JPH0584864B2 - - Google Patents

Info

Publication number
JPH0584864B2
JPH0584864B2 JP62225993A JP22599387A JPH0584864B2 JP H0584864 B2 JPH0584864 B2 JP H0584864B2 JP 62225993 A JP62225993 A JP 62225993A JP 22599387 A JP22599387 A JP 22599387A JP H0584864 B2 JPH0584864 B2 JP H0584864B2
Authority
JP
Japan
Prior art keywords
angle
probes
probe
sides
connecting member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62225993A
Other languages
Japanese (ja)
Other versions
JPS6468652A (en
Inventor
Itaru Tamura
Katsuyuki Yabuchi
Tetsuzo Harada
Takamasa Ogata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP62225993A priority Critical patent/JPS6468652A/en
Publication of JPS6468652A publication Critical patent/JPS6468652A/en
Publication of JPH0584864B2 publication Critical patent/JPH0584864B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、超音波により溶接欠陥を精度よく検
出する自動超音波探傷装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an automatic ultrasonic flaw detection device that accurately detects welding defects using ultrasonic waves.

(従来技術とその課題) 従来の超音波探傷装置においては、第4図の平
面図に示すように、一定の屈折角を有する所謂斜
角探触子(以下単に探触子という)1を溶接線2
に対して直角方向にのみ配置しているが、これで
は溶接線2に対して傾きを持つ溶接欠陥Fは超音
波3が元に戻つてこないか、或いはこの場合、反
射エコーが低くなり易いため溶接欠陥Fを看過し
たり、過小評価したりする危険性がある。
(Prior art and its problems) In a conventional ultrasonic flaw detection device, as shown in the plan view of Fig. 4, a so-called bevel probe (hereinafter simply referred to as a probe) 1 having a certain refraction angle is welded. line 2
However, in this case, the ultrasonic wave 3 will not return to the welding defect F that is inclined with respect to the weld line 2, or in this case, the reflected echo will likely be low. There is a risk of overlooking or underestimating welding defect F.

因に、第7図は溶接欠陥に対する超音波の入射
角と反射エコー高さの関係を示す。これによれば
超音波の入射方向とほぼ垂直な方向の溶接欠陥F
の場合エコーは最高となり、これより角度をもつ
た欠陥についてはエコーは急激に低下することが
わかる。
Incidentally, FIG. 7 shows the relationship between the incident angle of ultrasonic waves and the reflected echo height with respect to a welding defect. According to this, welding defect F in a direction almost perpendicular to the direction of incidence of ultrasonic waves
It can be seen that the echo is the highest in the case of , and the echo drops sharply for defects with angles greater than this.

そこで、この欠点を補うため、第5図イの平面
図及び同ロの断面図に示すように、突合せ溶接線
2を有する被検査体5上をジグザグ走査4a(こ
れは、溶接線方向への移動量が極めて少ない場合
は、第4図の点線で示す縦方形走査4と同様の効
果になる。しかし、この走査は工業上極めて非能
率である。)をしながら首振り(約±10〜15°)走
査を行うべきことがJISZ3060−1983に規定され
ているが、ジグザグ走査の速度に対して首振り走
査の速度が極めて速い場合を除いては第6図の溶
接部拡大断面図の斜線部6により示すような探傷
不能領域が存在してしまう。また、首振り走査を
極めて速い速度で行うことは困難である。
Therefore, in order to compensate for this drawback, as shown in the plan view of FIG. 5A and the cross-sectional view of FIG. If the amount of movement is extremely small, the effect will be similar to the vertical rectangular scan 4 shown by the dotted line in Figure 4.However, this scan is extremely inefficient industrially. JISZ3060-1983 stipulates that scanning should be performed at 15°), but unless the speed of oscillating scanning is extremely faster than the speed of zigzag scanning, the diagonal line in the enlarged cross-sectional view of the weld in Figure 6 There is an undetectable area as shown by section 6. Furthermore, it is difficult to perform swing scanning at extremely high speeds.

したがつて、従来の超音波探傷装置によると、
溶接欠陥の検出確率及び検出精度が悪いという問
題がある。
Therefore, according to conventional ultrasonic flaw detection equipment,
There is a problem that the detection probability and detection accuracy of welding defects are low.

(課題を解決するための手段) 本発明に係る自動超音波探傷装置は、溶接線を
挟んで両側に配置され、かつ前記溶接線に対し
種々の水平角度を有する超音波斜角探触子を個々
に内蔵したホルダー複数個を各側一組として各々
連結材に連結し、この両側の連結材を相対距離を
一定に保ちつつ同時に縦方向に移動自在に構成す
ると共に、各連結材を横方向走行可能な保持枠に
保持し、上記連結材を縦方向および上記保持枠を
横方向に自動的に被検査体面上を移動させて上記
両側探触子の同時走査を行うようにしたものであ
る。
(Means for Solving the Problems) An automatic ultrasonic flaw detection device according to the present invention includes ultrasonic angle probes that are arranged on both sides of a weld line and have various horizontal angles with respect to the weld line. A plurality of individually built-in holders are connected to the connecting members as a set on each side, and the connecting members on both sides are configured to be movable in the vertical direction at the same time while keeping the relative distance constant, and each connecting member can be moved in the horizontal direction. The probe is held in a movable holding frame, and the connecting member is automatically moved vertically and the holding frame is moved horizontally over the surface of the object to be inspected to simultaneously scan the probes on both sides. .

(作用) 本発明に係る超音波探傷装置においては、溶接
線に対し種々の水平角度を有する探触子を溶接線
を挟んで両側に配置して同時走査を行うことがで
きるようにしたので傾きを有する欠陥を精度よく
検出でき、また、本発明のように両側探触子を相
対距離を一定に保ちつつ同時走査させた場合に両
側各チヤンネルの探傷結果を合成表示できるよう
にしておくと、ほぼ実際のままの欠陥を検出表示
でき、欠陥を過小評価する危険性がなくなる。
(Function) In the ultrasonic flaw detection device according to the present invention, probes having various horizontal angles with respect to the weld line are arranged on both sides of the weld line so that simultaneous scanning can be performed. It is possible to accurately detect defects having Defects can be detected and displayed almost as they actually are, eliminating the risk of underestimating defects.

(実施例) 以下、本発明の実施例を図面に基づいて説明す
る。
(Example) Hereinafter, an example of the present invention will be described based on the drawings.

第1図の概念図(イ平面図、ロ断面図)に示す
ように、突合せ溶接線2を有する被検査体5上に
該溶接線2に対し種々の水平角を有する複数個
(この実施例では溶接線の片側3個ずつ)の探触
子1a〜fが配置されている。これらの探触子
は、一定の屈折角θを持つ斜角探触子であり、片
側一組として連結材31により連結され、この連
結材31はひとつの保持枠29に溶接線2に対し
垂直方向(以下縦方向という)移動自在に保持さ
れると共に、保持枠29は溶接線2に平行方向
(以下横方向という)に走行可能に構成されてい
る。すなわち、連結材31の縦方向の動きと保持
枠29の横方向の動きが自動的になされることに
より溶接線2の両側に配置されたこれら探触子は
同時にしかも後述する図3の如く相対距離を一定
に保ちつつ縦方向走査できるようになつている。
As shown in the conceptual diagram (A plan view, B cross-sectional view) in FIG. In this case, three probes 1a to 1f are arranged on each side of the weld line. These probes are bevel probes with a constant refraction angle θ, and are connected as a pair on one side by a connecting member 31, and this connecting member 31 is attached to one holding frame 29 perpendicularly to the welding line 2. The holding frame 29 is held movably in a direction (hereinafter referred to as the vertical direction), and is configured to be movable in a direction parallel to the welding line 2 (hereinafter referred to as the lateral direction). That is, by automatically moving the connecting member 31 in the vertical direction and moving the holding frame 29 in the horizontal direction, these probes placed on both sides of the welding line 2 are moved simultaneously and relative to each other as shown in FIG. 3, which will be described later. It is designed to be able to scan vertically while maintaining a constant distance.

溶接線2の左側の探触子1aは溶接線2の垂線
に対し時計回りにα1の角度、1bは溶接線2に
対し直角(この実施例では直角であるが、必ずし
も直角である必要はなく任意の角度に設定されて
もよい)、1cは反時計回りにα2の角度を持つて
配置されている。
The probe 1a on the left side of the welding line 2 is at an angle of α1 clockwise with respect to the perpendicular to the welding line 2, and the probe 1b is at a right angle to the welding line 2 (in this example, it is at a right angle, but it does not necessarily have to be at a right angle. (may be set at any angle), 1c is arranged counterclockwise at an angle α2.

一方、同様に右側の探触子1dはβ1、1eは
直角、1fはβ2の角度を持つて配置されている。
探触子の数は片側3個に限るものではなく、例え
ば、α1〜αn,β1〜βnの角度を持つn個ずつの探
触子を配置してもよい。数が多くなるとそれだけ
欠陥の検出確率、精度が向上するものである。
On the other hand, similarly, the probe 1d on the right side is arranged at an angle of β1, the probe 1e is at a right angle, and the probe 1f is arranged at an angle of β2.
The number of probes is not limited to three on each side; for example, n probes having angles of α1 to αn and β1 to βn may be arranged. As the number increases, the defect detection probability and accuracy improve accordingly.

なお、このような探傷結果は、コンピユータ処
理により画像表示が行われるのは従来と同様であ
るのでここでは省略する。
It should be noted that the image display of such flaw detection results through computer processing is the same as in the past, and therefore will not be described here.

第1図のように、複数個の探触子1a〜1fを
溶接線2を挟んで両側に配置して同時走査を行う
と、各探触子は溶接線2に対しそれぞれ異なつた
角度で配置されているから種々の傾きを有する欠
陥を検出でき、また、各探触子に対応する各チヤ
ンネル毎に探傷結果を表示できるようにしておく
と、エコー高さが最大となるチヤンネルの探触子
を知ることができるから、該探触子の配置角度か
ら溶接欠陥の傾きを知ることも可能となる。
As shown in Figure 1, when multiple probes 1a to 1f are placed on both sides of the welding line 2 and scanning is performed simultaneously, each probe is placed at a different angle to the welding line 2. Because of this, it is possible to detect defects with various inclinations, and if the flaw detection results can be displayed for each channel corresponding to each probe, it is possible to detect the probe in the channel with the maximum echo height. Since it is possible to know the inclination of the welding defect from the arrangement angle of the probe.

また、本発明のように両側探触子を同時走査さ
せ両側各チヤンネルの探傷結果を合成表示できる
ようにしておくと、欠陥を過小評価する危険性が
なくなる。すなわち、溶接線の片側毎走査してそ
の探傷結果を表示させると、例えば実際は20mmの
欠陥であるのに5mmの欠陥と15mmの欠陥と別々に
表示される場合があるが、両側同時走査しかも図
3の如く両側探触子の相対距離を一定に保ちつつ
同時走査することによりその探傷結果を合成表示
させるとほぼ実際に近い20mmの欠陥を検出でき
る。この場合20mmの欠陥のほうがはるかに危険度
が高いので両側の探触子を同時走査させる意義は
大きい。
Furthermore, if the probes on both sides are simultaneously scanned and the flaw detection results of each channel on both sides can be displayed in a composite manner as in the present invention, there is no risk of underestimating defects. In other words, if you scan each side of the weld line and display the detection results, for example, when the actual defect is 20 mm, it may be displayed separately as a 5 mm defect and a 15 mm defect. As shown in 3, by simultaneously scanning the probes on both sides while keeping the relative distance constant, and displaying the results in a composite manner, it is possible to detect an almost actual 20 mm defect. In this case, a 20 mm defect is much more dangerous, so it is significant to scan both probes simultaneously.

つぎに、本発明を実施するために使用する探触
子部の構造について詳述する。
Next, the structure of the probe section used to carry out the present invention will be described in detail.

第2図において、イは探触子部の構造全体の正
面図、ロは平面図、ハは右側面図、ニはロにおけ
るX〜X断面図及びホは底面図をそれぞれ示す。
In FIG. 2, A shows a front view of the entire structure of the probe section, B shows a plan view, C shows a right side view, D shows a sectional view taken along line X to B, and E shows a bottom view.

第2図イ〜ホにおいて、一定の屈折角をもつ振
動子9を内蔵した断面逆U字形の探触子1はホル
ダー7の円柱状の凹所Cに内蔵されている。この
ホルダー7の下方の一側部には振動子9に対応し
て設けられたケーブル端子18が水平角度±15°
ふれても当接しないよう楕円状の穴19が設けら
れ凹所Cに連通している。探触子1のケーブル端
子18を斜め上方につけて、ホルダー7の楕円状
の穴19を大きくすれば水平角度は±15°に限ら
ず大きくできる。
In FIGS. 2A to 2E, a probe 1 having an inverted U-shaped cross section and containing a transducer 9 having a fixed refraction angle is housed in a cylindrical recess C of a holder 7. On one side below this holder 7, a cable terminal 18 provided corresponding to the vibrator 9 is connected at a horizontal angle of ±15°.
An elliptical hole 19 is provided and communicates with the recess C so that it will not come into contact even if touched. By attaching the cable terminal 18 of the probe 1 diagonally upward and enlarging the elliptical hole 19 of the holder 7, the horizontal angle can be increased not only to ±15°.

上記探触子1の上部にはホルダー7の上部を挿
通して角度設定軸8が固着されており、これを軸
とする歯車状の回動駒13がホルダー7の上面に
設けられている。この回動駒13は、ホルダー7
上面両側に配設された長方形の立壁10間に回動
自在に軸着されたねじ軸11に噛合し、ねじ軸1
1の回転により回転するようになつている。この
回転は角度設定軸8に伝わり探触子1を回転させ
るものである。この動作により、探触子1の角度
設定が可能となる。もし、角度設定のねじ軸11
が本構造のように側部になく上方にあると、この
上部につくジンバル機構の妨げになる。
An angle setting shaft 8 is fixed to the upper part of the probe 1 by passing through the upper part of the holder 7, and a gear-shaped rotation piece 13 having this shaft as an axis is provided on the upper surface of the holder 7. This rotating piece 13 is connected to the holder 7
The screw shaft 1 engages with a screw shaft 11 rotatably mounted between rectangular vertical walls 10 arranged on both sides of the upper surface.
It is designed to rotate by rotation of 1. This rotation is transmitted to the angle setting shaft 8 and causes the probe 1 to rotate. This operation allows the angle of the probe 1 to be set. If the angle setting screw shaft 11
If it is located above instead of on the side like in this structure, it will interfere with the gimbal mechanism attached to the top.

なお、角度指示板14aは、JISZ3060−1983
で規定する首振り走査の首振り角±10°〜15°の範
囲の数字が表示されている。そして、回動駒13
の頂部に止金15により固定された指示針14が
角度指示板14aまで垂下しており探触子1の設
定角を知ることができるようになつている。ねじ
軸11の頭部に刻設された溝11aは、探触子1
の設定角を所定の水平角に設定する時に、この溝
にドライバーなどの先端を差し込んでねじ軸11
を回動させるためのものである。
Note that the angle indicator plate 14a conforms to JISZ3060-1983.
Numbers in the range of ±10° to 15° are displayed for the swing angle of the swing scan specified by . And rotating piece 13
An indicator needle 14 fixed to the top of the probe 1 by a clasp 15 hangs down to an angle indicator plate 14a, so that the set angle of the probe 1 can be determined. A groove 11a carved in the head of the screw shaft 11 is formed in the probe 1.
When setting the setting angle of the screw to the specified horizontal angle, insert the tip of a screwdriver etc. into this groove and
It is for rotating.

