JPH0584487B2 - - Google Patents

Info

Publication number
JPH0584487B2
JPH0584487B2 JP60033284A JP3328485A JPH0584487B2 JP H0584487 B2 JPH0584487 B2 JP H0584487B2 JP 60033284 A JP60033284 A JP 60033284A JP 3328485 A JP3328485 A JP 3328485A JP H0584487 B2 JPH0584487 B2 JP H0584487B2
Authority
JP
Japan
Prior art keywords
light
refractive index
grating
transparent
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60033284A
Other languages
Japanese (ja)
Other versions
JPS61193123A (en
Inventor
Hajime Sakata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP3328485A priority Critical patent/JPS61193123A/en
Priority to DE19863605516 priority patent/DE3605516A1/en
Priority to GB8604310A priority patent/GB2173605B/en
Priority to FR8602406A priority patent/FR2577694B1/en
Publication of JPS61193123A publication Critical patent/JPS61193123A/en
Priority to US07/391,621 priority patent/US5013141A/en
Publication of JPH0584487B2 publication Critical patent/JPH0584487B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Description

【発明の詳細な説明】 (1) 技術分野 本発明は、光表示用、光記録用、光結合用、光
通信用、光演算用等の各種装置に好適な光変調装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field The present invention relates to a light modulation device suitable for various devices such as optical display, optical recording, optical coupling, optical communication, and optical calculation.

(2) 従来技術 従来、光変調装置として代表的なものには
PLZT、BSO等の電気光学結晶や液晶を利用した
装置があつた。
(2) Conventional technology Conventionally, typical optical modulation devices include
There were devices using electro-optic crystals and liquid crystals such as PLZT and BSO.

電気光学結晶を利用した装置には、スライスし
た電気光学結晶面上に交差した櫛状電極を設けて
前記電気光学結晶の前後に偏光子及び検光子を備
え、前記櫛状電極に電界を印加する事により結晶
内の複屈折性を変化させて偏光子、電気光学結
晶、検光子より成る装置を透過する光束の制御を
行なう装置がある。この装置は比較的応答特性に
優れて単色光に対するコントラスト比も高いが、
通常、駆動電圧が100Vから数kVと非常に高く、
しかも大面積化が困難であるという欠点を有して
いた。
A device using an electro-optic crystal includes intersecting comb-shaped electrodes on sliced electro-optic crystal surfaces, a polarizer and an analyzer in front and behind the electro-optic crystal, and an electric field applied to the comb-shaped electrodes. There is a device that controls the light flux that passes through a device consisting of a polarizer, an electro-optic crystal, and an analyzer by changing the birefringence within the crystal. Although this device has relatively excellent response characteristics and a high contrast ratio for monochromatic light,
Usually, the driving voltage is very high, ranging from 100V to several kV.
Moreover, it has the disadvantage that it is difficult to increase the area.

又、液晶を利用した装置としては、互いに直交
する方向に配向処理を施した透明電極間に液晶を
充填して液晶を螺旋状に配向させ、静的状態では
互いに直交する偏光板を光束が透過し、電界印加
時は液晶が電界方向に配向され光束が出射側に設
置された偏光板で遮断されて透過が不可能となる
装置がある。この様な液晶を利用した装置は駆動
電圧が低く比較的材料が安価であるが、スイツチ
ング応答速度や温度安定性等に問題があり、コン
トラスト比や光利用効率なども満足できるもので
はなかつた。
In addition, in devices using liquid crystals, liquid crystals are filled between transparent electrodes that are aligned in directions perpendicular to each other, and the liquid crystals are oriented in a spiral shape.In a static state, the light beam passes through polarizing plates that are orthogonal to each other. However, when an electric field is applied, there is a device in which the liquid crystal is oriented in the direction of the electric field and the light beam is blocked by a polarizing plate installed on the output side, making it impossible to transmit the light. Although devices using such liquid crystals have low driving voltage and are made of relatively inexpensive materials, they have problems with switching response speed, temperature stability, etc., and are not satisfactory in terms of contrast ratio, light utilization efficiency, etc.

上述した代表的な光変調装置はもちろんのこと
従来の大部分の光変調装置は、入射光として特定
の偏光特性を有する光、通常直線偏光させたもの
を利用する為に、ランダムな偏光を有する入射光
に対して偏光板を使用せざるを得ず、入射光が偏
光板を透過する際に光利用効率が大きく低下して
いた。
Not only the typical light modulation device mentioned above, but also most conventional light modulation devices have random polarization because they use light with specific polarization characteristics as incident light, which is usually linearly polarized light. A polarizing plate had to be used for incident light, and when the incident light was transmitted through the polarizing plate, the light utilization efficiency was greatly reduced.

