiency electromagnetic beam projector, and systems and methods for implementation thereof
US7295371B1 (en) 1992-06-11 2007-11-13 Au Optronics Corp. High efficiency electromagnetic beam projector, and systems and methods for implementation thereof
US7102822B2 (en) * 1992-06-11 2006-09-05 Au Optronics, Inc. High efficiency electromagnetic beam projector, and systems and methods for implementation thereof
US7081997B2 (en) 1992-06-11 2006-07-25 Au Optronics Corporation High efficiency electromagnetic beam projector, and systems and methods for implementation thereof
US6943949B2 (en) 1992-06-11 2005-09-13 Au Optronics High efficiency electromagnetic beam projector, and systems and methods for implementation thereof
US5590942A (en) * 1992-09-11 1997-01-07 Canon Kabushiki Kaisha Polarizing conversion unit, illuminating device and projector using them
US5729306A (en) * 1994-09-30 1998-03-17 Sharp Kabushiki Kaisha Light splitting and synthesizing device and liquid crystal display apparatus including the same
US6667834B2 (en) 1994-12-28 2003-12-23 Seiko Epson Corporation Polarization luminaire and projection display
US7119957B2 (en) 1994-12-28 2006-10-10 Seiko Epson Corporation Polarization luminaire and projection display
US6310723B1 (en) 1994-12-28 2001-10-30 Seiko Epson Corporation Polarization luminaire and projection display
US6344927B1 (en) 1994-12-28 2002-02-05 Seiko Epson Corporation Polarization luminaire and projection display
US6147802A (en) * 1994-12-28 2000-11-14 Seiko Epson Corporation Polarization luminaire and projection display
US6411438B1 (en) 1994-12-28 2002-06-25 Seiko Epson Corporation Polarization luminaire and projection display
US6445500B1 (en) 1994-12-28 2002-09-03 Seiko Epson Corporation Polarization luminaire and projection display
WO1997034173A1 (en) * 1996-03-12 1997-09-18 Seiko Epson Corporation Polarized light separator, method of manufacturing the same, and projection display
JP2009134319A (en) * 1996-06-25 2009-06-18 Seiko Epson Corp Polarization conversion element, polarization illuminator, display apparatus using the same and projection type display
USRE39951E1 (en) 1996-06-25 2007-12-25 Seiko Epson Corporation Polarization conversion element, polarization illuminator, display using the same illuminator, and projector
EP0848274A1 (en) * 1996-06-25 1998-06-17 Seiko Epson Corporation Polarization conversion element, polarization illuminator, display using the same illuminator, and projection type display
EP0848274A4 (en) * 1996-06-25 1999-09-22 Seiko Epson Corp Polarization conversion element, polarization illuminator, display using the same illuminator, and projection type display
US6206532B1 (en) 1996-10-17 2001-03-27 New Exciting Designs Limited High efficiency light source projection apparatus
JPH09274449A (en) * 1997-01-20 1997-10-21 Seiko Epson Corp Projection type display device
US6406149B2 (en) 1997-02-13 2002-06-18 Canon Kabushiki Kaisha Illuminating apparatus and projecting apparatus
US6257726B1 (en) 1997-02-13 2001-07-10 Canon Kabushiki Kaisha Illuminating apparatus and projecting apparatus
US6139157A (en) * 1997-02-19 2000-10-31 Canon Kabushiki Kaisha Illuminating apparatus and projecting apparatus
EP1436545A4 (en) * 2001-10-19 2007-10-03 3M Innovative Properties Co Illumination polarization conversion system
EP1436545A1 (en) * 2001-10-19 2004-07-14 3M Innovative Properties Company Illumination polarization conversion system
WO2003052487A3 (en) * 2001-12-19 2003-10-23 Koninkl Philips Electronics Nv Polarization conversion method for liquid crystal displays
JP2010506199A (en) * 2006-09-29 2010-02-25 リアル・ディ Polarization conversion system for stereoscopic projection
JP2016173574A (en) * 2006-10-18 2016-09-29 リアルディー インコーポレイテッドRealD Inc. Combining p and s rays for bright stereoscopic projection
EP2074479B1 (en) * 2006-10-18 2017-12-06 RealD Inc. Combining p and s rays for bright stereoscopic projection
JP2012185480A (en) * 2011-02-17 2012-09-27 Nikon Corp Illumination optical system and projector device
US8746892B2 (en) 2011-02-17 2014-06-10 Nikon Corporation Illuminating optical system and projector device
CN102809830A (en) * 2012-08-30 2012-12-05 武汉光迅科技股份有限公司 Polarization beam splitter with optical path difference compensation structure

Also Published As

Publication number Publication date
JP2580104B2 (en) 1997-02-12

Similar Documents

Publication Publication Date Title
JPS6190584A (en) Projection-type display device
US6870581B2 (en) Single panel color video projection display using reflective banded color falling-raster illumination
US6839095B2 (en) Single-path color video projection systems employing reflective liquid crystal display devices
JP3570936B2 (en) Polarization converter and projection display system
TW556039B (en) Image display system
US5898521A (en) LCD Projector
JPH01502139A (en) Color continuous illumination system for LCD light valves
JP2000081603A (en) Projection display system for reflection type light valve
KR20000071356A (en) Polarization conversion system, illumination system, and projector
US5833338A (en) Projector
JP2001515609A (en) Multi color band light source
JPH061303B2 (en) Polarized illumination device
JP3269362B2 (en) LCD projector
KR100707552B1 (en) Projector
US6604827B2 (en) Efficient arc lamp illuminator for projection system
JP2003233032A (en) Projection liquid crystal display device
JP2001042432A (en) Optical system for illumination
JP2000330197A (en) Liquid crystal projector device
JPH046516A (en) Light source unit
JP2691784B2 (en) Projection display device
JPH10260313A (en) Light source unit for reflection type polarizing and modulating element
JP2001242545A (en) Light source with reflector, illumination optical system using the light source and projection type display using the optical system
JPH0915534A (en) Polarization splitting and synthesizing device and liquid crystal display device
JPH1062715A (en) Liquid crystal projection device
JPH1144864A (en) Illumination optical system for liquid crystal display device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees