JPH0585368B2 - - Google Patents

Info

Publication number
JPH0585368B2
JPH0585368B2 JP59059041A JP5904184A JPH0585368B2 JP H0585368 B2 JPH0585368 B2 JP H0585368B2 JP 59059041 A JP59059041 A JP 59059041A JP 5904184 A JP5904184 A JP 5904184A JP H0585368 B2 JPH0585368 B2 JP H0585368B2
Authority
JP
Japan
Prior art keywords
flow rate
vehicle height
relief
strut
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59059041A
Other languages
Japanese (ja)
Other versions
JPS60203512A (en
Inventor
Seita Kanai
Hirotaka Kanazawa
Takashi Hirochika
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP5904184A priority Critical patent/JPS60203512A/en
Publication of JPS60203512A publication Critical patent/JPS60203512A/en
Publication of JPH0585368B2 publication Critical patent/JPH0585368B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はハイドロニユーマチツクサスペンシヨ
ンに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a hydroneumatic suspension.

(従来技術) 自動車の車体は懸架装置を介して車軸に弾性支
持されていることから、車体重量に応じて車体が
昇降し、また急ブレーキ時や降坂時には車体前部
が沈み、登坂時には車体後部が沈む。また、一
方、悪路走行時には車体を高くしないと車体が損
傷し、高速走行時には車体を低くしないと走行安
定性に欠け空力特性の面で不利である。
(Prior art) Since the car body of a car is elastically supported by the axle via a suspension system, the car body rises and falls according to the weight of the car, and the front part of the car sinks when braking suddenly or going down a slope, and the car body collapses when going up a slope. The rear sinks. On the other hand, if the vehicle body is not raised when driving on rough roads, the vehicle body will be damaged, and if the vehicle body is not lowered when driving at high speeds, running stability will be poor and aerodynamic characteristics will be disadvantageous.

そこで従来、車体と車軸間に車高センサを設
け、この検出車高が目標車高の設定範囲に入るよ
うに懸架装置の流体圧シリンダの伸縮量をフイー
ドバツク制御するようにした車高調整装置が各種
実用化されている。
Conventionally, a vehicle height adjustment device has been developed in which a vehicle height sensor is provided between the vehicle body and the axle, and the amount of expansion and contraction of the fluid pressure cylinder of the suspension system is controlled by feedback so that the detected vehicle height falls within the target vehicle height setting range. It has been put into practical use in various ways.

例えば、特開昭57−118906号公報に記載されて
いる車高調整装置は、懸架装置のエアシリンダ、
エアシリンダへエアを供給するエア供給装置、懸
架装置に設けられた車高センサ及び車高制御装置
を備え、車高センサの各時点の検出車高と検出車
高の時系列平滑値とを比較して後者に対する前者
の振動状態で道路状況を判断し、これに応じて目
標車高を自動設定し、検出車高を目標車高と比較
し、前者が後者に一致する方向にフイードバツク
車高体調整を行うようにしたものである。
For example, the vehicle height adjustment device described in Japanese Patent Application Laid-open No. 57-118906 uses an air cylinder of a suspension system,
It is equipped with an air supply device that supplies air to the air cylinder, a vehicle height sensor installed in the suspension system, and a vehicle height control device, and compares the vehicle height detected by the vehicle height sensor at each point in time with the time-series smoothed value of the detected vehicle height. The road condition is judged based on the vibration state of the former with respect to the latter, the target vehicle height is automatically set accordingly, the detected vehicle height is compared with the target vehicle height, and the feedback vehicle height is adjusted in the direction where the former matches the latter. This is done so that adjustments can be made.

しかしながら、上記の車高調整装置では、エア
供給装置からストラツトへのエア通路に設けたエ
ア制御弁を開閉制御することにより車高を調整す
るようになつているので、車高については高精度
に調整することが出来るけれども、車高調整の速
度は一定であつてこれを適宜調節することは出来
ないため、高速走行時など車高調整に伴う空力特
性の急変により自動車に作用する外力が急変して
走行安定性が損なわれるという欠点がある。
However, the vehicle height adjustment device described above adjusts the vehicle height by controlling the opening and closing of the air control valve installed in the air passage from the air supply device to the strut, so the vehicle height cannot be adjusted with high precision. However, since the speed of vehicle height adjustment is constant and cannot be adjusted appropriately, external forces acting on the vehicle may suddenly change due to sudden changes in aerodynamic characteristics due to vehicle height adjustment, such as when driving at high speeds. This has the disadvantage that running stability is impaired.

また、上記エア制御弁の開閉に伴うサージ圧に
よる振動も生じ易く、エア通路を開閉するエア制
御弁の構造上の制約から車高調整の応答性も低く
なるという欠点がある。
Furthermore, vibrations are likely to occur due to surge pressure when the air control valve opens and closes, and the responsiveness of vehicle height adjustment is also low due to structural limitations of the air control valve that opens and closes the air passage.

(発明の目的) 本発明は上記の諸欠点に鑑みてなされたもの
で、簡単な構成でもつて車高及び車高調整速度を
車速度等に応じて応答性よく制御し得るハイドロ
ニユーマチツクサスペンシヨンを提供することを
目的とする。
(Object of the Invention) The present invention has been made in view of the above-mentioned drawbacks, and is a hydroneumatic suspension system that has a simple configuration and can control the vehicle height and vehicle height adjustment speed with good responsiveness according to the vehicle speed, etc. The purpose is to provide the following.

(発明の構成) 本発明のハイドロニユーマチツクサスペンシヨ
ンは、車軸と車体との間に伸縮自在に付設され内
部に液室を有するストラツトと、常時所定流量の
加圧液を供給する加圧液供給手段と、上記加圧液
供給手段と上記ストラツトの液室とを連結する液
体通路と、上記液体通路に接続され加圧液を液体
通路から外部へリリーフするリリーフ通路と、上
記リリーフ通路に付設されリリーフされる加圧液
の流量を常時調整する流量調整手段であつて、リ
リーフされる加圧液の流量と流量調整速度を制御
可能な流量調整手段とを備え、上記リリーフ通路
からリリーフされる加圧液の流量を変化させて上
記ストラツトが伸縮するように構成したものであ
る。
(Structure of the Invention) The hydroneumatic suspension of the present invention includes a strut that is telescopically attached between an axle and a vehicle body and has a liquid chamber inside, and a pressurized liquid that constantly supplies a predetermined flow rate of pressurized liquid. a supply means, a liquid passage connecting the pressurized liquid supply means and the liquid chamber of the strut, a relief passage connected to the liquid passage and relieving pressurized liquid from the liquid passage to the outside, and attached to the relief passage. A flow rate adjusting means that constantly adjusts the flow rate of the pressurized liquid to be relieved and relieved, the flow rate adjusting means being capable of controlling the flow rate of the pressurized liquid to be relieved and the flow rate adjustment speed, the flow rate adjusting means being able to control the flow rate of the pressurized liquid to be relieved and the flow rate adjustment speed, the flow rate adjusting means being able to control the flow rate of the pressurized liquid to be relieved from the relief passage. The strut is configured to expand and contract by changing the flow rate of pressurized fluid.

(発明の効果) 本発明は以上のように構成されるから、加圧液
供給手段から供給される加圧液の供給流量と比較
して、リリーフ通路からのリリーフ流量が少ない
ときには車高が高く調整され、またリリーフ流量
が等しいときには車高が維持され、またリリーフ
流量が多いときには車高が低く調整される。
(Effects of the Invention) Since the present invention is configured as described above, when the relief flow rate from the relief passage is small compared to the supply flow rate of the pressurized liquid supplied from the pressurized liquid supply means, the vehicle height becomes high. When the relief flow rate is equal, the vehicle height is maintained, and when the relief flow rate is large, the vehicle height is adjusted lower.

また、上記車高調整はリリーフ通路の流量調整
手段でリリーフ流量を調整する際の調整速度に対
応した速さで行なわれることになる。
Further, the vehicle height adjustment is performed at a speed corresponding to the adjustment speed at which the relief flow rate is adjusted by the flow rate adjustment means of the relief passage.

従つて、リリーフ通路に設けた流量調整手段を
制御して、加圧液の流量と流量調整速度を制御す
ることにより車高だけでなく車高調整速度をも車
速等に応じて適宜制御することが出来る。
Therefore, by controlling the flow rate adjustment means provided in the relief passage to control the flow rate and flow rate adjustment speed of the pressurized fluid, not only the vehicle height but also the vehicle height adjustment speed can be appropriately controlled according to the vehicle speed, etc. I can do it.

しかも、制御信号で流量調整手段を作動させる
際に、流量調整手段は殆ど遅延なしに作動し、こ
れがリリーフ流量の変化に直結するので特に応答
性に優れる。
Moreover, when the flow rate adjustment means is operated by a control signal, the flow rate adjustment means operates with almost no delay, and this is directly connected to a change in the relief flow rate, so that the response is particularly excellent.

以上のように本発明によれば、簡単な構成の装
置によつて車高及び車高調整速度を車速等に応じ
て応答性よく制御することが出来る。
As described above, according to the present invention, the vehicle height and the vehicle height adjustment speed can be controlled with good responsiveness in accordance with the vehicle speed etc. using a device with a simple configuration.

(実施例) 以下、本発明の実施例を図面に基いて説明す
る。
(Example) Hereinafter, an example of the present invention will be described based on the drawings.

このハイドロニユーマチツクサスペンシヨン
は、第1図に示すように所定圧所定流量Q1の圧
油を供給する油圧供給装置1と懸架装置2の各車
輪3に対応するストラツト4とが油路5で連結さ
れ、上記油路5に接続されたリリーフ油路6に接
続された流量調整手段に相当する可変絞り装置7
の可変絞り弁8から常時圧油が外部へリリーフさ
れるようにし、制御ユニツト10において車速セ
ンサ11と路面状態選択スイツチ13からの出力
信号に基いて目標車高が演算され、車高センサ1
2の出力信号から得られた実車高と目標車高とが
比較され、これに応じて適宜可変絞り弁8からの
リリーフ流量Q2を調節することにより車高が調
整されるようにしたものであり、同時に車速に応
じて可変絞り弁8の調整速度をも適宜制御するこ
とにより車高調整速度も調整されるようにしたも
のである。
As shown in FIG. 1, in this hydroneumatic suspension, a hydraulic supply device 1 that supplies pressure oil at a predetermined pressure and a predetermined flow rate Q1 and a strut 4 corresponding to each wheel 3 of a suspension device 2 are connected to an oil passage 5. a variable throttle device 7 corresponding to a flow rate adjusting means connected to a relief oil passage 6 connected to the oil passage 5;
The target vehicle height is calculated in the control unit 10 based on the output signals from the vehicle speed sensor 11 and the road surface condition selection switch 13, and the vehicle height sensor 1
The actual vehicle height obtained from the output signal No. 2 is compared with the target vehicle height, and the vehicle height is adjusted by appropriately adjusting the relief flow rate Q2 from the variable throttle valve 8 accordingly. At the same time, the vehicle height adjustment speed is also adjusted by appropriately controlling the adjustment speed of the variable throttle valve 8 according to the vehicle speed.