(3) 発明の概要 本発明の目的は、従来の欠点を除去し、任意の
偏光特性を有する光に対して高い光利用効率を備
えた光変調装置を提供する事にある。
(3) Summary of the Invention An object of the present invention is to eliminate the conventional drawbacks and provide a light modulation device that has high light utilization efficiency for light having arbitrary polarization characteristics.

上記目的を達成する為に、本発明に係る光変調
装置は、入射光の進行方向に並んだ第1、第2の
グレーテイング層を有し、該第1、第2のグレー
テイング層は透明光学部材と屈折率可変媒体とを
有し、且つ前記媒体の光学軸の方向が前記第1グ
レーテイング層と第2グレーテイング層で異な
り、前記媒体の光学軸を制御することにより任意
の偏光特性を有する光の変調を行なう光変調装置
において、前記第1のグレーテイング層の屈折率
可変媒体と、前記第2のグレーテイング層の屈折
率可変媒体を空間的に分離する手段を有すること
を特徴としている。尚、複数のグレーテイングが
入射光の進行方向に並んだ状態は、入射光が進行
する方向に必ず各グレーテイングが存在するとい
う事を示したものであつて、入射角度は必ずしも
本装置に対して垂直であるとは限らない。
In order to achieve the above object, a light modulation device according to the present invention has first and second grating layers arranged in the traveling direction of incident light, and the first and second grating layers are transparent. It has an optical member and a variable refractive index medium, and the direction of the optical axis of the medium is different between the first grating layer and the second grating layer, and by controlling the optical axis of the medium, arbitrary polarization characteristics can be obtained. An optical modulation device that modulates light, comprising means for spatially separating the variable refractive index medium of the first grating layer and the variable refractive index medium of the second grating layer. It is said that Note that the state in which multiple gratings are lined up in the direction in which the incident light travels indicates that each grating always exists in the direction in which the incident light travels, and the incident angle does not necessarily vary with respect to this device. It is not necessarily vertical.

前記所定の光学軸を有する物質は、所謂屈折率
可変媒体であり、該屈折率可変媒体の屈折率を電
界、磁界、圧力、熱等により変化させて前記グレ
ーテイングに所定の特性を与える。
The substance having the predetermined optical axis is a so-called refractive index variable medium, and the refractive index of the refractive index variable medium is changed by an electric field, a magnetic field, pressure, heat, etc. to impart predetermined characteristics to the grating.

前記屈折率可変媒体としては、例えば、液晶、
PLZT,LiNbO3,LiTaO3,TiO2,PMMA,
CCl4,KDP,ADP,ZnO,BaTiO3,Bi12SiO20
Ba2NaNb5O15,MnBi,EuO,CS2,Gd2
(M0O43,Bi4Ti3O12,CuCl,CaAs,ZnTe,
As2Se3,Se,AsGeSeS,DKDP,MNA,
mNA,UREA、フオトレジスト等が挙げられ
る。特に、正誘電性ネマチツク液晶や強誘電性液
晶等の液晶は安価で屈折率差△n(異常屈折率と
常屈折率の差)が大きく、制御方法が簡便である
為に好適である。又、前記グレーテイングの作成
方法には、フオトリソグラフイーとドライエツチ
ングを組み合わせた方法、熱硬化性樹脂あるいは
紫外線硬化性樹脂等を用いたレプリカ法、ルーリ
ングエンジンを用いた切削法あるいはエンボス法
等の各種方法が挙げられる。
Examples of the variable refractive index medium include liquid crystal,
PLZT, LiNbO 3 , LiTaO 3 , TiO 2 , PMMA,
CCl 4 , KDP, ADP, ZnO, BaTiO 3 , Bi 12 SiO 20 ,
Ba 2 NaNb 5 O 15 , MnBi, EuO, CS 2 , Gd 2
( M0O4 ) 3 , Bi4Ti3O12 , CuCl , CaAs, ZnTe,
As 2 Se 3 , Se, AsGeSeS, DKDP, MNA,
Examples include mNA, UREA, photoresist, etc. In particular, liquid crystals such as positive dielectric nematic liquid crystals and ferroelectric liquid crystals are suitable because they are inexpensive, have a large refractive index difference Δn (difference between extraordinary refractive index and ordinary refractive index), and have a simple control method. In addition, the method for creating the grating includes a method combining photolithography and dry etching, a replica method using a thermosetting resin or an ultraviolet curable resin, a cutting method using a ruling engine, an embossing method, etc. Various methods can be mentioned.

