JPH0584572A - Semiautomatic arc welding machine - Google Patents

Semiautomatic arc welding machine

Info

Publication number
JPH0584572A
JPH0584572A JP24895591A JP24895591A JPH0584572A JP H0584572 A JPH0584572 A JP H0584572A JP 24895591 A JP24895591 A JP 24895591A JP 24895591 A JP24895591 A JP 24895591A JP H0584572 A JPH0584572 A JP H0584572A
Authority
JP
Japan
Prior art keywords
welding
arc length
arc
voltage
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP24895591A
Other languages
Japanese (ja)
Inventor
Kiroku Fujiwara
紀六 藤原
Takeshi Araya
雄 荒谷
Tadashi Aso
正 麻生
Takayuki Kashima
孝之 鹿島
Tsuneo Mita
常夫 三田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Via Mechanics Ltd
Original Assignee
Hitachi Seiko Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Seiko Ltd filed Critical Hitachi Seiko Ltd
Priority to JP24895591A priority Critical patent/JPH0584572A/en
Publication of JPH0584572A publication Critical patent/JPH0584572A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Feedback Control In General (AREA)

Abstract

PURPOSE:To allow even a beginner to perform stable welding in the same way as an expert operator and to obtain a weld zone having high quality and reliability by controlling an arc length constantly in semiautomatic arc welding. CONSTITUTION:The semiautomatic arc welding machine is provided with an arc length arithmetic circuit 13 which calculates the arc length from detected values of a wire feed rate detector 10, a welding current detector 11 and a detector 12 of the voltage between a tip and base metals, an arc length setting device 14, a deviation arithmetic circuit 15, an arc length change arithmetic circuit 16 and a fuzzy controller 17. The deviation of the arc length and the time change of the arc length are inputted to the fuzzy controller 17 and the set welding voltage of a constant voltage welding power source 6 is controlled via a welding current and voltage controller 7 by the output of the fuzzy controller 17.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ファジイ推論による定
アーク長制御機能を備えた半自動アーク溶接機に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semi-automatic arc welder having a constant arc length control function by fuzzy reasoning.

【0002】[0002]

【従来の技術】従来、消耗電極としてのワイヤを絶えず
溶接トーチに送給し、アーク長を一定に保ちながら溶接
継手に沿ってアークを移動させる動作をすべて機械で行
なう自動アーク溶接では、ワイヤ突出長またはアーク長
が変化すると、溶接条件が変動して溶接結果に悪影響を
及ぼすため、特公昭63−45915「チップ・被溶接
物間距離自動制御法」に示されているように、溶接電
流,チップ・母材間電圧およびワイヤ送給速度を検出
し、これらの検出値からワイヤ突出長およびアーク長を
演算で求め、この演算結果に基づき溶接トーチの位置
(トーチ高さ)を機械的に修正することにより、ワイヤ
突出長およびアーク長の適正化が図られている。
2. Description of the Related Art Conventionally, in automatic arc welding, in which a wire as a consumable electrode is constantly fed to a welding torch, and the operation of moving an arc along a welded joint while maintaining a constant arc length is performed by a machine, wire protrusion If the length or the arc length changes, the welding conditions fluctuate and the welding result is adversely affected. Therefore, as shown in JP-B-63-45915 "Automatic control method for distance between tip and work piece", welding current, The voltage between the tip and the base metal and the wire feed speed are detected, and the wire protrusion length and arc length are calculated from these detected values, and the welding torch position (torch height) is mechanically corrected based on this calculation result. By doing so, the wire protrusion length and the arc length are optimized.

【0003】一方、溶接トーチを溶接作業者が手に持っ
て行なう半自動アーク溶接では、最近人手不足のために
初心者が溶接を行なう例も多く、従来の半自動アーク溶
接機では安定な溶接が行なえず、特に溶接作業者の手振
れなどにより溶接条件が変動して溶接結果に悪影響を及
ぼすことが問題となっている。
On the other hand, in semi-automatic arc welding in which a welding operator holds a welding torch in his / her hand, there are many cases in which beginners perform welding recently due to lack of manpower, and conventional semi-automatic arc welding machines cannot perform stable welding. In particular, there is a problem that welding conditions fluctuate due to camera shake of a welding operator and adversely affect welding results.

【0004】この問題を解決するために、前記公知例に
示されているような、チップ・母材間距離を機械的に一
定に制御する自動アーク溶接機の溶接トーチを取り付け
た上下移動装置を溶接作業者が手に持って半自動アーク
溶接を行なった場合には、作業者の手振れ、およびチッ
プ・母材間距離を一定にしようとする作業者の手の動き
と溶接トーチを取り付けた上下移動装置の動きとが同期
しないため、チップ・母材間距離が一定とならず、良好
な溶接結果を得ることができない。
In order to solve this problem, an up-and-down moving device equipped with a welding torch of an automatic arc welding machine for mechanically controlling the distance between the tip and the base metal as shown in the above-mentioned known example. When the welding operator holds in his hand and performs semi-automatic arc welding, the shaking of the operator's hand and the movement of the operator's hand to keep the distance between the tip and the base metal constant and the vertical movement with the welding torch attached Since the movement of the device is not synchronized, the distance between the tip and the base metal is not constant, and a good welding result cannot be obtained.

【0005】また、定電圧特性の溶接電流を用いる半自
動アーク溶接機では、アーク長の変化に対し溶接電流が
増加または減少してアーク長を元に戻そうとする定電圧
特性による電源の自己制御作用があることは知られてい
るが、ワイヤ突出長が変化する場合には、ワイヤ溶融速
度が同一電流値でも突出長の大小により影響を受けるた
めに電源の自己制御作用に依存するだけでは不十分であ
り、外部からの積極的な制御によらなければアーク長を
一定に維持できないこともわかっている。
Further, in a semi-automatic arc welding machine which uses a welding current having a constant voltage characteristic, the welding current increases or decreases in response to a change in the arc length, and the self-control of the power source is performed by the constant voltage characteristic in which the arc length is restored. It is known that there is an effect, but when the wire protrusion length changes, the wire melting rate is affected by the size of the protrusion length even at the same current value, so it is not enough to rely on the self-control action of the power supply. It is also sufficient, and it is also known that the arc length cannot be maintained constant without positive control from the outside.

【0006】[0006]

【発明が解決しようとする課題】上述のように、ワイヤ
が絶えず機械的に送り込まれる溶接トーチを溶接作業者
が手に持ち、アーク長を一定に保ちながら溶接継手に沿
ってアークを移動させる半自動アーク溶接では、初心者
でも熟練作業者と同様に安定な溶接が行なえるようにす
るため、如何にしてワイヤ突出長およびアーク長の適正
化を図るかが課題となっている。本来、半自動アーク溶
接では、溶接トーチを溶接作業者が手に持って溶接を行
なうため、チップ・母材間距離は人為的に決まり、機械
的な制御は不可能であるが、チップ・母材間距離が適正
値を越えた場合に何らかの手段でこれを検知し溶接作業
者に知らせることで、溶接作業者自身がチップ・母材間
距離を修正することは可能と考えられる。したがって、
この場合、アーク長を一定に制御することができれば、
ワイヤ突出長の適正化も図れることになる。
As described above, the welding operator holds the welding torch in which the wire is constantly mechanically fed, and moves the arc along the welded joint while keeping the arc length constant. In arc welding, how to optimize the wire protrusion length and arc length is an issue in order to enable even beginners to perform stable welding as well as skilled workers. Originally, in semi-automatic arc welding, the welding torch is held by the welding operator and the welding is performed, so the distance between the tip and the base metal is artificially determined and mechanical control is impossible, but the tip and base metal It is considered possible for the welding operator himself to correct the distance between the tip and the base metal by detecting this by some means and notifying the welding operator when the distance between the two exceeds an appropriate value. Therefore,
In this case, if the arc length can be controlled to be constant,
The wire protrusion length can be optimized.

【0007】そこで本発明の目的は、アーク長を一定に
制御し、それによって初心者でも熟練作業者と同様に安
定な溶接が行なえ、品質の良い溶接結果が得られるよう
にした半自動アーク溶接機を提供することにある。
Therefore, an object of the present invention is to provide a semi-automatic arc welding machine in which the arc length is controlled to be constant so that even a beginner can perform stable welding as well as a skilled worker and obtain a good quality welding result. To provide.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に本発明は、溶接作業者の手で操作される溶接トーチ
と、ワイヤを溶接トーチのチップ内面に接触させながら
送給するワイヤ送給装置と、チップと母材に電力を供給
する定電圧特性の溶接電源とを具備する半自動アーク溶
接機において、溶接電流検出器、チップ,母材間電圧検
出器およびワイヤ送給速度検出器のそれぞれの検出値か
らアーク長を演算するアーク長演算手段と、上記演算で
求めたアーク長と溶接条件に応じてアーク長設定器で設
定したアーク長との偏差を演算する偏差演算手段と、上
記演算で求めたアーク長の時間的変化分を演算するアー
ク長変化分演算手段と、上記偏差演算手段の出力と上記
アーク長変化分演算手段の出力とを入力として、あらか
じめ定めた制御規則によりアーク長を一定に制御するた
めの操作量を推論するファジイ制御器とを備え、上記フ
ァジイ制御器の出力により溶接電源の設定溶接電圧を制
御して、チップ・母材間距離の変動に対してアーク長を
一定に制御するようにしたことを特徴とする。
In order to achieve the above object, the present invention provides a welding torch operated by the hand of a welding operator and a wire feed for feeding a wire while contacting the inner surface of the tip of the welding torch. In a semi-automatic arc welding machine equipped with a device and a welding power source of constant voltage characteristic for supplying electric power to a tip and a base metal, each of a welding current detector, a tip, a base material voltage detector and a wire feed speed detector Arc length calculation means for calculating the arc length from the detected value, deviation calculation means for calculating the deviation between the arc length obtained by the above calculation and the arc length set by the arc length setter according to the welding conditions, and the above calculation The arc length change amount calculating means for calculating the time change amount of the arc length obtained in 1., the output of the deviation calculating means and the output of the arc length change amount calculating means are input, and a predetermined control rule is set. It is equipped with a fuzzy controller that infers the manipulated variable for more constant control of the arc length, and controls the welding voltage setting of the welding power source by the output of the above fuzzy controller to control the distance between the tip and the base metal. The arc length is controlled to be constant.

【0009】[0009]

【作用】溶接電流検出器,チップ・母材間電圧検出器お
よびワイヤ送給速度検出器で半自動アーク溶接時の溶接
電流,チップ・母材間電圧およびワイヤ送給速度で検出
し、これらの検出値を用いてアーク長演算手段で求めた
アーク長とアーク長設定器で設定したアーク長との偏差
を偏差演算手段で求め、また上記演算で求めたアーク長
の時間的変化分をアーク長変化分演算手段で求め、ファ
ジイ制御器で上記偏差とアーク長の時間的変化分とを入
力として、あらかじめ定めた制御規則により定アーク長
制御に必要な操作量を推論し、この推論結果に基づいて
定電圧溶接電源の設定溶接電圧を制御することにより、
チップ・母材間距離の変化に対してワイヤ送給速度を一
定としたままワイヤの溶接速度を増減させて、アーク長
を一定に制御するものである。
[Function] The welding current detector, the tip-base metal voltage detector, and the wire feed speed detector detect the welding current, tip-base metal voltage, and wire feed speed during semi-automatic arc welding. Using the value, the deviation between the arc length calculated by the arc length calculation means and the arc length set by the arc length setting device is calculated by the deviation calculation means, and the temporal change of the arc length calculated by the above calculation is changed. The operation amount required for constant arc length control is deduced according to a predetermined control rule by inputting the deviation and the temporal change amount of arc length by a fuzzy controller, based on this deduction result. Setting of constant voltage welding power source By controlling the welding voltage,
The arc length is controlled to be constant by increasing or decreasing the wire welding speed while keeping the wire feeding speed constant with respect to the change in the distance between the tip and the base material.

【0010】[0010]

【実施例】以下、図面を参照して本発明の一実施例につ
いて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0011】図1に示す半自動アーク溶接機は、チップ
2とアーク4の周辺にシールドガスを流すガス放出ノズ
ル(図示していない)を有する溶接トーチ1と、ワイヤ
送給モータ8と送給ローラ9とからなるワイヤ送給装置
と、定電圧特性を有する溶接電源6と、溶接電流・電圧
制御器7とを主体として構成されている。溶接施工は、
溶接トーチ1を溶接作業者が手に持った状態でモータ8
に連結された送給ローラ9によりワイヤ5をチップ2の
内面に接触させながら絶えず送給し、溶接電流・電圧制
御器7で設定した溶接条件に従ってチップ2と母材3に
溶接電源6から電力を供給し、ワイヤ5と母材3の間に
アーク4を発生させてワイヤ5を溶融させ、母材3に融
合させることによって行なわれる。
The semi-automatic arc welding machine shown in FIG. 1 has a welding torch 1 having a gas discharge nozzle (not shown) for flowing a shielding gas around a tip 2 and an arc 4, a wire feeding motor 8 and a feeding roller. The wire feeding device 9 includes a welding power source 6 having a constant voltage characteristic, and a welding current / voltage controller 7. Welding work is
The motor 8 with the welding torch 1 held by the welding operator.
The wire 5 is continuously fed while being brought into contact with the inner surface of the tip 2 by the feeding roller 9 connected to the tip 2, and the tip 2 and the base metal 3 are supplied with electric power from the welding power source 6 according to the welding conditions set by the welding current / voltage controller 7. Is supplied, an arc 4 is generated between the wire 5 and the base material 3 to melt the wire 5, and the wire 5 is fused to the base material 3.

【0012】図1に示したチップ2と母材3の間の各部
の名称を図3を用いて説明する。図3において、チップ
2の先端からアーク4に至るまでのワイヤ5の長さをワ
イヤ突出長LE、ワイヤ5の先端から母材3の表面まで
のアーク部の長さをアーク長LA、ワイヤ突出長LEとア
ーク長LAの和をチップ・母材間距離とする。
The names of each part between the chip 2 and the base material 3 shown in FIG. 1 will be described with reference to FIG. In FIG. 3, the length of the wire 5 from the tip of the tip 2 to the arc 4 is the wire protrusion length LE, the length of the arc portion from the tip of the wire 5 to the surface of the base material 3 is the arc length LA, and the wire protrusion. The sum of the length LE and the arc length LA is the distance between the tip and the base metal.

【0013】上記した構成の半自動アーク溶接機におい
て、溶接トーチ1を溶接作業者が手に持って行なう半自
動アーク溶接時のアーク長を一定に制御するためには、
溶接時のアーク長を知る必要がある。溶接時のワイヤ突
出長およびアーク長は、ガイドブック「アーク溶接にお
けるセンシングと制御」溶接学会、溶接法研究委員会
編、May,1990,II−94〜II−99に示されてい
るように、溶接電流,チップ・母材間電圧およびワイヤ
送給速度の検出値から以下の演算式により求めることが
できる。
In the semi-automatic arc welding machine having the above-described structure, in order to control the arc length to be constant during semi-automatic arc welding performed by the welding operator holding the welding torch 1 by hand,
It is necessary to know the arc length during welding. The wire protrusion length and the arc length during welding are as described in Guidebook “Sensing and Control in Arc Welding”, Welding Society, Welding Method Research Committee, May, 1990, II-94 to II-99. It can be calculated from the detected values of welding current, tip-base metal voltage, and wire feed speed by the following formula.

【0014】(1)ワイヤ突出長の演算式 ワイヤ突出長LEは平均電流IA,実効電流IE,ワイヤ
送給速度vから次式によって演算される。
(1) Calculation formula of wire protrusion length The wire protrusion length LE is calculated from the average current IA, the effective current IE, and the wire feeding speed v by the following equation.

【0015】[0015]

【数1】 [Equation 1]

【0016】ここに、k1,k2は定数である。Here, k 1 and k 2 are constants.

【0017】(2)アーク長の演算式 アーク長LAは平均電流IA,アーク電圧VAから次式に
よって演算される。
(2) Calculation formula of arc length The arc length LA is calculated by the following formula from the average current IA and the arc voltage VA.

【0018】[0018]

【数2】 [Equation 2]

【0019】ここに、k3,k4,k5,k6は定数であ
る。
Here, k 3 , k 4 , k 5 and k 6 are constants.

【0020】しかし、数2の中のアーク電圧VAは実測
不可能であり、検出したチップ・母材間電圧Vと、ワイ
ヤ突出長部の抵抗Rと平均電流IAから求めたワイヤ突
出長部の電圧降下VEとから以下の演算式で求め、この
求めたアーク電圧VAを数2に代入することでアーク長
LAが求められる。
However, the arc voltage VA in the equation (2) cannot be measured, and the detected tip-base material voltage V, the resistance R of the wire protrusion length and the wire protrusion length obtained from the average current IA. The arc length LA is obtained by substituting the obtained arc voltage VA in the equation 2 from the voltage drop VE by the following arithmetic expression.

【0021】[0021]

【数3】 [Equation 3]

【0022】[0022]

【数4】 [Equation 4]

【0023】[0023]

【数5】 [Equation 5]

【0024】ここに、αは固有抵抗と比熱の温度係数の
差、βは固有抵抗の温度係数、C0は比熱、η0は固有抵
抗、Jは熱の仕事当量、ρは比重、dはワイヤ直径であ
り、定数k7は、k7=16αη0/π2JρC04であ
る。
Where α is the difference between the temperature coefficient of specific resistance and the specific heat, β is the temperature coefficient of specific resistance, C 0 is the specific heat, η 0 is the specific resistance, J is the work equivalent of heat, ρ is the specific gravity, and d is It is the wire diameter and the constant k 7 is k 7 = 16αη 0 / π 2 JρC 0 d 4 .

【0025】図1では、送給ローラ9に連結してタコメ
ータダイナモ等のワイヤ送給速度検出器10またはワイ
ヤ送給速度とモータ8の逆起電圧とがほぼ比例関係にあ
ることを利用してモータ8の逆起電圧検出器(図示して
いない)でワイヤ送給速度を、溶接電源6と母材3の間
または溶接電源6とチップ2の間に接続した溶接電流検
出器11で溶接電流を、またチップ2と母材3の間に接
続したチップ・母材間電圧検出器12でチップ・母材間
電圧をそれぞれ検出し、これらの検出値をアーク長演算
回路13に取り込み、このアーク長演算回路13で溶接
電流検出値から平均電流と実効電流を演算するととも
に、数1〜数5によるアーク長の演算を行なうようにし
ている。偏差演算回路15は、アーク長演算回路13で
演算したアーク長とあらかじめ溶接条件に応じてアーク
長設定器14で設定したアーク長とを取り込み、両者の
偏差を演算し出力する。また、アーク長変化分演算回路
16は上記偏差演算回路15から出力されたアーク長の
偏差を入力としてアーク長の時間的変化分を演算する回
路であって、簡単な方法としては微分器を用いてもよ
い。ファジイ制御器17は、偏差演算回路15から出力
されたアーク長の偏差とアーク長変化分演算回路16で
求めたアーク長の時間的変化分とを入力として以下詳述
するように定アーク長制御に必要な操作量を推論し、得
た操作量を溶接電流・電圧制御器7へ出力する。上記フ
ァジイ制御器17はメモリ装置18とファジイ推論プロ
セッサ19とで構成されている。
In FIG. 1, the wire feed speed detector 10 such as a tachometer dynamo connected to the feed roller 9 or the wire feed speed and the counter electromotive voltage of the motor 8 are in a substantially proportional relationship. A wire feeding speed is detected by a back electromotive force detector (not shown) of the motor 8 and a welding current detector 11 is connected between the welding power source 6 and the base metal 3 or between the welding power source 6 and the tip 2. , And the tip-base material voltage detector 12 connected between the tip 2 and the base material 3, respectively, detects the tip-base material voltage, and inputs these detected values into the arc length calculation circuit 13, The length calculation circuit 13 calculates the average current and the effective current from the detected welding current, and also calculates the arc length according to the equations (1) to (5). The deviation calculation circuit 15 takes in the arc length calculated by the arc length calculation circuit 13 and the arc length previously set by the arc length setter 14 according to the welding conditions, and calculates and outputs the deviation between the two. Further, the arc length change calculation circuit 16 is a circuit for calculating the time change of the arc length by using the deviation of the arc length output from the deviation calculation circuit 15 as an input, and a differentiator is used as a simple method. May be. The fuzzy controller 17 receives the deviation of the arc length output from the deviation calculation circuit 15 and the temporal change of the arc length calculated by the arc length change calculation circuit 16 as input, and controls the constant arc length as described in detail below. The operation amount necessary for the above is deduced, and the obtained operation amount is output to the welding current / voltage controller 7. The fuzzy controller 17 comprises a memory device 18 and a fuzzy inference processor 19.

【0026】本実施例では、ファジイ推論プロセッサ1
9からの操作量として定電圧溶接電源6に対する設定溶
接電圧の変化分を出力させている。メモリ装置18はフ
ァジイ推論プロセッサ19で実行されるファジイ推論に
必要な制御規則およびメンバシップ関数を格納するため
のメモリ装置であり、このメモリ装置18に格納されて
いる制御規則およびメンバシップ関数は必要に応じて追
加,変更ができるようになっている。
In this embodiment, the fuzzy inference processor 1
As the operation amount from 9, the change amount of the set welding voltage for the constant voltage welding power source 6 is output. The memory device 18 is a memory device for storing control rules and membership functions necessary for fuzzy inference executed by the fuzzy inference processor 19. The control rules and membership functions stored in the memory device 18 are necessary. It is possible to add or change according to.

【0027】定アーク長制御の操作量である設定溶接電
圧の変化分を求めるファジイ推論は下記の制御規則を基
に実行される。本実施例で採用した制御規則は次のよう
な9つの規則からなっている。すなわち、 R1;もしアーク長が短かく(P)、かつアーク長が減
少している(P)ならば、設定溶接電圧を増加(P)さ
せなさい。
The fuzzy inference for obtaining the change amount of the set welding voltage which is the operation amount of the constant arc length control is executed based on the following control rule. The control rules adopted in this embodiment consist of the following nine rules. That is, R 1 ; If the arc length is short (P) and the arc length is decreasing (P), increase the set welding voltage (P).