上記ホルダー7の下端四隅には凹所が設けら
れ、ここに被検査体5面上を円滑に移動可能にな
るよう軸17により軸着された転動輪16が配設
されている。なお、ホルダー7の側壁には後述す
る第1ジンバル20を揺動自在に枢着するための
軸穴20aが設けてある。
Recesses are provided at the four corners of the lower end of the holder 7, and a rolling wheel 16 is disposed therein, which is fixed by a shaft 17 so as to be able to move smoothly on the surface of the object to be inspected 5. Note that a shaft hole 20a is provided in the side wall of the holder 7 for pivotally mounting a first gimbal 20, which will be described later.

つぎに、第3図により、複数個の探触子1を同
時走査させるための自動走査装置について説明す
る。
Next, an automatic scanning device for simultaneously scanning a plurality of probes 1 will be explained with reference to FIG.

第3図イは、溶接線2の両側に所定の角度設定
された複数個の探触子1を配置した場合の平面図
を示し、第3図ロは、その正面図である。
FIG. 3A shows a plan view of a case where a plurality of probes 1 are arranged at a predetermined angle on both sides of the weld line 2, and FIG. 3B is a front view thereof.

第3図イ及びロにおいて、ホルダー7に遊嵌さ
れ、かつ横方向に揺動自在に軸穴20aに枢着さ
れた四角枠の第1ジンバル20と、更に、これを
上方より挟持するように逆U字形の第2ジンバル
21が、その下端付近で第1ジンバルに軸21a
により縦方向に揺動自在に枢着されている。
In FIGS. 3A and 3B, a first gimbal 20 with a rectangular frame is fitted loosely into the holder 7 and pivoted to the shaft hole 20a so as to be able to swing laterally; An inverted U-shaped second gimbal 21 connects to the first gimbal with a shaft 21a near its lower end.
It is pivotally mounted to be able to swing vertically.

上記第1ジンバル20及び第2ジンバル21
は、いずれも揺動自在に構成されているから、被
検査体5面に反りがあつてもホルダー7が円滑に
走行できるものである。
The first gimbal 20 and the second gimbal 21
Since both are configured to be swingable, the holder 7 can move smoothly even if the surface of the object to be inspected 5 is warped.

上記第2ジンバルの頂面に2本の立棒22が植
設され、四角枠状に形成された保持枠29の縦材
29a間に横架する如く配設された連結材31a
ないし31bに遊挿され、同一側に配置された各
ホルダー7を連結する。上記2本の立棒22は、
その上端が横板24に止め金25で止着され、こ
の横板24を介して相互に連結されたようになつ
ている。
Two vertical rods 22 are planted on the top surface of the second gimbal, and a connecting member 31a is disposed so as to span horizontally between the vertical members 29a of the holding frame 29 formed in the shape of a square frame.
The holders 7 are loosely inserted into the holders 7 to 31b, and connect the holders 7 arranged on the same side. The above two vertical rods 22 are
Its upper end is fixed to a horizontal plate 24 with a stopper 25, so that they are connected to each other via the horizontal plate 24.

なお、第2ジンバル21の頂面と連結材31
a,31bの間の立棒22にはスプリング23が
遊嵌して配設され、被検査体5面の凹凸によるホ
ルダー7の上下動に対しこれを下方に押し下げて
常に被検査体5面に当接させるような働きをす
る。一方、保持枠29の横材29bの両側脚部に
は走行輪37が配設され、横方向の走行を円滑に
している。また、横材29bの一側中央付近に立
材29cが立設し、これにステツピングモータ3
3が取着されている。そして、立材29cの背面
にモータの回転を伝達するためのプーリ34,3
5が設けられ、この間にベルト36が張架されて
いる。
Note that the top surface of the second gimbal 21 and the connecting member 31
A spring 23 is loosely fitted into the vertical rod 22 between a and 31b, and presses the spring 23 downward against the up and down movement of the holder 7 due to the unevenness of the 5 surface of the object to be inspected, so that it always remains on the 5 surface of the object to be inspected. It acts like a contact. On the other hand, running wheels 37 are provided on both side legs of the cross member 29b of the holding frame 29 to facilitate smooth movement in the lateral direction. Further, a standing member 29c is erected near the center of one side of the horizontal member 29b, and the stepping motor 3 is connected to this standing member 29c.
3 is attached. And pulleys 34, 3 for transmitting the rotation of the motor to the back side of the upright member 29c.
5 is provided, and a belt 36 is stretched between them.

