JPH0585576B2 - - Google Patents

Info

Publication number
JPH0585576B2
JPH0585576B2 JP61285995A JP28599586A JPH0585576B2 JP H0585576 B2 JPH0585576 B2 JP H0585576B2 JP 61285995 A JP61285995 A JP 61285995A JP 28599586 A JP28599586 A JP 28599586A JP H0585576 B2 JPH0585576 B2 JP H0585576B2
Authority
JP
Japan
Prior art keywords
membrane
solvent
filtration
microporous membrane
liquid film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61285995A
Other languages
Japanese (ja)
Other versions
JPS63139929A (en
Inventor
Jun Sasaki
Kyoichi Naruo
Masahiro Eto
Yukio Shinagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP61285995A priority Critical patent/JPS63139929A/en
Publication of JPS63139929A publication Critical patent/JPS63139929A/en
Publication of JPH0585576B2 publication Critical patent/JPH0585576B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0013Casting processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0016Coagulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/16Swelling agents

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は微孔性膜の製造方法に関するものであ
り、特に製薬工業における薬剤、食品工業におけ
るアルコール飲料等の濾過、及び前記製造工業及
び半導体製造工業を初めとする微細な加工を行う
電子工業分野、原子力工業、さらに諸工業の実験
室等において使用される超純水製造のための精製
水、純水等の濾過、その他の精密濾過に用いら
れ、10μm以下特に1μm以下サブミクロンオーダ
ーの微粒子や微生物を効率よく濾過する精密濾過
用微孔性膜の製造方法に関するものである。 〔従来の技術〕 従来製薬工業、食品工業、電子工業、原子力工
業分野において水系、非水系の0.1〜5μm程度の
微粒子除去、菌除去などに用いられる精密濾過用
微孔性膜およびその製造方法に関してはセルロー
スエステル、脂肪族ポリアミド、ポリフルオロカ
ーボン、ポリスルホン、ポリプロピレン等を原料
とするものが開示されている(例えば特公昭48−
40050号、特開昭58−37842号、特開昭58−91732
号、特開昭56−154051号各公報参照)。 このような微孔性膜は、その内部に存在する微
孔の孔径が膜厚方向に実質的に変化せず、膜の両
表面の孔径が実質的に変わらない所謂対称膜と、
膜厚方向に孔径が連続的または不連続的に変化
し、膜の一方の表面の孔径と他方の表面の孔径と
が異なつている所謂非対称膜と呼ばれる構造を有
するものとに分類される。 これらのうち対称膜は、特開昭58−98015号に
記述されているが、濾過にあたつて膜全体が流体
の流れに対して大きな抵抗を示し、小さな流速し
か得られない(即ち、単位面積当たり、単位時間
当たり単位差圧当たり小さな流量しか得られな
い)上、目詰まりがしやすく濾過寿命が短い、耐
ブロツキング性がない等の欠点があつた。 一方非対称膜は特公昭55−6406号、特開昭56−
154051号に記載されている如く緻密層と呼ばれる
孔径の小さい層を膜の片方の表面にもち、比較的
大きい穴をもう一方の下表面にもつたものであ
る。実質的には濾過除去されうる最小の微粒子は
この緻密層で補足されるというように、膜の厚み
をすべて有効に濾材として活用することができる
ので、注意深く使用する場合には、濾過流量を増
加せしめることも膜の寿命を延ばすことも可能で
あり、この意味で優れた微孔性膜である。 〔発明が解決しようとする問題点〕 しかしながら、この場合には緻密層が極めて重
要であるにもかかわらず従来、この緻密層が表面
にあるために擦過その他で傷がつきやすく、微粒
子の漏洩をきたし易いという欠点があつた。 かかる欠点を補うために、緻密層即ち孔径の小
さな層が濾過膜内部に存在する構造が望まれ、特
開昭58−150402号には非対称膜を2枚緻密層同士
を密着し重ね合わせる不連続な構造が提案されて
いる。しかしながら、このように2枚の非対称膜
を重ねる濾過系では、ひだ折りにしてカートリツ
ジに収めた場合には、カートリツジ内の濾過面積
が小さくなり、モジユールとしての濾過流量が小
さくなるという欠点がある。このような理由で当
業界では単一の膜内に緻密層を有する構造を実現
することが強く望まれていた。 本発明者等は上記の欠点を解決すべく、従来微
孔性膜製造における1つの方法とされていた、ポ
リマー原液を流延後空気中に一定時間放置するこ
とによりミクロ相分離を起こさせ、微孔の孔径を
制御するドライウエツト法という技術について詳
細に検討した結果、溶媒を十分に蒸発させる方法
(例えば特開昭55−102416号)、及び溶媒を殆ど蒸
発させることなく凝固浴に浸漬する方法(例えば
特開昭55−8887号及び同56−154051号)の何れと
も異なり、適度に溶媒の蒸発と非溶媒蒸気の吸収
量を制御した場合には、驚くべきことに、微孔性
膜の膜面垂直方向の内部に最小孔径層を形成し得
る事を見い出した。 また本発明者等は、濾過と目づまりの機構およ
び比表面積と濾過寿命との関係を解析し、膜の
構造を極度に非対称にすると目の比表面積が小さ
くなり、最小孔径層より上流のインレツト側の部
分がプレフイルターとして有効に働かない事、お
よび捕捉される粒子は必ずしも粒子径より小さ
な孔径部分で捕捉されるわけではなく、その多く
は膜の内部の壁面に付着して捕捉されているとい
う事の2点が、濾過寿命に関係した重要な因子と
なる事、従つて、極度な非対称膜を作らず、膜の
比表面積を大きくすることにより濾過寿命を延ば
すことが合理的であることを見い出し、さらに鋭
意研究した結果、製膜原液を流延してから凝固液
に浸漬するまでの間で、溶媒の蒸発と、雰囲気か
ら吸収する非溶媒の量を制御することにより、8
m2/g以上の比表面積を実現することができ、こ
れによつて微孔性膜の寿命を延ばすことができる
ことを見い出し、かゝる微孔性膜について先に出
願を行つた(特願昭61−148192号)。 本発明は、先に出願した微孔性膜について改良
した製造方法を提供することを目的とするもので
ある。 従つて本発明の第1の目的は、濾過抵抗が小さ
く濾過流量の大きい微孔性膜の製造方法を提供す
ることである。 本発明の第2の目的は、表面の欠損によつても
濾過性能が劣化しにくい微孔性膜の製造方法を提
供することにある。 又、本発明の第3の目的は、微粒子ならびに細
菌等を効率良く捕捉することができる、濾過寿命
の長い微孔性膜の製造方法を提供することにあ
る。 〔問題点を解決するための手段および作用〕 本発明の上記の目的は、ポリマーに膨潤剤と非
溶媒を加えて溶媒に溶解してなる製膜原液を、溶
液状態で流延用支持体上に流延し、流延された液
膜に溶媒の蒸発と空気中水分の吸収を調温湿風の
吹付又は赤外線輻射と調温湿風の吹付によつて行
いコアセルベーシヨンを起こさせた後、該液膜を
凝固浴に浸漬させ相分離及び凝固を行わしめ微孔
性膜を形成し、しかる後前記流延用支持体上より
微孔性膜を剥離することを特徴とする微孔性膜の
製造方法によつて達成された。 尚本発明は、該液膜に溶媒の蒸発と空気中水分
の吸収を赤外線輻射及び/又は調温湿風の吹付に
よつて行うことが好ましい結果が得られる。 本発明の微孔性膜の製造方法の実施態様を第1
図を用いて説明する。 第1図において、ポリマーをジヤケツト付溶解
釜1で溶解する。その時微細孔形成に必要な非溶
媒、膨潤剤等が添加混合される。この溶液は脱泡
後、送液ポンプ2により流延用の注液器3に送ら
れ、注液器3より流延用支持体4としてのポリエ
ステルフイルム上に、安定した溶液状態の溶液を
液膜5として流延する。流延された液膜5の表面
に空気調節装置6で調節した空気を吹出口7より
当てるか又は調節した空気を吹出口7より当てる
とともに赤外線照射パネル14から赤外線を照射
することによつて、該液膜に溶媒の蒸発と空気中
の水分の吸収の制御を行いコアセルベーシヨンを
起こさせた後、ポリマーに対し非溶媒でありポリ
マーの溶媒に相溶性を有する液を吸収する凝固液
槽8に浸漬させる。 液膜5は流延後、温度、湿度、風量を調節した
空気に当てられること又はこの調節した空気に当
てられることとともに赤外線輻射によつて液膜の
表面から内部に向つてコアセルベーシヨンを起こ
し、微細なコアセルベーシヨン相を液膜5の表面
から内部に形成し、凝固液槽8の中に入つてその
コアセルベーシヨン相を微細孔として固定させる
と同時に液膜5の相分離をおこし、微細孔以外の
細孔を形成し、微孔性膜9が形成される。しかる
後、微孔性膜9を流延用支持体4より剥離させ
る。 流延用支持体4は流延用支持体巻取機10へ、
剥離した微孔性膜9は水洗槽11、乾燥機12を
経て巻取機13に巻取られる。 本発明において用いられる膜形成用ポリマーは
特に限定させることなく、多孔質膜の用途や他の
目的に合わせて選択することができる。このよう
なポリマーとしては、例えばセルロースアセテー
ト、ニトロセルロース、ポリスルホン、スルホン
化ポリスルホン、ポリエーテルスルホン、ポリア
クリロニトリル、スチレン−アクリロニトリルコ
ポリマー、スチレン−ブタジエンコポリマー、エ
チレン−酢酸ビニルコポリマーのケン化物、ポリ
ビニルアルコール、ポリカーボネート、オルガノ
シロキサン−ポリカーボネートコポリマー、ポリ
エステルカーボネート、オルガノポリシロキサ
ン、ポリフエニレンオキシド、ポリアミド、ポリ
イミド、ポリアミドイミド、ポリベンズイミダゾ
ール等を挙げることができる。 本発明においては、これらの中でも特にポリス
ルホン及び/又はポリエーテルスホンを膜形成用
ポリマーとすることが好ましく、
[Industrial Application Field] The present invention relates to a method for producing a microporous membrane, and is particularly used in the filtration of drugs in the pharmaceutical industry, alcoholic beverages in the food industry, and microporous membranes, including the aforementioned manufacturing industry and semiconductor manufacturing industry. Used for filtration of purified water, pure water, etc. used in the electronics industry, nuclear power industry, and laboratories of various industries that perform various processing, and other precision filtration. The following describes a method for manufacturing a microporous membrane for precision filtration that efficiently filters submicron-order fine particles and microorganisms. [Prior Art] Regarding microporous membranes for precision filtration, which are conventionally used for removing fine particles of about 0.1 to 5 μm in aqueous and non-aqueous systems and bacteria in the fields of pharmaceutical, food, electronic, and nuclear industries, and their manufacturing method. Disclosed are those made from cellulose ester, aliphatic polyamide, polyfluorocarbon, polysulfone, polypropylene, etc.
No. 40050, JP-A-58-37842, JP-A-58-91732
(Refer to Japanese Patent Application Laid-Open No. 56-154051). Such a microporous membrane is a so-called symmetric membrane in which the diameter of the micropores existing inside the membrane does not substantially change in the film thickness direction, and the pore diameters on both surfaces of the membrane do not substantially change.
It is classified as having a structure called an asymmetric membrane, in which the pore diameter changes continuously or discontinuously in the membrane thickness direction, and the pore diameter on one surface of the membrane is different from the pore diameter on the other surface. Among these, symmetrical membranes are described in JP-A-58-98015, but during filtration, the entire membrane presents a large resistance to the flow of fluid, and only a small flow rate can be obtained (i.e., the unit (Only a small flow rate can be obtained per unit area, per unit time, and per unit differential pressure), and it also has disadvantages such as easy clogging, short filtration life, and lack of blocking resistance. On the other hand, the asymmetric membrane is disclosed in Japanese Patent Publication No. 55-6406 and Japanese Patent Publication No. 56-
As described in No. 154051, the membrane has a layer with small pores called a compact layer on one surface of the membrane, and relatively large pores on the lower surface of the other membrane. This dense layer captures virtually all the smallest particles that can be filtered out, allowing the entire membrane thickness to be effectively utilized as a filter medium, increasing the filtration flow rate if used carefully. In this sense, it is an excellent microporous membrane. [Problem to be solved by the invention] However, although the dense layer is extremely important in this case, conventionally, this dense layer is on the surface and is easily damaged by scratches or other causes, preventing the leakage of fine particles. The drawback is that it is easy to break. In order to compensate for this drawback, a structure in which a dense layer, that is, a layer with a small pore size, exists inside the filtration membrane is desired. A structure has been proposed. However, such a filtration system in which two asymmetric membranes are stacked has the disadvantage that when folded and placed in a cartridge, the filtration area in the cartridge becomes small, and the filtration flow rate as a module becomes small. For these reasons, there has been a strong desire in the art to realize a structure having a dense layer within a single film. In order to solve the above-mentioned drawbacks, the inventors of the present invention have attempted to cause microphase separation by leaving a polymer stock solution in the air for a certain period of time after casting, which has been one of the conventional methods for producing microporous membranes. As a result of a detailed study of the dry wet method, which controls the diameter of micropores, we found a method in which the solvent is sufficiently evaporated (e.g., JP-A No. 102416/1983), and a method in which the solvent is immersed in a coagulation bath without evaporating much of the solvent. (For example, JP-A No. 55-8887 and JP-A No. 56-154051). Surprisingly, when the evaporation of the solvent and the amount of absorption of non-solvent vapor are appropriately controlled, microporous membranes It has been found that a layer with the minimum pore size can be formed inside the membrane in the direction perpendicular to the membrane surface. The present inventors also analyzed the mechanism of filtration and clogging, and the relationship between specific surface area and filtration life, and found that if the membrane structure is made extremely asymmetric, the specific surface area of the membrane becomes smaller, and the inlet side upstream of the minimum pore size layer decreases. The reason is that the part of the membrane does not function effectively as a prefilter, and that the particles that are captured are not necessarily captured in the pores that are smaller than the particle diameter, and that most of the particles are attached to the inner wall of the membrane and are captured. These two points are important factors related to filtration life, and therefore, it is rational to extend filtration life by increasing the specific surface area of the membrane without creating an extremely asymmetric membrane. As a result of this discovery and further intensive research, we found that by controlling the evaporation of the solvent and the amount of non-solvent absorbed from the atmosphere during the period from casting the film-forming stock solution to immersing it in the coagulation solution, 8.
We discovered that it is possible to achieve a specific surface area of m 2 /g or more, thereby extending the life of a microporous membrane, and filed an application for such a microporous membrane (patent application). (Sho 61-148192). An object of the present invention is to provide an improved manufacturing method for the microporous membrane previously applied for. Accordingly, a first object of the present invention is to provide a method for producing a microporous membrane with low filtration resistance and high filtration flow rate. A second object of the present invention is to provide a method for producing a microporous membrane whose filtration performance is less likely to deteriorate due to surface defects. A third object of the present invention is to provide a method for producing a microporous membrane that can efficiently trap fine particles, bacteria, etc. and has a long filtration life. [Means and effects for solving the problems] The above-mentioned object of the present invention is to apply a membrane-forming stock solution prepared by adding a swelling agent and a non-solvent to a polymer and dissolving it in a solvent onto a casting support in a solution state. The solvent was evaporated and the moisture in the air was absorbed into the cast liquid film by blowing controlled moist air or by infrared radiation and blowing controlled wet air to cause coacelvation. After that, the liquid film is immersed in a coagulation bath to perform phase separation and coagulation to form a microporous film, and then the microporous film is peeled off from the casting support. This was achieved by a method for producing a transparent membrane. In the present invention, a preferable result can be obtained by evaporating the solvent and absorbing the moisture in the air by irradiating the liquid film with infrared radiation and/or blowing temperature-controlled moist air. The first embodiment of the method for producing a microporous membrane of the present invention is described below.
This will be explained using figures. In FIG. 1, a polymer is melted in a melting pot 1 with a jacket. At that time, non-solvents, swelling agents, etc. necessary for forming micropores are added and mixed. After defoaming, this solution is sent to a casting injector 3 by a liquid feed pump 2, and the solution in a stable solution state is poured from the injector 3 onto a polyester film serving as a casting support 4. It is cast as a membrane 5. By applying air regulated by an air conditioner 6 to the surface of the cast liquid film 5 from the outlet 7, or by applying regulated air from the outlet 7 and irradiating infrared rays from the infrared irradiation panel 14, After coacervation occurs in the liquid film by controlling the evaporation of the solvent and the absorption of moisture in the air, a coagulation liquid tank is provided that absorbs a liquid that is a non-solvent for the polymer and is compatible with the polymer's solvent. 8. After the liquid film 5 is cast, it is exposed to air whose temperature, humidity, and air volume are adjusted, or when it is exposed to this adjusted air, core cells are formed from the surface of the liquid film inward by infrared radiation. A fine coacelvation phase is formed inside the liquid film 5 from the surface thereof, and the coagulation phase is fixed as micropores in the coagulation liquid tank 8, and at the same time, the liquid film 5 undergoes phase separation. is caused to form pores other than micropores, and the microporous membrane 9 is formed. Thereafter, the microporous membrane 9 is peeled off from the casting support 4. The casting support 4 is transferred to a casting support winding machine 10,
The peeled microporous membrane 9 is passed through a washing tank 11, a dryer 12, and then wound up by a winder 13. The membrane-forming polymer used in the present invention is not particularly limited, and can be selected depending on the use of the porous membrane and other purposes. Examples of such polymers include cellulose acetate, nitrocellulose, polysulfone, sulfonated polysulfone, polyethersulfone, polyacrylonitrile, styrene-acrylonitrile copolymer, styrene-butadiene copolymer, saponified ethylene-vinyl acetate copolymer, polyvinyl alcohol, and polycarbonate. , organosiloxane-polycarbonate copolymer, polyester carbonate, organopolysiloxane, polyphenylene oxide, polyamide, polyimide, polyamideimide, polybenzimidazole, and the like. In the present invention, it is particularly preferable to use polysulfone and/or polyether sulfone as the membrane-forming polymer.