【0028】R2;もしアーク長が適切(Z)で、かつ
アーク長が変らない(Z)ならば、設定溶接電圧をその
まま(Z)にしなさい。
R 2 ; If the arc length is proper (Z) and the arc length does not change (Z), leave the set welding voltage as it is (Z).

【0029】R3;もしアーク長が長く(N)、かつア
ーク長が増加している(N)ならば、 設定溶接
電圧を減少(N)させなさい。
R 3 ; If the arc length is long (N) and the arc length is increasing (N), decrease the set welding voltage (N).

【0030】・ ・ ・ 等である。上記規則は、発明者が溶接熟練者を対象とす
る数多くの実験データから得た経験則に基づく定アーク
長制御に最適な溶接電源の制御規則であり、これをアー
ク長の偏差とアーク長の時間的変化分に対する設定溶接
電圧の変化分の関数で表に示すと表1のようになる。
.. and so on. The above rule is the control rule of the welding power source which is optimum for the constant arc length control based on the empirical rule obtained by the inventor from a large number of experimental data for the welding expert, and the rule of the arc length deviation and the arc length Table 1 shows the function of the change of the set welding voltage with respect to the time change.

【0031】[0031]

【表1】 [Table 1]

【0032】表1では、縦方向にアーク長の偏差の度合
いを3段階(P;短かい、Z;適切、N;長い)に分
け、横方向にアーク長の時間的変化分の度合を3段階
(P;減少している、Z;変らない、N;増加してい
る)に分けて示し、この区分されたアーク長の偏差とア
ーク長の時間的変化分とのそれぞれの交った位置に、そ
のアーク長の偏差、アーク長の時間的変化分の度合に応
じた最適な設定溶接電圧の変化分の度合を3段階(P;
増加、Z;そのまま、N;減少)に分けた1つを当ては
めている。すなわち、上記制御規則R1,R2,R3…の
結論部は表1の升目で示されている。
In Table 1, the degree of deviation of the arc length is divided into three levels (P: short, Z: appropriate, N: long) in the vertical direction, and the degree of temporal change of the arc length in the horizontal direction is 3. The position where P is decreasing, Z is not changing, N is increasing, and is shown separately, and the intersecting position of each of the divided arc length deviation and the temporal change of the arc length is shown. In addition, the deviation of the arc length and the degree of change of the optimum set welding voltage according to the degree of change of the arc length with time are classified into three levels (P;
One is divided into (increase, Z; unchanged, N; decrease). That is, the conclusion part of the control rules R 1 , R 2 , R 3 ... Is shown by the squares in Table 1.

【0033】ここでは、アーク長の偏差,アーク長の時
間的変化分および設定溶接電圧の変化分を次のように定
義する。
Here, the deviation of the arc length, the time variation of the arc length, and the variation of the set welding voltage are defined as follows.

【0034】(1)アーク長偏差 En=L−Ln ただし、En;今の時刻nにおける偏差、L;設定アー
ク長、Ln;今の時刻nにおけるアーク長 (2)アーク長の時間的変化分 ΔE=(En−En-1)=(L−Ln)−(L−Ln-1)=Ln-1−Ln ただし、En-1;前の時刻n-1における偏差、Ln-1;前
の時刻n-1におけるアーク長 (3)設定溶接電圧の変化分 ΔU=Un−Un-1 ただし、Un;今の時刻nにおける設定溶接電圧、Un-
1;前の時刻n-1における設定溶接電圧 ファジイ推論プロセッサ19は、メモリ装置18に格納
されている制御規則を取り出して、この制御規則を基に
ファジイ推論によって溶接電源6に対する設定溶接電圧
の変化分を算出し、演算された設定溶接電圧の変化分を
操作量として溶接電流・電圧制御器7へ出力する。溶接
電流・電圧制御器7は、操作量である設定溶接電圧の変
化分を前の時刻n-1における設定溶接電圧に加算して、
溶接電源6の出力電圧、すなわち溶接電圧を制御する機
能を有している。
(1) Arc length deviation En = L-Ln where En is the deviation at the current time n, L is the set arc length, Ln is the arc length at the current time n (2) The time change of the arc length ΔE = (En−En−1) = (L−Ln) − (L−Ln−1) = Ln−1−Ln where En−1; deviation at the previous time n−1, Ln−1; previous Arc length at time n-1 (3) Change in set welding voltage ΔU = Un-Un-1 where Un; set welding voltage at current time n, Un-
1; Set welding voltage at previous time n-1 The fuzzy inference processor 19 retrieves the control rule stored in the memory device 18, and changes the set welding voltage for the welding power source 6 by fuzzy inference based on this control rule. The calculated change amount of the set welding voltage is output to the welding current / voltage controller 7 as an operation amount. The welding current / voltage controller 7 adds the change amount of the set welding voltage, which is the operation amount, to the set welding voltage at the previous time n-1,
It has a function of controlling the output voltage of the welding power source 6, that is, the welding voltage.