(4) 実施例 第1図、第2図、第3図は本発明に係る光変調
装置の構成例を示し、1及び1′は各々光学軸の
方向が異なる屈折率可変媒体、2は透明光学部
材、3は透明電極、4は透明スペーサー、5は透
明ヒーターである。
(4) Embodiment Figures 1, 2, and 3 show configuration examples of a light modulation device according to the present invention, in which 1 and 1' are variable refractive index media whose optical axes are in different directions, and 2 is a transparent medium. The optical members include a transparent electrode 3, a transparent spacer 4, and a transparent heater 5.

第1図は電界制御型の本光変調装置の構成例で
あり、2つのグレーテイングが1つの装置内に形
成されている。第1図aの装置は透明光学部材2
が三角形状のグレーテイングを有し、平板透明ス
ペーサー4を介して上下に屈折率可変媒体1及び
1′が配置されている。又、透明電極3は透明光
学部材2に形成されている。第1図bの装置は一
方の透明光学部材2にグレーテイングを1個形成
し、透明スペーサー4に形成したグレーテイング
をもう一方の透明光学部材側に向けて置き、透明
スペーサー4を介して屈折率可変媒体1及び1′
を上下に配置している。又、透明電極3は各々の
透明光学部材2に設けられている。第1図cの装
置は、透明電極3を有する透明光学部材2を相対
するよう向かい合わせ、その間に2個のグレーテ
イングを有する透明スペーサー4を配し屈折率可
変媒体1及び1′を間隙部に配置している。
FIG. 1 shows an example of the configuration of this electric field control type optical modulation device, in which two gratings are formed in one device. The apparatus shown in FIG. 1a is a transparent optical member 2.
has a triangular grating, and variable index media 1 and 1' are arranged above and below with a flat transparent spacer 4 in between. Further, the transparent electrode 3 is formed on the transparent optical member 2. In the apparatus shown in FIG. 1b, one grating is formed on one transparent optical member 2, the grating formed on a transparent spacer 4 is placed facing the other transparent optical member, and the refraction is reflected through the transparent spacer 4. Variable rate media 1 and 1'
are arranged above and below. Further, a transparent electrode 3 is provided on each transparent optical member 2. In the apparatus shown in FIG. 1c, transparent optical members 2 having transparent electrodes 3 are placed facing each other, a transparent spacer 4 having two gratings is placed between them, and refractive index variable media 1 and 1' are placed in the gap. It is located in

第2図は熱制御型の本光変調装置の構成例であ
り、基本的な構造は第1図と殆ど同じである。但
し、第2図aでは透明ヒーター5をスペーサーの
替わりに配置し屈折率可変媒体1及び1′を上下
に分けている。又、第2図bでは第1図bに於け
る透明電極3の替わりに透明ヒーター5を用いて
いる。
FIG. 2 shows an example of the configuration of this thermally controlled optical modulation device, and the basic structure is almost the same as that in FIG. 1. However, in FIG. 2a, a transparent heater 5 is arranged in place of a spacer, and the variable refractive index media 1 and 1' are divided into upper and lower parts. Furthermore, in FIG. 2b, a transparent heater 5 is used in place of the transparent electrode 3 in FIG. 1b.

第3図は、1個のグレーテイングより成る光変
調装置を2個並べたものであり、各々の素子に用
いている屈折率可変媒体1及び1′は互いに光学
軸の方向が初期状態で異なつている。各々の素子
は透明光学部材2にグレーテイングが形成されて
おり、透明光学部材2に設けられた透明電極3に
より電界を用いて屈折率可変媒体1もしくは1′
の屈折率を制御するものである。
Figure 3 shows two optical modulation devices each consisting of one grating arranged side by side, and the refractive index variable media 1 and 1' used in each element have their optical axes in different directions in the initial state. It's on. Each element has a grating formed on a transparent optical member 2, and a transparent electrode 3 provided on the transparent optical member 2 applies an electric field to the refractive index variable medium 1 or 1'.
It controls the refractive index of.

以下、本光変調装置の変調原理を図面を用いて
詳述する。尚、任意の偏光特性を有する光は所定
の直交する2つの偏光成分に分けて考える事が可
能である。
Hereinafter, the modulation principle of the present optical modulation device will be explained in detail using the drawings. Note that light having arbitrary polarization characteristics can be considered as being divided into two predetermined orthogonal polarization components.

第4図は本光変調装置の変調原理説明図で、装
置の基本構造は第1図aの装置と同じである。こ
こで、6は入射光、7,7′は各々入射光6に於
ける互いに直交する偏光成分、8,8′は屈折率
可変媒体1及び1′の光学軸の方向を示し、第1
図と同様の部材には同番号を付す。
FIG. 4 is an explanatory diagram of the modulation principle of this optical modulation device, and the basic structure of the device is the same as the device shown in FIG. 1a. Here, 6 is the incident light, 7 and 7' are mutually orthogonal polarization components of the incident light 6, 8 and 8' are the directions of the optical axes of the variable refractive index media 1 and 1', and the first
Components similar to those in the figures are given the same numbers.