【化】 または[ka] or

〔実施例〕〔Example〕

以下、本発明の実施例を示すが、本発明はこれ
に限定されるものではない。 実施例1〜4 比較例1 ポリスルホン(UCC社製 P−3500)13部、
N−メチル−2−ピロリドン、72部、ポリビニル
ピロリドン、12部、塩化リチウム、2部、水1,
2部を均一に溶解して製膜原液を得た。これを安
定した溶液状態において製品厚さ180μmになるよ
うガラス板に流延し、赤外線パネルヒーター表面
温度300℃の下を通過時間を変えて通過させた後、
直ちに25℃の水を満たした凝固浴中へ浸漬し微孔
製膜を得た。夫々の膜の緻密層の深さを電子顕微
鏡によつて測定した結果を第1表に示す。なお、
平均孔径の測定はASTM−316−80法による。
Examples of the present invention will be shown below, but the present invention is not limited thereto. Examples 1 to 4 Comparative Example 1 13 parts of polysulfone (P-3500 manufactured by UCC),
N-methyl-2-pyrrolidone, 72 parts, polyvinylpyrrolidone, 12 parts, lithium chloride, 2 parts, water 1,
Two parts were uniformly dissolved to obtain a membrane forming stock solution. This was cast onto a glass plate in a stable solution state to a product thickness of 180 μm, and passed under an infrared panel heater surface temperature of 300°C for varying passing times.
Immediately immersed in a coagulation bath filled with water at 25°C to obtain a microporous membrane. Table 1 shows the results of measuring the depth of the dense layer of each film using an electron microscope. In addition,
The average pore diameter was measured using the ASTM-316-80 method.