【0035】上記制御規則R1,R2,R3…はアーク長
の偏差、アーク長の時間的変化分および設定溶接電圧の
変化分の度合を表1のように段階的に定めてあるので、
きめ細かな定アーク長制御を行なうためには、演算で求
めた実際のアーク長の偏差およびアーク長の時間的変化
分が制御規則をどの程度満たしているかの適合度を算出
して、その適合度に対応した設定溶接電圧の変化分の確
定値を操作量として求める必要がある。そのため、本実
施例では上記適合度をアーク長の偏差、アーク長の時間
的変化分および設定溶接電圧の変化分に対するファジイ
変数のメンバシップ関数を用いて算出している。
In the control rules R 1 , R 2 , R 3, ..., The degree of deviation of the arc length, the time variation of the arc length, and the variation of the set welding voltage are determined stepwise as shown in Table 1. ,
In order to perform detailed constant arc length control, the degree of conformity is calculated by calculating the deviation of the actual arc length obtained by calculation and how much the temporal change in arc length satisfies the control rule. It is necessary to determine the fixed value of the change in the set welding voltage corresponding to the above as the manipulated variable. Therefore, in the present embodiment, the fitness is calculated by using the membership function of the fuzzy variable for the deviation of the arc length, the temporal change of the arc length and the change of the set welding voltage.

【0036】図2の(a)はアーク長の偏差に対するフ
ァジイ変数N,Z,Pのメンバシップ関数を、図2の
(b)はアーク長の時間的変化分に対するファジイ変数
N,Z,Pのメンバシップ関数を、また図2の(c)は
設定溶接電圧の変化分に対するファジイ変数N,Z,P
のメンバシップ関数をそれぞれ示したものである。
FIG. 2A shows the membership function of the fuzzy variables N, Z and P with respect to the deviation of the arc length, and FIG. 2B shows the fuzzy variables N, Z and P with respect to the temporal change of the arc length. 2C, and FIG. 2C shows fuzzy variables N, Z, P with respect to changes in the set welding voltage.
The membership functions of are respectively shown.

【0037】図1のファジイ推論プロセッサ19では下
記の手順によりファジイ推論を実行する。すなわち、演
算で求めた半自動アーク溶接時のアーク長の偏差、アー
ク長の時間的変化分に対して、上記制御規則R1,R2
3…と図2の(a),(b),(c)に示すメンバシ
ップ関数とを用いて直接法と呼ばれているMAX−MI
N演算により各制御規則への適合度を求め、それに対応
する操作量(設定溶接電圧の変化分)のメンバシップ関
数を決定した後、各規則ごとの推論結果を統合して得た
操作量(設定溶接電圧の変化分)のメンバシップ関数の
重心より操作量(設定溶接電圧の変化分)の推定値を求
める。
The fuzzy inference processor 19 of FIG. 1 executes fuzzy inference by the following procedure. That is, with respect to the deviation of the arc length and the temporal change of the arc length during the semi-automatic arc welding obtained by the calculation, the above control rules R 1 , R 2 ,
MAX-MI called a direct method using R 3 ... And the membership functions shown in (a), (b), and (c) of FIG.
The degree of conformity to each control rule is obtained by N calculation, the membership function of the corresponding manipulated variable (change in set welding voltage) is determined, and then the manipulated variable obtained by integrating the inference results for each rule ( The estimated value of the manipulated variable (change in set welding voltage) is calculated from the center of gravity of the membership function (change in set welding voltage).

【0038】このようにして求められた操作量としての
設定溶接電圧の変化分はファジイ制御器17から溶接電
流・電圧制御器7へ出力され、半自動アーク溶接機の溶
接電圧を制御する。この半自動アーク溶接機には定電圧
特性の溶接電源が使用されているため、アーク長が短か
くなった場合、溶接電圧を上げると、溶接電流が増加し
てワイヤ溶融速度を上げ、またアーク長が長くなった場
合、溶接電圧を下げると、溶接電流が減少してワイヤ溶
融速度を下げ、それぞれアーク長を元に戻すように働
く。
The amount of change in the set welding voltage as the manipulated variable thus obtained is output from the fuzzy controller 17 to the welding current / voltage controller 7 to control the welding voltage of the semi-automatic arc welding machine. This semi-automatic arc welder uses a constant-voltage welding power source, so if the arc length becomes short, increasing the welding voltage will increase the welding current to increase the wire melting speed and increase the arc length. When the welding voltage is lowered, the welding current decreases and the wire melting rate decreases, and the arc length is restored to its original value.

【0039】定電圧特性の溶接電源を用いる半自動アー
ク溶接機において、アーク長を制御するにはワイヤ送給
速度を変化させる方法もあるが、ワイヤ送給速度を変化
させると、その分、母材への溶着量が変化するため、溶
接ビードに凹凸が生じやすい。これに対して、ワイヤ送
給速度を一定としたまま溶接電圧を変化させた場合に
は、溶接電流は変化しても溶着量の変化が少ないため、
溶接ビードの凹凸が生じにくく、溶接部の品質向上に有
効である。
In a semi-automatic arc welding machine using a welding power source having a constant voltage characteristic, there is a method of changing the wire feeding speed in order to control the arc length. However, if the wire feeding speed is changed, the base metal is correspondingly changed. Since the amount of welding on the welding bead changes, unevenness is likely to occur on the welding bead. On the other hand, when the welding voltage is changed while the wire feeding speed is kept constant, the welding amount does not change even if the welding current changes.
The unevenness of the weld bead hardly occurs, which is effective in improving the quality of the welded part.

【0040】また、最近の半自動アーク溶接機では、溶
接電源の出力制御にインバータ制御が採用されており、
その制御周波数はワイヤ送給モータの速度制御に用いら
れているサイリスタ制御に比べ2桁以上も高いので、ワ
イヤ送給速度を制御するより溶接電源の出力電圧を制御
する方が制御の応答性も良い。
Further, in recent semi-automatic arc welders, inverter control is adopted for output control of the welding power source,
The control frequency is higher than the thyristor control used for speed control of the wire feed motor by more than two digits, so controlling the output voltage of the welding power source is more controllable than controlling the wire feed speed. good.

【0041】さらに、本実施例のようにアーク長の偏差
だけでなく、アーク長の偏差とアーク長の時間的変化分
を制御パラメータとすることにより、半自動アーク溶接
時の手振れや被溶接材の段差などで発生するチップ・母
材間距離の変動に対して、ハンチングを起こすことな
く、スムーズに定アーク長制御を行なうことが可能とな
る。
Furthermore, by using not only the deviation of the arc length but also the deviation of the arc length and the temporal change of the arc length as the control parameters as in the present embodiment, camera shake during semi-automatic arc welding and the welding target material It is possible to smoothly control the constant arc length without causing hunting, even when the distance between the tip and the base material changes due to a step or the like.

【0042】また、制御規則が溶接熟練者の経験則から
成り立っているために、安定性が高い定アーク長制御が
可能であり、必要とあれば、メモリ装置18に格納され
ている制御規則、メンバシップ関数の追加,変更によっ
て各溶接作業者の希望に応じた制御も行なえる。
Further, since the control rule is based on the empirical rule of a welding expert, a highly stable constant arc length control is possible, and if necessary, the control rule stored in the memory device 18, By adding or changing the membership function, it is possible to control according to the wishes of each welding operator.

【0043】なお、上記実施例ではアーク長演算手段,
偏差演算手段,アーク長変化分演算手段として個別の演
算回路を用いた例について述べたが、ディジタル計算機
のプログラム処理によってこれらの機能を実現すること
もできる。
In the above embodiment, the arc length calculating means,
Although an example in which separate arithmetic circuits are used as the deviation arithmetic means and the arc length variation arithmetic means has been described, these functions can be realized by the program processing of a digital computer.

【0044】[0044]

【発明の効果】以上述べたように本発明では、演算で求
めたアーク長と設定アーク長の偏差とアーク長の時間的
変化分とを入力とするファジイ推論の結果により定電圧
溶接電源の設定溶接電圧を制御してアーク長を一定に制
御するようにしているので、溶接作業者の手振れや被溶
接材の段差などで発生するチップ・母材間距離の変動時
にも、変化したアーク長を速やかに元に戻して定アーク
長での溶接を可能にし、溶接トーチの定速移動により溶
け込み深さと溶接ビード幅の均一化が図れる。その結
果、初心者でも熟練作業者と同様に安定した半自動アー
ク溶接が行なえ、品質および信頼性の高い溶接部を得る
ことができるとともに、溶接作業の能率向上を図ること
ができる。
As described above, according to the present invention, the constant voltage welding power source is set based on the result of the fuzzy inference using the calculated arc length and the set arc length deviation and the temporal change of the arc length as inputs. Since the arc length is controlled to be constant by controlling the welding voltage, the changed arc length can be adjusted even when the distance between the tip and the base metal fluctuates due to the shaking of the welding operator or the step of the workpiece. It can be quickly returned to the original state to enable welding with a constant arc length, and the penetration depth and weld bead width can be made uniform by the constant speed movement of the welding torch. As a result, even a beginner can perform stable semi-automatic arc welding as well as a skilled worker, a welded portion with high quality and reliability can be obtained, and the efficiency of welding work can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すブロック線図である。FIG. 1 is a block diagram showing an embodiment of the present invention.

【図2】本発明の一実施例のメンバシップ関数を示す図
で、(a)はアーク長の偏差に対するファジイ変数N,
Z,Pのメンバシップ係数を、(b)はアーク長の時間
的変化分に対するファジイ変数N,Z,Pのメンバシッ
プ関数を、(c)は設定溶接電圧の変化分に対するファ
ジイ変数N,Z,Pのメンバシップ係数を示す。
FIG. 2 is a diagram showing a membership function according to an embodiment of the present invention, in which (a) is a fuzzy variable N, with respect to an arc length deviation.
Z and P membership coefficients, (b) the fuzzy variables N, Z and P membership functions with respect to changes in the arc length over time, and (c) fuzzy variables N and Z with respect to changes in the set welding voltage. , P for membership coefficients.

【図3】図1の溶接アーク部の部分拡大図である。3 is a partially enlarged view of the welding arc portion of FIG.

【符号の説明】[Explanation of symbols]

1…溶接トーチ、2…チップ、3…母材、4…アーク、
5…ワイヤ、6…定電圧溶接電源、7…溶接電流・電圧
制御器、8…ワイヤ送給モータ、9…送給ローラ、10
…ワイヤ送給速度検出器、11…溶接電流検出器、12
…チップ・母材間電圧検出器、13…アーク長演算回
路、14…アーク長設定器、15…偏差演算回路、16
…アーク長変化分演算回路、17…ファジイ制御器、1
8…制御規則格納用メモリ装置、19…ファジイ推論プ
ロセッサ。
1 ... Welding torch, 2 ... Tip, 3 ... Base metal, 4 ... Arc,
5 ... Wire, 6 ... Constant voltage welding power source, 7 ... Welding current / voltage controller, 8 ... Wire feeding motor, 9 ... Feeding roller, 10
… Wire feeding speed detector, 11… Welding current detector, 12
... Chip / base material voltage detector, 13 ... Arc length calculation circuit, 14 ... Arc length setting device, 15 ... Deviation calculation circuit, 16
… Arc length change calculation circuit, 17… Fuzzy controller, 1
8 ... Memory device for storing control rules, 19 ... Fuzzy inference processor.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鹿島 孝之 神奈川県海老名市上今泉2100番地 日立精 工株式会社内 (72)発明者 三田 常夫 神奈川県海老名市上今泉2100番地 日立精 工株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takayuki Kashima 2100 Kamiimazumi, Ebina City, Kanagawa Prefecture Hitachi Seiko Co., Ltd. (72) Inventor Tsuneo Mita 2100, Kamiimazumi, Ebina City, Kanagawa Pref.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 溶接作業者の手で操作される溶接トーチ
と、ワイヤを溶接トーチのチップ内面に接触させながら
送給するワイヤ送給装置と、チップと母材に電力を供給
する定電圧特性の溶接電源とを具備する半自動アーク溶
接機において、溶接電流検出器、チップ・母材間電圧検
出器およびワイヤ送給速度検出器のそれぞれの検出値か
らアーク長を演算するアーク長演算手段と、上記演算で
求めたアーク長と溶接条件に応じてアーク長設定器で設
定したアーク長との偏差を演算する偏差演算手段と、上
記演算で求めたアーク長の時間的変化分を演算するアー
ク長変化分演算手段と、上記偏差演算手段の出力と上記
アーク長変化分演算手段の出力とを入力として、あらか
じめ定めた制御規則によりアーク長を一定に制御するた
めの操作量を推論するファジイ制御器とを備え、上記フ
ァジイ制御器の出力により溶接電源の設定溶接電圧を制
御して、チップ・母材間距離の変動に対してアーク長を
一定に制御するようにしたことを特徴とする半自動アー
ク溶接機。
1. A welding torch operated by a welding operator, a wire feeder for feeding a wire while contacting the inner surface of the tip of the welding torch, and a constant voltage characteristic for supplying electric power to the tip and the base metal. In a semi-automatic arc welder equipped with a welding power source, a welding current detector, an arc length calculating means for calculating an arc length from the respective detection values of the tip / base metal voltage detector and the wire feeding speed detector, Deviation calculating means for calculating a deviation between the arc length obtained by the above calculation and the arc length set by the arc length setting device according to welding conditions, and an arc length for calculating a temporal change of the arc length obtained by the above calculation The change amount calculating means, the output of the deviation calculating means, and the output of the arc length changing amount calculating means are used as inputs to infer an operation amount for controlling the arc length constant according to a predetermined control rule. And a fuzzy controller that controls the welding voltage set by the welding power source based on the output of the fuzzy controller to control the arc length to a constant value with respect to changes in the distance between the tip and the base metal. And semi-automatic arc welding machine.
JP24895591A 1991-09-27 1991-09-27 Semiautomatic arc welding machine Withdrawn JPH0584572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24895591A JPH0584572A (en) 1991-09-27 1991-09-27 Semiautomatic arc welding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24895591A JPH0584572A (en) 1991-09-27 1991-09-27 Semiautomatic arc welding machine

Publications (1)

Publication Number Publication Date
JPH0584572A true JPH0584572A (en) 1993-04-06

Family

ID=17185892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24895591A Withdrawn JPH0584572A (en) 1991-09-27 1991-09-27 Semiautomatic arc welding machine

Country Status (1)

Country Link
JP (1) JPH0584572A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5614116A (en) * 1994-10-31 1997-03-25 United Technologies Corporation Welding control using fuzzy logic analysis of video imaged puddle dimensions
JP2012236221A (en) * 2011-05-13 2012-12-06 Penta Ocean Construction Co Ltd Auxiliary device for welding pipe and method of using it

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5614116A (en) * 1994-10-31 1997-03-25 United Technologies Corporation Welding control using fuzzy logic analysis of video imaged puddle dimensions
USRE36926E (en) * 1994-10-31 2000-10-31 United Technologies Corporation Welding control using fuzzy logic analysis of video imaged puddle dimensions
JP2012236221A (en) * 2011-05-13 2012-12-06 Penta Ocean Construction Co Ltd Auxiliary device for welding pipe and method of using it

Similar Documents

Publication Publication Date Title
US6653595B2 (en) Method and apparatus for welding with output stabilizer
US5742029A (en) Method of welding wallpaper alloy an arc welder modified to practice same
US20060226131A1 (en) System and method for pulse welding
US20070181548A1 (en) Welding process
JP2019181488A (en) Computer program, welding information calculation device, welding torch, welding electric power source, and welding system
CN112423926A (en) Arc welding method including consumable wire
KR880002411B1 (en) Control system and method for dc pulse modulated arc welding
JPH0584572A (en) Semiautomatic arc welding machine
JPH0938772A (en) Ac self-shielded arc welding method
KR920006679B1 (en) Automatic welding machine path correction method
CN112703077B (en) Welding device and welding method with automatically regulated wire feed speed
JPS5750280A (en) Gas shielded arc welding method
JP2638401B2 (en) Wire feeding speed control device for consumable electrode arc welding machine
JP3115173B2 (en) Wire feeding speed control device for consumable electrode arc welding machine
JPH10175067A (en) Self-shielded arc welding method
JP2734306B2 (en) One-side automatic Uranami welding method
JPH09182961A (en) Carbon dioxide gas shielded pulsed arc welding method
JP2019076929A (en) Arc-welding device and arc-welding method
JP2591357B2 (en) Distance calculation device and consumable electrode type arc welding power supply device using the same
JPS5868472A (en) Arc welding device using consumable electrode
Smartt et al. Method for controlling gas metal arc welding
JP2020138207A (en) Output control method of pulse arc welding
JPS6247108B2 (en)
JPH0531580A (en) Semiautomatic arc welding machine
GB2053762A (en) Controlling gas-shielded consumable electrode arc welding in dip transfer mode

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981203