上記プーリ35と同軸の回動軸26が連結材3
1aの中央のボス部32に螺合挿通し、ついで連
結材31bを遊挿し、横材29b間に架設されて
いる。
The rotation shaft 26 coaxial with the pulley 35 is the connecting member 3
It is threadedly inserted into the central boss portion 32 of 1a, and then the connecting member 31b is loosely inserted, and is constructed between the cross members 29b.

なお、回動軸26と平行に一定間隔をもつて対
称的に配設された固定軸27は、連結材31a,
31bに遊挿され横材29b間に架着されてお
り、連結材31a,31bは上記固定軸27に規
制されて縦方向に移動するようになつている。
Note that the fixed shaft 27, which is symmetrically arranged parallel to the rotation shaft 26 at a constant interval, connects the connecting members 31a,
The connecting members 31a and 31b are loosely inserted into the connecting member 31b and are mounted between the horizontal members 29b, and the connecting members 31a and 31b are regulated by the fixed shaft 27 to move in the vertical direction.

また、上記連結材31a,31b間には、その
一端を連結材31aに止め具30aにより止着さ
れ、探触子1の縦方向の間隔を設定するための間
隔調整板30が回動軸26と固定軸25の間に配
設されている。また、調整金具30bがこの間隔
調整板30の長孔Hに遊挿され、連結材31bに
螺着されている。
Further, between the connecting members 31a and 31b, a distance adjusting plate 30 is fixed to the connecting member 31a at one end with a stopper 30a, and a distance adjusting plate 30 for setting the vertical distance of the probe 1 is attached to the rotating shaft 26. and the fixed shaft 25. Further, an adjustment fitting 30b is loosely inserted into the long hole H of this interval adjustment plate 30, and is screwed onto the connecting member 31b.

つぎに、上記装置の作動について簡単に説明す
ると、ステツピングモータ33の回転がプーリ3
4,35及びベルト36により回動軸26に伝達
されて回転し、これと螺合する連結材31aが縦
方向に駆動され、これに連動して間隔調整板30
を介して連結されている連結材31bも縦方向に
両連結材31a,31bの相対距離を一定に保ち
つつ移動し、一定距離移動して停止すると保持枠
29が他の駆動手段(図示略)で横方向に少しだ
け走行し停止する。ついで、ステツピングモータ
が逆回転して回動軸26も逆回転することによ
り、連結材31a,31bは上記とは反対の縦方
向に同時に相対距離を変えずに移動する。そし
て、また上記動作を繰り返す。これによつて探触
子1の縦方形走査が自動的になされるものであ
る。
Next, to briefly explain the operation of the above device, the rotation of the stepping motor 33 is controlled by the pulley 3.
4, 35 and the belt 36 to rotate the rotating shaft 26, and the connecting member 31a screwed thereto is driven in the vertical direction, and in conjunction with this, the interval adjusting plate 30
The connecting member 31b connected via the connecting member 31b also moves vertically while keeping the relative distance between the connecting members 31a and 31b constant, and when it moves a certain distance and stops, the holding frame 29 moves to another driving means (not shown). The vehicle then moves sideways for a short distance and then stops. Then, the stepping motor rotates in the opposite direction and the rotating shaft 26 also rotates in the opposite direction, so that the connecting members 31a and 31b simultaneously move in the opposite vertical direction to that described above without changing the relative distance. Then, repeat the above operation again. As a result, vertical rectangular scanning of the probe 1 is automatically performed.

上記のような一連動作は、別途設けられている
制御器(図示略)により制御されるものである。
The above series of operations is controlled by a separately provided controller (not shown).