第4図に於いて、1層目の屈折率可変媒体1の
光学軸はグレーテイングの溝方向を向き、2層目
の屈折率可変媒体1′の光学軸はグレーテイング
配列方向を向いている。又、屈折率可変媒体1及
び1′の屈折率は電界によつて制御するものとす
る。
In FIG. 4, the optical axis of the first layer variable refractive index medium 1 is directed toward the grating groove direction, and the optical axis of the second layer variable refractive index medium 1' is directed toward the grating arrangement direction. . It is also assumed that the refractive index of the variable refractive index media 1 and 1' is controlled by an electric field.

電界の印加されていない静的状態では、1層目
に於いて、入射光6の偏光成分7′は屈折率可変
媒体1の異常屈折率neを感じ、偏光成分7は屈折
率可変媒体1の常屈折率n0を感じる。又、2層目
に於いて、偏光成分7′は屈折率可変媒体1′の常
屈折率n′0を感じ、偏光成分7は屈折率可変媒体
1′の異常屈折率n′eを感じる。ここで、1層目の
グレーテイングを形成する透明光学部材2の屈折
率をng、2層目のグレーテイングを形成する透明
光学部材2の屈折率n′g、入射光の波長をλ、1
層目及び2層目のグレーテイングの厚さを各々
T,T′とすれば、各層のグレーテイングに於け
る零次透過回折光の回折効率η′0及びη′0は次の(1)
式、(1)′式で表すことができる。
In a static state with no electric field applied, in the first layer, the polarized light component 7' of the incident light 6 senses the extraordinary refractive index n e of the variable index medium 1; We feel that the ordinary refractive index of n 0 . In the second layer, the polarized light component 7' senses the ordinary refractive index n'0 of the variable index medium 1', and the polarized light component 7 senses the extraordinary refractive index n'e of the variable index medium 1'. Here, the refractive index of the transparent optical member 2 forming the first layer grating is n g , the refractive index n' g of the transparent optical member 2 forming the second layer grating, the wavelength of the incident light is λ, 1
If the thicknesses of the gratings in the first and second layers are T and T', respectively, the diffraction efficiencies η' 0 and η' 0 of the zero-order transmitted diffracted light in the gratings in each layer are as follows (1)
It can be expressed as equation (1)′.

η0=sinc2(π△n・T/λ) …(1) η′0=sinc2(π△n′・T′/λ) …(1)′ 上式から△n=0、又は△n′=0の時η0=1又
はη′0=1となり、△nT=mλ、又は△n′T′=mλ
(m=1,2,3,…)の条件を満足する時、η0
=0又はη′0=0となる事が解る。
η 0 = sinc 2 (π△n・T/λ) …(1) η′ 0 = sinc 2 (π△n′・T′/λ) …(1)′ From the above equation, △n=0, or △ When n′=0, η 0 =1 or η′ 0 =1, and △nT=mλ or △n′T′=mλ
When the conditions (m=1, 2, 3,...) are satisfied, η 0
It can be seen that =0 or η′ 0 =0.

1層目に於いてn0=ngもしくはne=ngを満足さ
せておけば偏光成分7及び7′のどちらか一方は
素通りし、もう一方は(1)式に従い変調される。2
層目に於いても、n′0=n′gもしくはn′e=n′gを満足
させておけば偏光成分7及び7′のどちらか一方
は素通りし、もう一方は(1)′式に従い変調される。
If n 0 =n g or ne = n g is satisfied in the first layer, one of the polarization components 7 and 7' will pass through, and the other will be modulated according to equation (1). 2
Even in the layer, if n' 0 = n' g or n' e = n' g is satisfied, one of polarized light components 7 and 7' will pass through, and the other will pass through equation (1)'. Modulated according to

次に、屈折率可変媒体1及び1′に電界を印加
した場合、屈折率可変媒体1,1′の光学軸の方
向は変化し、それに従つて偏光成分7,7′の感
じる屈折率が変化する為、各々1層目、2層目に
於いて(1)式及び(1)′式に応じた変調を行なわれる
事になる。
Next, when an electric field is applied to the variable index media 1 and 1', the direction of the optical axis of the variable index media 1 and 1' changes, and the refractive index felt by the polarized light components 7 and 7' changes accordingly. Therefore, modulation is performed in accordance with equations (1) and (1)' in the first and second layers, respectively.

例えば、屈折率可変媒体1及び1′に同じ液晶
を用いたとすれば、ne=n′e,n0=n′0であり、初
期条件としてng=n′g=n0,T=T′+|ne−ng
|・T=mλを設定すれば、1層目及び2層目に
おける零次透過回折光の回折効率を表わす式はど
ちらも(1)式となる。
For example, if the same liquid crystal is used for the variable refractive index media 1 and 1', ne = n'e, n 0 = n' 0 , and the initial conditions are n g = n' g = n 0 , T = T ′+|n e −n g
If |·T=mλ is set, the equations expressing the diffraction efficiency of the zero-order transmitted diffracted light in the first layer and the second layer both become equation (1).

尚、スペーサー4の屈折率はほぼngと等しいと
する。この時、静的状態では入射光6の偏光成分
7′は1層目を素通りし、偏光成分7′は(1)式より
η0=0となり零次透過光は出射せず全て高次回折
光となる。又、2層目において偏光成分7は(1)式
よりη0=0となり零次透過光は出射せず全て高次
回折光となる。尚、偏光成分7′は高次回折光の
まま2層目を素通りする。従つて、零次方向へ出
射する光はない事になる。次に所定の電界を印加
し、液晶1及び1′の光軸方向(配向方向)をグ
レーテイング面に垂直、即ち光束の入射方向に向
けた場合、偏光成分7及び7′は1層目及び2層
目において全て液晶の常屈折率n0を感じ、素通り
して零次透過光となる。従つて電界印加により任
意の偏光特性を有する光の零次透過回折光の透過
率を制御できる事になる。尚、以上の説明におい
ては変調光として零次回折光を考えたが、高次回
折光を利用できる事は言うまでもない。
It is assumed that the refractive index of the spacer 4 is approximately equal to n g . At this time, in a static state, the polarized light component 7' of the incident light 6 passes through the first layer, and the polarized light component 7' becomes η 0 = 0 from equation (1), so no zero-order transmitted light is emitted and all the higher-order diffracted light becomes. Further, in the second layer, the polarization component 7 has η 0 =0 according to equation (1), so no zero-order transmitted light is emitted and all become high-order diffracted light. Note that the polarized light component 7' passes through the second layer as high-order diffracted light. Therefore, there is no light emitted in the zero-order direction. Next, when a predetermined electric field is applied and the optical axes (orientation directions) of the liquid crystals 1 and 1' are directed perpendicular to the grating surface, that is, in the direction of incidence of the light flux, the polarized light components 7 and 7' are In the second layer, all the light senses the ordinary refractive index n 0 of the liquid crystal, and passes through it as zero-order transmitted light. Therefore, by applying an electric field, it is possible to control the transmittance of zero-order transmitted diffracted light of light having arbitrary polarization characteristics. In the above explanation, zero-order diffracted light was considered as modulated light, but it goes without saying that higher-order diffracted light can also be used.

又、実際上、屈折率可変媒体1及び1′の光学
軸の方向は本実施例の如く必ずしも直交している
必要はなく、入射光から見て屈折率可変媒体1及
び1′の光学軸の方向が異なつていれば良い。従
つて、どの程度光学軸の方向に差をつけるかは、
媒体からの制約、用いる入射光の偏光特性、作成
上及び本装置の仕様に対する条件により異なる。
又、第1図〜第4図に示した実施例に於いて各層
におけるグレーテイングの方向は同一であるが、
本光変調装置はグレーテイングの配列方向に何ら
依存するものではなく、複数個のグレーテイング
は光変調作用を防げない限りどの方向を向いてい
ても構わない。
In addition, in reality, the directions of the optical axes of the variable refractive index media 1 and 1' do not necessarily have to be orthogonal as in this embodiment, and the directions of the optical axes of the variable index media 1 and 1' are not necessarily perpendicular to each other as in this embodiment. It would be good if the directions were different. Therefore, how much difference should be made in the direction of the optical axis?
It varies depending on constraints from the medium, polarization characteristics of the incident light used, manufacturing conditions, and specifications of the device.
Furthermore, in the embodiments shown in FIGS. 1 to 4, the direction of grating in each layer is the same;
This light modulation device does not depend on the arrangement direction of the gratings, and the plurality of gratings may be oriented in any direction as long as the light modulation effect cannot be prevented.

第5図は本光変調装置で形成されるグレーテイ
ングの形状例を示し、図中の番号は全て第1図と
同様の部材を示す。
FIG. 5 shows an example of the shape of a grating formed by the present optical modulation device, and all numbers in the figure indicate the same members as in FIG. 1.

第5図aに於いてはスペーサー4を介して矩形
状グレーテイングが透明光学部材2により2個形
成されている。又、第5図bでは正弦波状グレー
テイングが同様に2個形成されている。
In FIG. 5a, two rectangular gratings are formed by transparent optical members 2 with spacers 4 interposed therebetween. Also, in FIG. 5b, two sinusoidal gratings are similarly formed.

本光変調装置はグレーテイングの形状に関係な
く光変調の機能を有するが、グレーテイングの形
状が異なると前記(1)式で示した回折効率の式に違
いが現われる。例えば、矩形状グレーテイングの
場合は次の(2)式のようになる。
The present optical modulation device has a light modulation function regardless of the shape of the grating, but if the shape of the grating differs, a difference will appear in the equation of diffraction efficiency shown in equation (1) above. For example, in the case of a rectangular grating, the following equation (2) is obtained.

η0=1/2{1+cos(2π△n・T/λ)} …(2) 尚、複数個のグレーテイングがそれぞれ違う形
状を有していても構わず、グレーテイングの形状
は製作の容易性等を加味して決定するべきもので
ある。又、前記実施例で使用した三角形状グレー
テイングは単色光のみならず白色光に対しても優
れた回折効果を持つものである。
η 0 = 1/2 {1 + cos (2π△n・T/λ)} ...(2) Note that it does not matter if multiple gratings have different shapes, and the shape of the gratings can be determined based on the shape of the grating that is easy to manufacture. The decision should be made taking into consideration gender, etc. Further, the triangular grating used in the above embodiment has an excellent diffraction effect not only for monochromatic light but also for white light.

以下、第1図aの基本構成を有する本光変調装
置の作成過程と性能評価の結果を記す。
Below, we will describe the manufacturing process and performance evaluation results of this optical modulator having the basic configuration shown in FIG. 1a.

第6図は本光変調装置の作成過程を示し、9は
液晶、他の番号は第1図と同様の部材を指す。
FIG. 6 shows the manufacturing process of this optical modulation device, in which 9 is a liquid crystal and other numbers refer to the same members as in FIG. 1.

透明PBMA樹脂基板2(50×25×1.5mm2、ng
1.56)の両面を透明平面とし、第6図aの如く片
面の所定部分(10×10mm2)にエンボス加工を用い
てピツチ3μm、深さ2.6μmの三角形状グレーテイ
ングを形成した。続いて、第6図bの如く基板2
上にITO膜3を、グレーテイング領域を含めて帯
状に厚さ1000Åで形成した。上記同様の方法で作
成された透明PBMA基板2をもう一枚用意し、
表裏が直交する方向に配向処理を施した厚さ5μm
の透明テフロン製スペーサー4を上記2枚の透明
PBMA基板2間に挟み、上下2層のグレーテイ
ングとスペーサー4との間隙部に正誘電性液晶
MBBA(n0=1.56、ne=1.786)を充填し、第6図
cの如き装置を作成した。
Transparent PBMA resin substrate 2 (50×25×1.5mm 2 , n g =
Both sides of 1.56) were made transparent planes, and a triangular grating with a pitch of 3 μm and a depth of 2.6 μm was formed by embossing on a predetermined portion (10×10 mm 2 ) of one side as shown in FIG. 6a. Next, as shown in FIG. 6b, the substrate 2 is
An ITO film 3 was formed thereon to a thickness of 1000 Å in the form of a strip including the grating region. Prepare another transparent PBMA substrate 2 created by the same method as above,
5μm thick with orientation treatment in the direction that the front and back are perpendicular to each other
Place the transparent Teflon spacer 4 between the two transparent sheets above.
A positive dielectric liquid crystal is sandwiched between the PBMA substrates 2 and in the gap between the upper and lower grating layers and the spacer 4.
Filled with MBBA (n 0 =1.56, n e =1.786), a device as shown in FIG. 6c was prepared.

第6図cで示される光変調装置にランダムな偏
光成分を有するNa光源のD線(λ=589.3nm)
を入射させた所、電圧を印加しない静的状態では
零次透過回折光は殆ど出射せず、入射光に対する
透過率は1%以下であつた。又、周波数1kHz、
実行電圧10Vの矩形波電圧を印加した所、入射光
は殆ど素通りして透過率は80%以上であつた。更
に、電圧印加に対する立ち上がり時間は1msec、
立ち下がり時間は5msecであつた。
D line (λ = 589.3 nm) of Na light source with random polarization component in the optical modulator shown in Figure 6c
In a static state with no voltage applied, almost no zero-order transmitted diffraction light was emitted, and the transmittance of the incident light was 1% or less. Also, frequency 1kHz,
When a rectangular wave voltage with an effective voltage of 10 V was applied, almost all incident light passed through, and the transmittance was over 80%. Furthermore, the rise time for voltage application is 1 msec,
The fall time was 5 msec.

以上の様に、任意の偏光特性を有する入射光に
対して有効に動作し得る事が確認された。次に他
の実施例を以下に述べる。
As described above, it was confirmed that the device can operate effectively for incident light having arbitrary polarization characteristics. Next, other embodiments will be described below.