【表】 上記に明らかなように赤外線輻射をする通過時
間によつて平均孔径を変えることが出来る。また
緻密層の深さも変わつてくることが判る。 実施例5〜10,比較例2 ポリスルホン(UCC社製 P−3500)15部、
N−メチル−2−ピロリドン 70部、ポリビニル
ピロリドン 15部、水3.0部を溶解し均一な溶液
とした。この溶液を、安定した溶液状態において
ドクターブレードを用いて製品膜厚180μmになる
ようキヤステイングコータによりガラス板上に流
延し、70℃相対湿度9%の空気を流延された液膜
表面へ風速1.2m/secで0秒,4秒,8秒,10
秒,15秒,30秒,60秒それぞれ当てた後、直ちに
25℃の水を満たした凝固浴へ浸漬して、微孔性膜
を得た。それぞれの膜の緻密層の深さを、電子顕
微鏡によつて測定した結果を第2表に示す。
[Table] As is clear from the above, the average pore diameter can be changed by changing the transit time of infrared radiation. It can also be seen that the depth of the compact layer changes. Examples 5 to 10, Comparative Example 2 15 parts of polysulfone (manufactured by UCC P-3500),
70 parts of N-methyl-2-pyrrolidone, 15 parts of polyvinylpyrrolidone, and 3.0 parts of water were dissolved to form a uniform solution. This solution is cast onto a glass plate using a casting coater using a doctor blade in a stable solution state to a product film thickness of 180 μm, and air at 70°C and relative humidity of 9% is applied to the surface of the cast liquid film. 0 seconds, 4 seconds, 8 seconds, 10 at wind speed 1.2m/sec
Immediately after hitting for 2 seconds, 15 seconds, 30 seconds, and 60 seconds.
A microporous membrane was obtained by immersion in a coagulation bath filled with water at 25°C. Table 2 shows the results of measuring the depth of the dense layer of each film using an electron microscope.

【表】 上記から明らかなように、調温湿風曝露時間が
0秒の場合は緻密層は最上表面にあり、表面の摩
擦に対する保護も出来ないので好ましくない、風
を当てる時間によつて平均孔径および緻密層の深
さが変化することが示されている。 比較例3,4と実施例6との比較 対称膜として市販の平均孔径0.2μmのポリフツ
化ビニリデン膜(比較例−3)、最表面に緻密層
を有する非対称膜として市販の平均孔径0.2μmの
ポリスルホン膜(比較例−4)、膜内部に緻密槽
を有する非対称膜として本発明の実施例−6の膜
(平均孔径0.2μm)の3種の膜について、透水速
度と微粒子の除去性を比較した、微粒子としてダ
ウコーニング社製平均粒径0.236μmのポリスチレ
ンラテツクスを単位面積当り106ケ濾過し漏洩し
た粒子数を測定した。濾過面積は15cm2である。
[Table] As is clear from the above, when the temperature-controlled moist air exposure time is 0 seconds, the dense layer is on the top surface, which is not desirable because it cannot protect the surface from friction. It has been shown that the pore size and the depth of the compact layer vary. Comparison of Comparative Examples 3 and 4 and Example 6 A polyvinylidene fluoride membrane with an average pore diameter of 0.2 μm commercially available as a symmetric membrane (Comparative Example-3), and a commercially available asymmetric membrane with an average pore diameter of 0.2 μm having a dense layer on the outermost surface. Comparison of water permeation rate and fine particle removability for three types of membranes: a polysulfone membrane (Comparative Example 4), and the membrane of Example 6 of the present invention (average pore size 0.2 μm), which is an asymmetric membrane with a dense tank inside the membrane. Polystyrene latex with an average particle diameter of 0.236 μm manufactured by Dow Corning was filtered through 10 6 particles per unit area, and the number of leaked particles was measured. The filtration area is 15cm2 .