以下、各装置の構成について詳しく説明する。 The configuration of each device will be explained in detail below.

上記油圧供給装置1はモータ1aで駆動される
定方向吐出形室容量油圧ポンプ1bとリリーフ弁
1cと流量制御弁1dとからなり、上記油圧ポン
プ1bの吐出側の油路に接続されたリリーフ弁1
cにより設定油圧となるように制御されると共
に、このリリーフ弁1cよりも下流側の油路に接
続された固定形の流量制御弁1dにより設定流量
Q1の圧油が流れるようになつている。こうし
て、設定圧の設定流量Q1の圧油が油圧供給装置
1から油路5へ常時供給される。
The hydraulic pressure supply device 1 includes a directional discharge type chamber capacity hydraulic pump 1b driven by a motor 1a, a relief valve 1c, and a flow rate control valve 1d, and the relief valve is connected to an oil passage on the discharge side of the hydraulic pump 1b. 1
The pressure oil is controlled to a set oil pressure by C, and a fixed flow rate control valve 1d connected to an oil path on the downstream side of the relief valve 1c allows pressure oil to flow at a set flow rate Q1. In this way, pressure oil at the set flow rate Q1 at the set pressure is constantly supplied from the hydraulic pressure supply device 1 to the oil path 5.

上記油路5の他端側は前輪及び後輪用の各スト
ラツト4の油室14へ接続される。
The other end of the oil passage 5 is connected to an oil chamber 14 of each strut 4 for the front and rear wheels.

上記ストラツト4は車軸15と車輪3との連結
部のハウジング16と車体17間に伸縮自在に介
装される油圧シリンダで、懸架装置2のストラツ
ト兼シヨツクアブソーバーとして機能すると同時
に車高調整手段として機能するものである。第2
図に示すように、上記ストラツト4のシリンダ本
体18の下端部がスリーブ状の結合部材19を介
してハウジング16に固定され、シリンダ本体1
8の上方へ突出しているピストンロツド20の上
端部がマウント座金21・環状の緩衝ゴム22を
介して車体17に連結される。
The strut 4 is a hydraulic cylinder that is telescopically interposed between the housing 16 and the vehicle body 17 at the joint between the axle 15 and the wheels 3, and functions as a strut and shock absorber for the suspension system 2, and at the same time as a vehicle height adjustment means. It is something to do. Second
As shown in the figure, the lower end of the cylinder body 18 of the strut 4 is fixed to the housing 16 via a sleeve-shaped coupling member 19.
The upper end of the piston rod 20 protruding upward from the piston rod 8 is connected to the vehicle body 17 via a mount washer 21 and an annular cushioning rubber 22.

上記ストラツト4のピストンロツド20の下端
部に設けられたピストン23は油室14内に上下
摺動自在で、このピストン23の上側のアツパ油
室14aと下側のロア油室14bとはピストン2
3に開けられたダンピング用のオリフイス24で
連通され、またピストンロツド20の下端に開口
しピストンロツド20内に透設された油孔25の
上端が上記油路5に接続されている。そして、上
記油圧供給装置1から油路5及び油孔25を経て
油室14に供給された圧油がピストンロツド20
の環状の有効受圧面積に作用して生じる油圧力に
よつて車体17からストラツト4に加わる荷重が
支持される。
A piston 23 provided at the lower end of the piston rod 20 of the strut 4 is vertically slidable within the oil chamber 14, and an upper oil chamber 14a on the upper side of the piston 23 and a lower oil chamber 14b on the lower side are connected to the piston 23.
3, and the upper end of an oil hole 25 opened at the lower end of the piston rod 20 and penetrated into the piston rod 20 is connected to the oil passage 5. Pressure oil supplied from the hydraulic pressure supply device 1 to the oil chamber 14 via the oil passage 5 and the oil hole 25 is transferred to the piston rod 20.
The load applied to the strut 4 from the vehicle body 17 is supported by the hydraulic pressure generated by acting on the annular effective pressure receiving area.

流量調整手段に相当する上記可変絞り装置7は
油圧供給装置1とストラツト4との間で油路5に
接続された1本のリリーフ油路6に直列接続され
た可変絞り弁8と可変絞り弁8の弁棒26を駆動
する駆動部9とからなり、この駆動部9は後述の
ように制御ユニツト10で制御される。
The variable throttle device 7, which corresponds to the flow rate adjustment means, includes a variable throttle valve 8 and a variable throttle valve connected in series to one relief oil passage 6 connected to the oil passage 5 between the hydraulic pressure supply device 1 and the strut 4. The drive unit 9 includes a drive unit 9 that drives the eight valve rods 26, and this drive unit 9 is controlled by a control unit 10 as described later.