透明PMMA樹脂フイルムに矩形波状熱延ロー
ラーを用いて第7図に示す如くピツチ3μm、深さ
2.1μmの矩形波状グレーテイングを両面に形成し
た。但し表裏のグレーテイング溝方向は直交して
いる。次に、2枚のBK7基板(50×25×1mm2
ng=1.490)の両面を透明平面とし、各々片面の
所定部分(10×40mm2)に厚さ1000ÅのITO膜を成
膜した。続いて、この2枚のBK7基板のITO膜
間に上記グレーテイングを有するフイルム4をス
ペーサとして挟み込み、その間障部に正誘電性液
晶ZLI−2141−000(メルク製、no=1.49、ne
1.64)を充填した。この時液晶は上記フイルム4
のグレーテイングにより配向され、フイルム4で
分けられた上下の液晶は互いに配向方向が直交し
ている。本実施例の光変調装置を用い、ランダム
な偏光成分を持つHe−Neレーザ光(λ=
632.8nm)を入射させて前記実施例同様の測定を
行なつた所、前記実施例とほぼ同様の結果を得る
ことができた。
A transparent PMMA resin film was rolled using a rectangular wave hot rolling roller with a pitch of 3 μm and a depth as shown in Figure 7.
2.1 μm rectangular wave gratings were formed on both sides. However, the directions of the grating grooves on the front and back sides are orthogonal. Next, two BK7 boards (50 x 25 x 1 mm 2 ,
ng=1.490) were made transparent planes, and an ITO film with a thickness of 1000 Å was formed on a predetermined portion (10×40 mm 2 ) of each side. Next, the film 4 having the grating described above was sandwiched between the ITO films of these two BK7 substrates as a spacer, and a positive dielectric liquid crystal ZLI-2141-000 (manufactured by Merck, no = 1.49, n e =
1.64) was filled. At this time, the liquid crystal display is the above film 4.
The upper and lower liquid crystals are oriented by the grating and separated by the film 4, and their alignment directions are perpendicular to each other. Using the optical modulator of this example, a He-Ne laser beam with random polarization components (λ=
632.8 nm) was incident, and the same measurements as in the above example were performed, and almost the same results as in the above example could be obtained.

(5) 発明の効果 以上説明した様に、本発明に係る光変調装置
は、偏光板が不要であり任意の偏光成分を有する
入射光に対して高い光利用効果を備えた装置であ
る。
(5) Effects of the Invention As explained above, the light modulation device according to the present invention is a device that does not require a polarizing plate and has a high light utilization effect for incident light having any polarization component.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図は本発明に係る光変調
装置の構成例を示す図。第4図は本光変調装置の
変調原理説明図。第5図は本光変調装置に用いる
グレーテイングの形状例を示す図。第6図は本光
変調装置の作成過程を示す図。第7図は本光変調
装置の他の実施例に用いたグレーテイングを示す
図。 1,1′…光学軸の方向が異なる屈折率可変媒
体、2…透明光学部材、3…透明電極、4…透明
スペーサー、5…透明ヒーター、6…入射光、
7,7′…互いに直交する偏光成分、8,8′…屈
折率可変媒体の光学軸の方向、9…液晶。
FIG. 1, FIG. 2, and FIG. 3 are diagrams showing an example of the configuration of a light modulation device according to the present invention. FIG. 4 is an explanatory diagram of the modulation principle of the present optical modulation device. FIG. 5 is a diagram showing an example of the shape of a grating used in the present optical modulation device. FIG. 6 is a diagram showing the manufacturing process of the present optical modulation device. FIG. 7 is a diagram showing a grating used in another embodiment of the present optical modulation device. DESCRIPTION OF SYMBOLS 1, 1'...Refractive index variable medium with different optical axis directions, 2...Transparent optical member, 3...Transparent electrode, 4...Transparent spacer, 5...Transparent heater, 6...Incoming light,
7, 7'... Polarization components perpendicular to each other, 8, 8'... Direction of the optical axis of the variable refractive index medium, 9... Liquid crystal.

Claims (1)

【特許請求の範囲】 1 入射光の進行方向に並んだ第1、第2のグレ
ーテイング層を有し、該第1、第2のグレーテイ
ング層は透明光学部材と屈折率可変媒体とを有
し、且つ前記媒体の光学軸の方向が前記第1グレ
ーテイング層と第2グレーテイング層で異なり、
前記媒体の光学軸を制御することにより任意の偏
光特性を有する光の変調を行なう光変調装置にお
いて、前記第1グレーテイング層の屈折率可変媒
体と、前記第2グレーテイング層の屈折率可変媒
体とを空間的に分離する手段を有することを特徴
とする光変調装置。 2 前記分離する手段は、前記透明光学部材の少
なくとも1つを兼用することを特徴とする特許請
求の範囲第1項記載の光変調装置。
[Scope of Claims] 1. First and second grating layers arranged in the traveling direction of incident light, the first and second grating layers having a transparent optical member and a variable refractive index medium. and the direction of the optical axis of the medium is different between the first grating layer and the second grating layer,
In the light modulation device that modulates light having arbitrary polarization characteristics by controlling the optical axis of the medium, the variable refractive index medium of the first grating layer and the variable refractive index medium of the second grating layer are provided. 1. A light modulation device characterized by having means for spatially separating the light modulator and the light modulator. 2. The light modulation device according to claim 1, wherein the separating means also serves as at least one of the transparent optical members.
JP3328485A 1985-02-21 1985-02-21 Optical modulating equipment Granted JPS61193123A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP3328485A JPS61193123A (en) 1985-02-21 1985-02-21 Optical modulating equipment
DE19863605516 DE3605516A1 (en) 1985-02-21 1986-02-20 OPTICAL FUNCTIONAL ELEMENT AND OPTICAL FUNCTIONAL DEVICE
GB8604310A GB2173605B (en) 1985-02-21 1986-02-21 Diffractive light modulating devices
FR8602406A FR2577694B1 (en) 1985-02-21 1986-02-21 FUNCTIONAL OPTICAL ELEMENTS AND DEVICES
US07/391,621 US5013141A (en) 1985-02-21 1989-08-01 Liquid crystal light modulation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3328485A JPS61193123A (en) 1985-02-21 1985-02-21 Optical modulating equipment

Publications (2)

Publication Number Publication Date
JPS61193123A JPS61193123A (en) 1986-08-27
JPH0584487B2 true JPH0584487B2 (en) 1993-12-02

Family

ID=12382232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3328485A Granted JPS61193123A (en) 1985-02-21 1985-02-21 Optical modulating equipment

Country Status (1)

Country Link
JP (1) JPS61193123A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2570314B2 (en) * 1987-09-01 1997-01-08 キヤノン株式会社 Viewfinder optical system
CN102929000B (en) * 2012-11-30 2014-11-26 上海理工大学 Tunable metal grating polarizer with high extinction ratio

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55120010A (en) * 1979-03-08 1980-09-16 Ricoh Co Ltd Picture image display plate
JPS55120011A (en) * 1979-03-08 1980-09-16 Ricoh Co Ltd Picture image display plate
US4251137A (en) * 1977-09-28 1981-02-17 Rca Corporation Tunable diffractive subtractive filter
JPS59224829A (en) * 1983-06-03 1984-12-17 Matsushita Electric Ind Co Ltd Electroosmotic liquid composition and electroosmosis controlling element
JPS59228632A (en) * 1983-06-10 1984-12-22 Canon Inc Functional optical element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4251137A (en) * 1977-09-28 1981-02-17 Rca Corporation Tunable diffractive subtractive filter
JPS55120010A (en) * 1979-03-08 1980-09-16 Ricoh Co Ltd Picture image display plate
JPS55120011A (en) * 1979-03-08 1980-09-16 Ricoh Co Ltd Picture image display plate
JPS59224829A (en) * 1983-06-03 1984-12-17 Matsushita Electric Ind Co Ltd Electroosmotic liquid composition and electroosmosis controlling element
JPS59228632A (en) * 1983-06-10 1984-12-22 Canon Inc Functional optical element

Also Published As

Publication number Publication date
JPS61193123A (en) 1986-08-27

Similar Documents

Publication Publication Date Title
US5013141A (en) Liquid crystal light modulation device
US4878742A (en) Liquid crystal optical modulator
US5640267A (en) Optical apparatus
US3963310A (en) Liquid crystal waveguide
US4822146A (en) Optical modulation element
US20050002101A1 (en) Dynamically controllable light modulator using phase diffraction grating and display using the same
JPH0584487B2 (en)
JP2661051B2 (en) Liquid crystal light modulator
JPS61193122A (en) Optical modulating equipment
JPS61201214A (en) Optical modulator
JPH1031435A (en) Liquid crystal display panel
JP2517589B2 (en) Light modulation element
JPS61169818A (en) Optical modulating device
JP3144011B2 (en) Liquid crystal phase grating
JPS62237423A (en) Light modulating element
JPS62237424A (en) Light modulating element
JPS62238521A (en) Optical modulator
JPH1078569A (en) Optical element and driving method of the optical element as well as display device
JPH0652351B2 (en) Light modulator
JPH0274925A (en) Optical switching element for multi-electrode type high speed liquid crystal
Saito et al. Tunable retarder made of pentaprisms and liquid crystal
JPS62235926A (en) Optical modulation element
JPS62237427A (en) Light modulating element
JPH0776814B2 (en) Light modulator
JPS62238520A (en) Optical modulator

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term