【表】 以上の結果より本発明の膜が透水速度と粒子捕
捉性能が共に優れた膜であることが判る。 実施例 11〜13 実施例5〜10と同じ製膜溶液をドクターブレー
ドを用いて製品膜厚180μmになるようにキヤステ
イングコーターによりガラス板上に流延した。30
℃相対湿度65%、風速1.2m/sの風を送り、且
つ赤外線パネルヒーターで表面温度が100℃にな
るように調節された雰囲気中に上記キヤステイン
グ済ガラス板を、通過時間が0秒、4秒、8秒、
10秒になるような速度で通過させた後、直ちに25
℃の水を満たした凝固浴へ浸漬して、微孔性膜を
得た。それぞれの膜の緻密層の深さを電子顕微鏡
によつて測定した結果を表3に示す。
[Table] From the above results, it can be seen that the membrane of the present invention is excellent in both water permeation rate and particle trapping performance. Examples 11 to 13 The same film forming solution as in Examples 5 to 10 was cast onto a glass plate using a casting coater using a doctor blade so that the product film thickness was 180 μm. 30
The casted glass plate was placed in an atmosphere controlled by an infrared panel heater so that the surface temperature was 100°C, with a relative humidity of 65%, a wind velocity of 1.2 m/s, and a passing time of 0 seconds. 4 seconds, 8 seconds,
25 immediately after passing at such a speed as to be 10 seconds.
A microporous membrane was obtained by immersion into a coagulation bath filled with water at .degree. Table 3 shows the results of measuring the depth of the dense layer of each film using an electron microscope.

〔発明の効果〕〔Effect of the invention〕

本発明の微孔性膜の製造方法によつて製造され
た膜は、膜の内部に最小孔径層を有し、且その緻
密層も厚いので粒子捕捉性能が高い。また膜厚方
向に孔径分布を有するため、膜全体が濾材として
有効に活用される。従つて、濾過抵抗が小さく透
水速度が早く濾過流量を上げられるのみならず、
濾材としての寿命も長い。さらに最小孔径層が膜
の表面ではなく、膜内部に存在するために、外傷
等により損傷される危険性が緩和され、取り扱い
上極めて有利であるのみならず、通常の一枚の微
孔性膜の場合と全く同様にカートリツジ型フイル
ターに使用することもできるので、極めて有利で
ある。 この様な膜を能率よく安定して製造出来るよう
になり濾過膜性能の向上による産業界に対する貢
献は大である。
The membrane manufactured by the method for manufacturing a microporous membrane of the present invention has a minimum pore size layer inside the membrane and also has a thick dense layer, so it has high particle trapping performance. Furthermore, since the membrane has a pore size distribution in the thickness direction, the entire membrane can be effectively used as a filter medium. Therefore, the filtration resistance is small, the water permeation rate is fast, and the filtration flow rate can be increased.
It also has a long life as a filter medium. Furthermore, since the minimum pore size layer exists inside the membrane rather than on the surface of the membrane, the risk of damage due to external trauma is alleviated, and it is not only extremely advantageous in handling, but also a single sheet of ordinary microporous membrane. It is extremely advantageous because it can also be used in cartridge type filters in exactly the same way as in the case of . It has become possible to efficiently and stably manufacture such membranes, and the improvement in filtration membrane performance will greatly contribute to the industry.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の微孔性膜の製造方法による製
造工程の1実施例の説明図である。 1……溶解釜、2……送液ポンプ、3……注液
器、4……流延用支持体、5……液膜、6……空
気調節装置、7……吹出口、8……凝固液槽、9
……微孔性膜、10……流延用支持体巻取機、1
1……水洗槽、12……乾燥機、13……巻取
機、14……赤外線照射パネル。
FIG. 1 is an explanatory diagram of one embodiment of the manufacturing process according to the method for manufacturing a microporous membrane of the present invention. DESCRIPTION OF SYMBOLS 1...Dissolution pot, 2...Liquid pump, 3...Liquid injection device, 4...Support for casting, 5...Liquid film, 6...Air conditioning device, 7...Blowout port, 8... ...Coagulation liquid tank, 9
...Microporous membrane, 10... Support winder for casting, 1
1... Washing tank, 12... Dryer, 13... Winder, 14... Infrared irradiation panel.

Claims (1)

【特許請求の範囲】[Claims] 1 ポリマーに潤滑剤と非溶媒を加えて溶媒に溶
解してなる製膜原液を、溶液状態で流延用支持体
上に流延し、流延された液膜に溶媒の蒸発と空気
中水分の吸収を調温湿風の吹付又は赤外線輻射と
調温湿風の吹付によつて行いコアセルベーシヨン
を起こさせた後、該液膜を凝固浴に浸漬させ相分
離及び凝固を行わしめ微孔性膜を形成し、しかる
後前記流延用支持体上より微孔性膜を剥離するこ
とを特徴とする微孔性膜の製造方法。
1. A film-forming stock solution made by adding a lubricant and a non-solvent to a polymer and dissolving it in a solvent is cast in a solution state onto a casting support, and the cast liquid film contains evaporation of the solvent and moisture in the air. The liquid film is absorbed by blowing temperature-controlled moist air or by infrared radiation and temperature-controlled moist air blowing to cause coacelvation, and then the liquid film is immersed in a coagulation bath to undergo phase separation and coagulation. A method for producing a microporous membrane, which comprises forming a porous membrane and then peeling the microporous membrane from the casting support.
JP61285995A 1986-12-02 1986-12-02 Production of microporous membrane Granted JPS63139929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61285995A JPS63139929A (en) 1986-12-02 1986-12-02 Production of microporous membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61285995A JPS63139929A (en) 1986-12-02 1986-12-02 Production of microporous membrane

Publications (2)

Publication Number Publication Date
JPS63139929A JPS63139929A (en) 1988-06-11
JPH0585576B2 true JPH0585576B2 (en) 1993-12-08

Family

ID=17698646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61285995A Granted JPS63139929A (en) 1986-12-02 1986-12-02 Production of microporous membrane

Country Status (1)

Country Link
JP (1) JPS63139929A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4902422A (en) * 1988-12-06 1990-02-20 Board Regents The University Of Texas System Defect-free ultrahigh flux asymmetric membranes

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52138485A (en) * 1976-05-14 1977-11-18 Sartorius Membranfilter Gmbh Method of manufacturing membranes for osmosis separation
JPS5836617A (en) * 1981-08-26 1983-03-03 Nitto Electric Ind Co Ltd Manufacture of film for separating gas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52138485A (en) * 1976-05-14 1977-11-18 Sartorius Membranfilter Gmbh Method of manufacturing membranes for osmosis separation
JPS5836617A (en) * 1981-08-26 1983-03-03 Nitto Electric Ind Co Ltd Manufacture of film for separating gas

Also Published As

Publication number Publication date
JPS63139929A (en) 1988-06-11

Similar Documents

Publication Publication Date Title
US4840733A (en) Fine porous membrane and process for producing the same
JPS6227006A (en) Microporous membrane
US5886059A (en) Highly asymmetric polyethersulfone filtration membranes
CA1318992C (en) Immobilized liquid membrane
KR101459523B1 (en) Asymmetric membranes
GB2199786A (en) Polymeric micro-porous membranes and their production
US5304307A (en) Chargedasymmetric mosaic membrances
US20140339165A1 (en) High throughput membrane with rough surface
JP2013052387A (en) Multilayer microfiltration membrane
ES2899169T3 (en) Porous polymer membrane with high void volume
CN104874297A (en) Porous Polymeric Membrane With High Void Volume
TW201526979A (en) Membrane with plurality of charges
JP5845513B2 (en) Polymer membrane with large pores
JP2961629B2 (en) Manufacturing method of microfiltration membrane
JPS63139930A (en) Production of microporous membrane
KR100557264B1 (en) Hollow fiber membrane and process for producing the same
JP2530133B2 (en) Microporous membrane
US4869857A (en) Process for producing porous membranes
JP2004105804A (en) Polysulfone microporous membrane and its manufacturing method
JPH0585576B2 (en)
JP3681219B2 (en) Polysulfone porous separation membrane
JPH0561970B2 (en)
JPS63141611A (en) Production of microporous membrane
JPH01139116A (en) Asymmetric microporous membrane
JPH02139020A (en) Manufacture of microporous filter membrane with anisotropy

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term