上記可変絞り弁8は弁箱27内に弁室28とこ
の弁室28の一端側に連通し上記リリーフ油路6
に接続される入口路29と弁室28の他端側に連
通しオイルタンク31に接続される出口路30と
を設け、上記弁室28の中央部に設けたテーパー
状の絞り孔32にテーパー状の絞り弁体33を絞
り流路となる隙間を空けて同心状に内装してな
り、上記絞り弁体33の上記絞り孔32への挿入
深さを調節することにより上記絞り流路の絞り面
積を調節し、リリーフ油路6から入口路29・弁
室28・出口路30を経てリリーフされる圧油の
流量を調節できるようになつている。
The variable throttle valve 8 communicates with a valve chamber 28 in the valve box 27 and one end side of the valve chamber 28, and the relief oil passage 6
An inlet passage 29 connected to the valve chamber 28 and an outlet passage 30 communicating with the oil tank 31 at the other end of the valve chamber 28 are provided, and a tapered throttle hole 32 provided at the center of the valve chamber 28 is provided with a tapered throttle hole 32. The throttle valve body 33 of the shape of the shape is installed concentrically with a gap therebetween to form a throttle flow path, and by adjusting the insertion depth of the throttle valve body 33 into the throttle hole 32, the throttle flow path can be throttled. By adjusting the area, the flow rate of the pressure oil relieved from the relief oil passage 6 via the inlet passage 29, the valve chamber 28, and the outlet passage 30 can be adjusted.

上記絞り弁体33の弁棒26は弁箱27外へ連
出され、駆動部9の可動部材34に一体連合され
る。
The valve stem 26 of the throttle valve body 33 is led out of the valve box 27 and integrally connected to the movable member 34 of the drive section 9.

上記駆動部9は比例ソレノイド形駆動手段であ
つて、上記弁棒26と同軸状の内筒35内に軸方
向摺動自在に内嵌した可動部材34が圧縮コイル
スプリング36で弁棒26側へ付勢され、内筒3
5に外装されたソレノイド37の磁力で可動部材
34をスプリング36に抗して弁棒26と反対側
へ駆動して可動部材34の位置を適宜制御するこ
とにより可変絞り弁8の絞り流路の絞り面積を調
節するようにしたものである。
The drive unit 9 is a proportional solenoid type drive means, and a movable member 34 is fitted into an inner cylinder 35 coaxial with the valve stem 26 so as to be slidable in the axial direction, and is moved toward the valve stem 26 by a compression coil spring 36. energized, the inner cylinder 3
The throttle flow path of the variable throttle valve 8 is controlled by driving the movable member 34 to the side opposite to the valve rod 26 against the spring 36 by the magnetic force of the solenoid 37 mounted on the exterior of the variable throttle valve 5 to appropriately control the position of the movable member 34. The aperture area is adjusted.

上記ソレノイド37へ所定の電流Ibが通電され
ている状態においては、スプリング36は所定長
さだけ縮みそのバネ力とソレノイド37の磁力と
が均衡し、可変絞り弁8からリリーフされる圧油
のリリーフ流量Q2が油圧供給装置1から供給さ
れる圧油の設定流量Q1と均衡し、ストラツト4
は伸縮することなく車高が維持される。
When a predetermined current Ib is applied to the solenoid 37, the spring 36 is compressed by a predetermined length, and the spring force and the magnetic force of the solenoid 37 are balanced, and the pressure oil released from the variable throttle valve 8 is relieved. The flow rate Q2 is balanced with the set flow rate Q1 of the pressure oil supplied from the hydraulic pressure supply device 1, and the strut 4
The vehicle height is maintained without expanding or contracting.

これに対して、ソレノイド37へ電流Ibよりも
大きな電流が通電されると、磁力が増加するので
スプリング36は更に縮んだ位置で磁力とバネ力
とが均衡することとなり、この時可変絞り弁8か
らのリリーフ流量Q2は増加して上記設定流量Q
1よりも多くなるため、ストラツト4の油室14
の圧油が減少し車高が低くなる方へ調節される。
On the other hand, when a current larger than the current Ib is applied to the solenoid 37, the magnetic force increases, so that the magnetic force and the spring force are balanced at the further contracted position of the spring 36, and at this time, the variable throttle valve 8 The relief flow rate Q2 from increases to the above set flow rate Q
1, so the oil chamber 14 of the strut 4
Pressure oil decreases and the vehicle height is adjusted to lower.

また、ソレノイド37へ電流Ibよりも小さな電
流が通電されると、上記とは反対に車高が高くな
る方へ調節されることになる。
Further, when a current smaller than the current Ib is applied to the solenoid 37, the vehicle height is adjusted to become higher, contrary to the above.

しかも、上記ソレノイド37へ通電される電流
を増減調節する際の電流変化の緩急に応じて可変
絞り弁8も緩急調節されるので、電流調節速度を
適宜制御することにより車高調整速度を制御する
ことが出来る。
Moreover, the variable throttle valve 8 is also adjusted slowly or quickly according to the speed of the current change when increasing or decreasing the current supplied to the solenoid 37, so the vehicle height adjustment speed is controlled by appropriately controlling the current adjustment speed. I can do it.

このような制御は車速や路面状況に応じて制御
ユニツト10により以下のように行われる。
Such control is performed by the control unit 10 in the following manner depending on the vehicle speed and road surface conditions.

上記車速センサ12は駆動主軸の回転を既存の
回転検出手段(例えばスリツト付回転デイスク及
び光源及びフオトトランジスタからなるもの、或
いは回転デイスク及びピツクアツプセンサからな
るものなど)で検出するものであり、その検出信
号は制御ユニツト10へ出力される。
The vehicle speed sensor 12 detects the rotation of the main drive shaft using existing rotation detection means (for example, one consisting of a rotating disk with a slit, a light source, and a phototransistor, or one consisting of a rotating disk and a pickup sensor). The signal is output to control unit 10.

上記路面状態選択スイツチ13は運転席のイン
ストルメントパネルに付設され、車高に影響する
路面状態の良否に対応するようにランク付けされ
た3〜4個のセレクトスイツチを有し、ドライバ
ーの判断により何れかのセレクトスイツチが選択
さるようになつており、その信号は制御ユニツト
10へ出力される。
The road surface condition selection switch 13 is attached to the instrument panel of the driver's seat, and has 3 to 4 select switches ranked according to the quality of the road surface conditions that affect the vehicle height. One of the select switches is selected, and the signal thereof is output to the control unit 10.

上記車高センサ12は例えば回動式ポテンシヨ
メータからなるもので、各車輪3の近傍の車体1
7と懸架装置2のリンク腕の間に介装され、車体
17の昇降に対応するリンク腕の上下動に応じて
その抵抗値が増減し、この抵抗値の変動から車高
を検出するようにしたものであり、その検出信号
は制御ユニツト10へ出力されるが、これ以外の
各種車高センサを用いてもよい。
The vehicle height sensor 12 is composed of, for example, a rotary potentiometer, and is mounted on the vehicle body 1 near each wheel 3.
7 and the link arm of the suspension system 2, and its resistance value increases or decreases in accordance with the vertical movement of the link arm corresponding to the rise and fall of the vehicle body 17, and the vehicle height is detected from the fluctuation of this resistance value. The detection signal is output to the control unit 10, but various vehicle height sensors other than this may be used.

上記制御ユニツト10は、第3図に示すように
目標車高演算回路10aと判別回路10bと弁調
整速度演算回路10cと、駆動回路10dとから
なる。
As shown in FIG. 3, the control unit 10 includes a target vehicle height calculation circuit 10a, a discrimination circuit 10b, a valve adjustment speed calculation circuit 10c, and a drive circuit 10d.

上記目標車高演算回路10aでは、路面状態選
択スイツチ13及び車速センサ11からの出力を
受け、予め入力され記憶されているプログラムデ
ータに基いて上記路面状態と車速とに対応する目
標車高が演算される。この場合、定性的には路面
状態が悪化する程車高は段階的に高く設定されま
た走行安定性と空力特性の向上のため車速が速く
なる程車高は段階的に低く設定される。
The target vehicle height calculation circuit 10a receives outputs from the road surface condition selection switch 13 and the vehicle speed sensor 11, and calculates a target vehicle height corresponding to the road surface condition and vehicle speed based on program data inputted and stored in advance. be done. In this case, qualitatively, the vehicle height is set higher in stages as the road surface condition worsens, and the vehicle height is set lower in stages as the vehicle speed becomes faster in order to improve driving stability and aerodynamic characteristics.

上記判別回路10bでは、4個の車高センサ1
2からの出力信号を受けて例えば10msec毎の車
高平均値が演算され、この車高平均値と上記目標
車高とが比較され、車高平均値が目標車高の許容
範囲に入つているときには車高を調整する必要が
ないので駆動回路10dへは出力されずにソレノ
イド電流が維持され、これに対して車高平均値が
目標車高の許容範囲より高いときにはこの両者の
差に対応するだけ駆動回路10dを介してソレノ
イド電流が増加側へ調節され、また上記の反対に
車高平均値が目標車高の許容範囲より低いときに
はこの両者の差に対応するだけ駆動回路10dを
介してソレノイド電流が減少側へ調節される。
In the discrimination circuit 10b, four vehicle height sensors 1
In response to the output signal from 2, the vehicle height average value is calculated every 10 msec, for example, and this vehicle height average value is compared with the above target vehicle height, and the vehicle height average value is within the allowable range of the target vehicle height. Sometimes there is no need to adjust the vehicle height, so the solenoid current is maintained without being output to the drive circuit 10d.On the other hand, when the average vehicle height is higher than the allowable range of the target vehicle height, the difference between the two is handled. Conversely, when the average vehicle height is lower than the allowable range of the target vehicle height, the solenoid current is adjusted to the increasing side via the drive circuit 10d by an amount corresponding to the difference between the two. The current is adjusted downward.

上記弁調整速度演算回路10cは上記の如くソ
レノイド電流を増減する際にその電流変化速度を
調節して可変絞り弁8の調整速度を調節すること
により車高調整速度を調節するものである。
The valve adjustment speed calculation circuit 10c adjusts the speed of adjustment of the variable throttle valve 8 by adjusting the speed of current change when increasing or decreasing the solenoid current as described above, thereby adjusting the speed of adjustment of the vehicle height.

即ち、弁調整速度演算回路10cでは車速セン
サ11からの出力信号を受けて車速が演算され、
車速が設定速度(例えば80Km/hr)以下のときに
は弁調整速度が略設定値となるように駆動回路1
0dを介してソレノイド電流が比較的短時間で増
減調節される一方、車速が設定速度よりも大きい
ときには弁調整速度が設定値の約1/2〜1/3程度と
なるように駆動回路10dを介してソレノイド電
流が比較的長時間で増減調節される。これによ
り、高速走行時には緩やかに車高調整し空力特性
の急変を防ぎ走行安定性を良好に保つことが出来
る。
That is, the valve adjustment speed calculation circuit 10c receives the output signal from the vehicle speed sensor 11 and calculates the vehicle speed.
When the vehicle speed is less than the set speed (e.g. 80 km/hr), the drive circuit 1 is adjusted so that the valve adjustment speed is approximately at the set value.
The drive circuit 10d is controlled so that the solenoid current is increased/decreased in a relatively short time via the valve 0d, while the valve adjustment speed is approximately 1/2 to 1/3 of the set value when the vehicle speed is higher than the set speed. The solenoid current is increased or decreased over a relatively long period of time. As a result, when driving at high speeds, it is possible to gently adjust the vehicle height, prevent sudden changes in aerodynamic characteristics, and maintain good driving stability.

次に、以上に構成におけるその作用を説明す
る。
Next, the operation of the above configuration will be explained.

上記油圧供給装置1からは常時設定流量Q1の
圧油が供給され、またリリーフ油路6及び流量調
整手段に相当する可変絞り装置7を介して常時圧
油がリリーフされるが、このリリーフ流量Q2は
可変絞り弁8の絞り具合で調節される。
Pressure oil is always supplied from the hydraulic pressure supply device 1 at a set flow rate Q1, and the pressure oil is constantly relieved via the relief oil passage 6 and the variable throttle device 7 corresponding to the flow rate adjustment means, but this relief flow rate Q2 is adjusted by the degree of throttling of the variable throttle valve 8.

既に述べたように、制御ユニツト10では車速
センサ11、路面状態選択スイツチ13及び車高
センサ12からの出力信号に基いて得られた目標
車高と実車高とが比較判断され、車高を高く調整
するときにはソレノイド電流を減少させることに
よりリリーフ流路6の可変絞り弁8が絞られ、設
定流量Q1よりもリリーフ流量Q2が少なくなる
ように調節される。すると、油圧供給装置1から
の圧油の一部がリリーフされずにストラツト4の
油室14へ供給されるため車高が高くなる。そし
て、実車高が目標車高の許容範囲に入つた時点で
はその車高を維持しなければならないので、設定
流量Q1とリリーフ流量Q2とが等しくなるよう
に可変絞り弁8が調節される。
As already mentioned, the control unit 10 compares the target vehicle height obtained based on the output signals from the vehicle speed sensor 11, the road surface condition selection switch 13, and the vehicle height sensor 12 with the actual vehicle height, and raises the vehicle height. When adjusting, the variable throttle valve 8 of the relief flow path 6 is throttled by reducing the solenoid current, and the relief flow rate Q2 is adjusted to be smaller than the set flow rate Q1. Then, a portion of the pressure oil from the hydraulic pressure supply device 1 is supplied to the oil chamber 14 of the strut 4 without being relieved, so that the vehicle height increases. Then, when the actual vehicle height falls within the allowable range of the target vehicle height, the vehicle height must be maintained, so the variable throttle valve 8 is adjusted so that the set flow rate Q1 and the relief flow rate Q2 become equal.

車高を低く調製するときには、上記とは反対に
リリーフ流路6の可変絞り弁8の絞り具合を緩
め、設定流量Q1よりもリリーフ流量Q2が多く
なるように調節され、実車高が目標車高の許容範
囲に入つた時点では設定流量Q1とリリーフ流量
Q2とが等しくなるように調節される。
When lowering the vehicle height, contrary to the above, the throttle of the variable throttle valve 8 in the relief flow path 6 is loosened, and the relief flow rate Q2 is adjusted to be greater than the set flow rate Q1, so that the actual vehicle height matches the target vehicle height. When the set flow rate Q1 and the relief flow rate Q2 are within the allowable range, the set flow rate Q1 is adjusted to be equal to the relief flow rate Q2.

しかも、上記制御ユニツト10により高速走行
時には可変絞り弁8を緩やかに調節することによ
り車高調整が緩やかに行われ、低速走行時には上
記と反対に車高調整が迅速におこなわれる。
Moreover, when the vehicle is traveling at high speeds, the control unit 10 gently adjusts the variable throttle valve 8 to gently adjust the vehicle height, whereas when the vehicle is traveling at low speeds, the vehicle height is quickly adjusted.

次に、自動車の荷物を積み込んだ場合には、ス
トラツトに加わる荷重の増加によりストラツト4
のピストンロツド20に働く油圧力と荷重の均衡
が破られ、瞬間的にはピストンロツド20が下降
し始めオーバーフローした圧油が油路5側へ逆流
するがリリーフ流量Q2は設定流量Q1と等しい
ので、上記オーバーフローした圧油の一部のみが
リリーフされるだけで可変絞り弁8の絞り作用で
ストラツト4の油室14内の油圧が増加して均衡
し、車高は幾分低下して安定する。そこで、前記
の如く設定流量Q1よりもリリーフ流量Q2を少
なくすることにより車高を原車高まで回復させて
から、再び設定流量Q1とリリーフ流量Q2とが
等しくなるように調節する。
Next, when the car is loaded with luggage, the strut 4
The balance between the hydraulic pressure and load acting on the piston rod 20 is broken, and the piston rod 20 momentarily begins to descend, causing the overflowing pressure oil to flow back toward the oil passage 5. However, since the relief flow rate Q2 is equal to the set flow rate Q1, the above-mentioned Only a portion of the overflowing pressure oil is relieved, and the oil pressure in the oil chamber 14 of the strut 4 is increased and balanced by the throttling action of the variable throttle valve 8, and the vehicle height is somewhat lowered and stabilized. Therefore, as described above, the vehicle height is restored to the original vehicle height by making the relief flow rate Q2 smaller than the set flow rate Q1, and then the set flow rate Q1 and the relief flow rate Q2 are adjusted to be equal again.

また、自動車から荷物を降す場合には、上記と
反対に車高が高くなるので、設定流量Q1よりも
リリーフ流量Q2を多くすることにより車高を原
車高まで下げてから、再び設定流量Q1とリリー
フ流量Q2とが等しくなるように調節する。
In addition, when unloading cargo from a car, the vehicle height increases contrary to the above, so by increasing the relief flow rate Q2 than the set flow rate Q1, the vehicle height is lowered to the height of the original vehicle, and then the set flow rate is increased again. Adjust so that Q1 and relief flow rate Q2 are equal.

結局、上記実施例の自動車の車高調整装置によ
れば簡単な構造の流量調整手段に相当する1個の
可変絞り装置7を制御するだけで、車高及び車高
調整速度を応答性よく精密に調節することが出来
る。
In the end, according to the vehicle height adjustment device of the above embodiment, the vehicle height and vehicle height adjustment speed can be adjusted precisely and responsively by simply controlling one variable throttle device 7, which corresponds to a flow rate adjustment means with a simple structure. It can be adjusted to

ここで、上記実施例を次のように部分的に変更
することができる。
Here, the above embodiment can be partially modified as follows.

第1変形例:第4図に示すように、油圧供給装
置1の流量制御弁1Dが4系統の油路5へ設
定流量の圧油を分配する分流弁で構成され、
上記4系統の油路5が各々各車輪3に対応す
るストラツト4へ接続され、4系統の油路5
の各々にリリーフ油路6が接続され、各リリ
ーフ油路6に可変絞り装置7が付設され、各
可変絞り装置7が制御ユニツト10で制御さ
れる。
First modification: As shown in FIG. 4, the flow rate control valve 1D of the hydraulic pressure supply device 1 is configured with a diversion valve that distributes a set flow rate of pressure oil to the four oil lines 5,
The four oil passages 5 are connected to the struts 4 corresponding to each wheel 3, and the four oil passages 5 are connected to the struts 4 corresponding to each wheel 3.
A relief oil passage 6 is connected to each of the relief oil passages 6, a variable throttle device 7 is attached to each relief oil passage 6, and each variable throttle device 7 is controlled by a control unit 10.

このように、各車輪3に対応するストラツ
ト4を独立に制御することにより各車輪4の
個所での車高を独立に制御することが可能と
なり、次のような車高調整も可能となる。
In this way, by independently controlling the struts 4 corresponding to each wheel 3, it is possible to independently control the vehicle height at each wheel 4, and the following vehicle height adjustment is also possible.

例えば、旋回時のローリングを防ぐために
はハンドル舵角に応じて外輪側のストラツト
4に対応する可変絞り弁8のリリーフ流量を
少なくし、内輪側のストラツト4に対応する
可変絞り弁8のリリーフ流量を多くする。
For example, in order to prevent rolling when turning, the relief flow rate of the variable throttle valve 8 corresponding to the strut 4 on the outer wheel side is reduced depending on the steering angle, and the relief flow rate of the variable throttle valve 8 corresponding to the strut 4 on the inner wheel side is reduced. increase.

また例えば、ブレーキング時のノーズダイ
ブを防ぐためには、ブレーキ油圧に応じて前
輪側のストラツト4に対応する可変絞り弁8
のリリーフ流量を少なくし、後輪側のストラ
ツト4に対応する可変絞り弁8のリリーフ流
量を多くする。
For example, in order to prevent nose dive during braking, a variable throttle valve 8 corresponding to the strut 4 on the front wheel side is required depending on the brake oil pressure.
The relief flow rate of the variable throttle valve 8 corresponding to the strut 4 on the rear wheel side is increased.

尚、図中符号38は各ストラツト4の油室
14に接続されたダイヤフラム型アキユムレ
ータであり、路面から車輪3に伝わる高周波
振動を吸収するためのものである。
Incidentally, reference numeral 38 in the figure is a diaphragm type accumulator connected to the oil chamber 14 of each strut 4, and is for absorbing high frequency vibrations transmitted from the road surface to the wheels 3.

第2変形例:可変絞り装置7について、可変絞
り弁8の構造は図示の構造に限定されるもの
ではなく、各種構造の可変絞り弁を用いるこ
とが出来、また駆動部9は比例ソレノイド形
駆動手段に代えて、ステツピングモータでラ
ツク・ピニオン機構等を介して弁棒26を制
御してもよく、或いは油圧シリンダでロータ
リーエンコーダー又はソレノイド弁等を介し
て制御してもよい。
Second modification: Regarding the variable throttle device 7, the structure of the variable throttle valve 8 is not limited to the illustrated structure, and variable throttle valves of various structures can be used, and the drive unit 9 is a proportional solenoid type drive. Alternatively, the valve stem 26 may be controlled by a stepping motor via a rack and pinion mechanism, or by a hydraulic cylinder via a rotary encoder or solenoid valve.

第3変形例:路面状態については、制御ユニツ
ト10において車高センサ12の出力信号に
基いて車高振幅を演算し、この車高振幅から
路面状態を判定するようにしてもよい。
Third modification: Regarding the road surface condition, the control unit 10 may calculate the vehicle height amplitude based on the output signal of the vehicle height sensor 12, and the road surface condition may be determined from this vehicle height amplitude.

更に、上下方向の加速度を検出する加速度検出
センサを車軸15等に付設し、その検出信号に基
いて路面状態を判定してもよい。
Furthermore, an acceleration detection sensor that detects acceleration in the vertical direction may be attached to the axle 15 or the like, and the road surface condition may be determined based on the detection signal.

尚、路面の凹凸・バウンシング・ピツチング・
ローリングの固有振動に対しては、初めの外乱に
よる変位の後適正位置に復帰するまでの時間を、
路面の周波数に応じて低周波路では長くまた高周
波路では短く制御することも出来る。
In addition, unevenness of the road surface, bouncing, pitching, etc.
For the natural vibration of rolling, the time required to return to the proper position after displacement due to the initial disturbance is
Depending on the frequency of the road surface, it is also possible to control the length to be long in low frequency paths and short in high frequency paths.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示すもので、第1図は
全体構成図、第2図はストラツトの縦断面図、第
3図は可変絞り装置を制御する制御系のブロツク
図、第4図は変形例の油圧系統図である。 1……油圧供給装置、4……ストラツト、5…
…油路、6……リリーフ油路、7……可変絞り装
置(流量調整手段)、8……可変絞り弁、9……
駆動部、10……制御ユニツト、11……車速セ
ンサ、12……車高センサ、23……路面状態選
択スイツチ、14……油室、15……車軸、17
……車体。
The drawings show an embodiment of the present invention; Fig. 1 is an overall configuration diagram, Fig. 2 is a vertical sectional view of the strut, Fig. 3 is a block diagram of the control system that controls the variable diaphragm device, and Fig. 4 is a block diagram of the control system that controls the variable diaphragm device. It is a hydraulic system diagram of a modification. 1... Hydraulic supply device, 4... Strut, 5...
... Oil path, 6 ... Relief oil path, 7 ... Variable throttle device (flow rate adjustment means), 8 ... Variable throttle valve, 9 ...
Drive unit, 10...Control unit, 11...Vehicle speed sensor, 12...Vehicle height sensor, 23...Road surface condition selection switch, 14...Oil chamber, 15...Axle, 17
...Car body.

Claims (1)

【特許請求の範囲】 1 車軸と車体との間に伸縮自在に付設され内部
に液室を有するストラツトと、常時所定流量の加
圧液を供給する加圧液供給手段と、上記加圧液供
給手段と上記ストラツトの液室とを連結する液体
通路と、上記液体通路に接続され加圧液を液体通
路から外部へリリーフするリリーフ通路と、上記
リリーフ通路に付設されリリーフされる加圧液の
流量を常時調整する流量調整手段であつて、リリ
ーフされる加圧液の流量と流量調整速度を制御可
能な流量調整手段とを備え、 上記リリーフ通路からリリーフされる加圧液の
流量を変化させて上記ストラツトが伸縮するよう
に構成したことを特徴とするハイドロニユーマチ
ツクサスペンシヨン。
[Scope of Claims] 1. A strut that is telescopically attached between an axle and a vehicle body and has a liquid chamber therein, a pressurized liquid supply means that always supplies a predetermined flow rate of pressurized liquid, and the pressurized liquid supply described above. a liquid passage connecting the means and the liquid chamber of the strut, a relief passage connected to the liquid passage and relieving the pressurized liquid from the liquid passage to the outside, and a flow rate of the pressurized liquid attached to the relief passage to be relieved. The flow rate adjustment means constantly adjusts the flow rate of the pressurized liquid relieved from the relief passage, the flow rate adjustment means being capable of controlling the flow rate of the pressurized liquid relieved and the flow rate adjustment speed, and changing the flow rate of the pressurized liquid relieved from the relief passage. A hydroneumatic suspension characterized in that the strut is configured to expand and contract.
JP5904184A 1984-03-26 1984-03-26 Hydropneumatic suspension Granted JPS60203512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5904184A JPS60203512A (en) 1984-03-26 1984-03-26 Hydropneumatic suspension

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5904184A JPS60203512A (en) 1984-03-26 1984-03-26 Hydropneumatic suspension

Publications (2)

Publication Number Publication Date
JPS60203512A JPS60203512A (en) 1985-10-15
JPH0585368B2 true JPH0585368B2 (en) 1993-12-07

Family

ID=13101819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5904184A Granted JPS60203512A (en) 1984-03-26 1984-03-26 Hydropneumatic suspension

Country Status (1)

Country Link
JP (1) JPS60203512A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100408364C (en) * 2002-08-07 2008-08-06 丰田自动车株式会社 Ground contact load control apparatus for vehicle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6064013A (en) * 1983-09-19 1985-04-12 Kayaba Ind Co Ltd Car height adjusting device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6064013A (en) * 1983-09-19 1985-04-12 Kayaba Ind Co Ltd Car height adjusting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100408364C (en) * 2002-08-07 2008-08-06 丰田自动车株式会社 Ground contact load control apparatus for vehicle

Also Published As

Publication number Publication date
JPS60203512A (en) 1985-10-15

Similar Documents

Publication Publication Date Title
US5390121A (en) Banded on-off control method for semi-active dampers
US3124368A (en) Electronic controlled vehicle suspension system
EP0080291B1 (en) Computer optimized adaptive suspension system having combined shock absorber/air spring unit
US5082309A (en) Suspension system for vehicles
US4826206A (en) Tension actuator load suspension system
JPH0662052B2 (en) Spring mechanism for wheel suspension
JPH0295911A (en) Control device for automobile active suspension
JP2003072340A (en) Double mode regenerative suspension for off road vehicle
JPH0667684B2 (en) Control device for automobile active suspension
JPH0780409B2 (en) Active suspension
US4909534A (en) Actively controlled automotive suspension system with variable damping coefficient and/or spring coefficient
US5137299A (en) Active suspension system
JPS61163009A (en) Vehicle
JP2921688B2 (en) Hydraulic cylinder for suspension
JPH0585368B2 (en)
JPH0585367B2 (en)
JPH048246B2 (en)
JPH06510102A (en) buffer unit
JPH08104122A (en) Suspension control device
JPS62194918A (en) Hydraulic suspension control device
JPS6355478B2 (en)
JP2506331B2 (en) Actively controlled suspension device
JPS60209314A (en) Automobile height controller
JP2532064B2 (en) Active suspension
JP2536146Y2 (en) Suspension device