なお、上記実施例では突合せ溶接部の探傷の場
合を示したが、本発明はこれに限らず、一定の曲
率を有するパイプの溶接部の探傷や隅肉溶接部
(この場合は溶接線の背面より走査する)の探傷
にも適用できる。
In addition, although the above embodiment shows the case of flaw detection of a butt weld, the present invention is not limited to this, and the present invention is not limited to this. It can also be applied to flaw detection (more scanning).

(発明の効果) 本発明に係る自動超音波探傷装置によれば、溶
接線に対し種々の水平角度を有する複数個の探触
子を溶接線で挟んで両側に配置して同時走査を行
うようにしたから、超音波の入射角に対し種々の
角度を有する溶接欠陥の検出確率を著しく高める
ことができるうえに、本発明のように両側探触子
を相対距離を一定に保ちつつ同時走査させる場合
には、両側各チヤンネルの探傷結果を合成表示で
きるようにしておくと、ほぼ実際のままの欠陥を
精度よく検出でき、欠陥を過小評価する危険性が
なくなる。
(Effects of the Invention) According to the automatic ultrasonic flaw detection device according to the present invention, a plurality of probes having various horizontal angles with respect to the weld line are arranged on both sides of the weld line to perform simultaneous scanning. Therefore, the probability of detecting welding defects having various angles with respect to the incident angle of the ultrasonic wave can be significantly increased, and the probes on both sides can be scanned simultaneously while keeping the relative distance constant as in the present invention. In such cases, if the flaw detection results of each channel on both sides can be displayed in a composite manner, it is possible to detect defects almost as they actually are with high accuracy, and there is no risk of underestimating defects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す概念図、第2図
は本発明に使用される斜角探触子部の構造、第3
図は本発明を実施するための自動走査装置であ
る。第4図〜第6図は従来技術である。第7図は
溶接欠陥に対する超音波の入射角と反射エコー高
さの関係を示す。 1……(斜角)探触子、2……溶接線、3……
超音波、5……被検査体、7……ホルダー、8…
…角度設定軸、11……ねじ軸、13……回動
駒、20……第1ジンバル、21……第2ジンバ
ル、22……立棒、26……回動軸、27……固
定軸、29……保持枠、30……間隔調整板、3
1,31a,31b……連結材、33……ステツ
ピングモータ。
FIG. 1 is a conceptual diagram showing an embodiment of the present invention, FIG. 2 is a structure of an angle probe used in the present invention, and FIG.
The figure shows an automatic scanning device for implementing the invention. 4 to 6 show the prior art. FIG. 7 shows the relationship between the incident angle of ultrasonic waves and the height of reflected echoes with respect to welding defects. 1... (beveled angle) probe, 2... welding line, 3...
Ultrasonic wave, 5... object to be inspected, 7... holder, 8...
... Angle setting axis, 11 ... Screw shaft, 13 ... Rotating piece, 20 ... First gimbal, 21 ... Second gimbal, 22 ... Vertical rod, 26 ... Rotating axis, 27 ... Fixed axis , 29... Holding frame, 30... Spacing adjustment plate, 3
1, 31a, 31b...Connection material, 33...Stepping motor.

Claims (1)

【特許請求の範囲】[Claims] 1 溶接線を挟んで両側に配置され、かつ前記溶
接線に対し種々の水平角度を有する超音波斜角探
触子を個々に内蔵したホルダー複数個を各側一組
として各々連結材に連結し、この両側の連結材を
相対距離を一定に保ちつつ同時に縦方向に移動自
在に構成すると共に、各連結材を横方向走行可能
な保持枠に保持し、上記連結材を縦方向および上
記保持枠を横方向に自動的に被検査体面上を移動
させて上記両側探触子の同時走査を行うようにし
たことを特徴とする自動超音波探傷装置。
1. A plurality of holders arranged on both sides of the welding line and each containing ultrasonic angle probes having various horizontal angles with respect to the welding line are connected to the connecting member as a set on each side. The connecting members on both sides are configured to be movable in the vertical direction at the same time while maintaining a constant relative distance, and each connecting member is held in a holding frame that is movable in the horizontal direction, and the connecting members are held in the vertical direction and in the holding frame. An automatic ultrasonic flaw detection apparatus characterized in that the probes are automatically moved laterally over the surface of the object to be inspected to perform simultaneous scanning of the probes on both sides.
JP62225993A 1987-09-09 1987-09-09 Automatic ultrasonic flaw detector Granted JPS6468652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62225993A JPS6468652A (en) 1987-09-09 1987-09-09 Automatic ultrasonic flaw detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62225993A JPS6468652A (en) 1987-09-09 1987-09-09 Automatic ultrasonic flaw detector

Publications (2)

Publication Number Publication Date
JPS6468652A JPS6468652A (en) 1989-03-14
JPH0584864B2 true JPH0584864B2 (en) 1993-12-03

Family

ID=16838111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62225993A Granted JPS6468652A (en) 1987-09-09 1987-09-09 Automatic ultrasonic flaw detector

Country Status (1)

Country Link
JP (1) JPS6468652A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11108903A (en) * 1997-10-03 1999-04-23 Ishikawajima Harima Heavy Ind Co Ltd Head for inspecting damage of inner surface of boiler tube

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010014582A (en) * 2008-07-04 2010-01-21 Hitachi-Ge Nuclear Energy Ltd Ultrasonic flaw detecting method and ultrasonic flaw detector
US10557828B2 (en) 2014-02-17 2020-02-11 Westinghouse Electric Company Llc Ultrasonic phased array transducer for the NDE inspection of the jet pump riser welds and welded attachments

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54114288A (en) * 1978-02-25 1979-09-06 Hitachi Shipbuilding Eng Co Automatic ultrasonic tandem flaw detector
JPS5649955A (en) * 1979-09-29 1981-05-06 Nippon Kokan Kk <Nkk> Flaw-detecting method by oblique supersonic wave for small-diameter welded pipe and the like

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54114288A (en) * 1978-02-25 1979-09-06 Hitachi Shipbuilding Eng Co Automatic ultrasonic tandem flaw detector
JPS5649955A (en) * 1979-09-29 1981-05-06 Nippon Kokan Kk <Nkk> Flaw-detecting method by oblique supersonic wave for small-diameter welded pipe and the like

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11108903A (en) * 1997-10-03 1999-04-23 Ishikawajima Harima Heavy Ind Co Ltd Head for inspecting damage of inner surface of boiler tube

Also Published As

Publication number Publication date
JPS6468652A (en) 1989-03-14

Similar Documents

Publication Publication Date Title
US5419196A (en) Ultrasonic side-looker for rail head flaw detection
JPS59501540A (en) automatic welding system
JPH10282069A (en) Ultrasonic flaw detector and sensitivity calibration method thereof
EP1220603A1 (en) Apparatus for detecting the position of an object
JPH0584864B2 (en)
US4815857A (en) Method and apparatus for measuring an object
US4131027A (en) Apparatus for ultrasonic inspection of the welding seam of large pipes
US4480474A (en) Method and apparatus for ultrasonic flaw detection of T-welded portion of steel product
JPH112627A (en) Equipment and method for inspecting spot welding
JPH06347250A (en) Plate-thickness measuring apparatus
JPH0534324A (en) Ultrasonic inspection device of metal bar-shaped material
JPH0726939B2 (en) Ultrasonic flaw detector
JP2007010610A (en) Rail flaw detection method and apparatus
JPS59168363A (en) Apparatus for swinging ultrasonic probe
JP2001324484A (en) Ultrasonic flaw detection method and apparatus
JP3189463B2 (en) Ultrasonic flaw detector and its probe
JPS598197Y2 (en) A device that injects an ultrasonic beam into a curved member
JP7103838B2 (en) Ultrasonic flaw detector
JPS61290357A (en) Ultrasonic flaw detector
JPH056532Y2 (en)
JPH08136518A (en) Ultrasonic inspection equipment
JPH08248018A (en) Ultrasonic image processing/inspecting equipment and inspection error correction method
JPS5915967U (en) Ultrasonic angle flaw detection device for square test materials
JPH07120443A (en) Axle flaw detecting device
JPH0776686B2 (en) Work height measuring instrument

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees