JPH0583864B2 - - Google Patents

Info

Publication number
JPH0583864B2
JPH0583864B2 JP12001389A JP12001389A JPH0583864B2 JP H0583864 B2 JPH0583864 B2 JP H0583864B2 JP 12001389 A JP12001389 A JP 12001389A JP 12001389 A JP12001389 A JP 12001389A JP H0583864 B2 JPH0583864 B2 JP H0583864B2
Authority
JP
Japan
Prior art keywords
gas
amount
gask
standard
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12001389A
Other languages
Japanese (ja)
Other versions
JPH02298860A (en
Inventor
Hisashi Watanabe
Kazumasa Umezawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP12001389A priority Critical patent/JPH02298860A/en
Publication of JPH02298860A publication Critical patent/JPH02298860A/en
Publication of JPH0583864B2 publication Critical patent/JPH0583864B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、分析精度を上げるための、質量分析
計の標準ガス成分の構成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for configuring standard gas components of a mass spectrometer in order to improve analysis accuracy.

質量分析計でサンプルガスの成分を分析するに
は予めパターン係数と感度係数を求めておく必要
があり、これには標準ガスを用いる。本発明はこ
の標準ガスの組成に係るものである。
In order to analyze the components of a sample gas with a mass spectrometer, it is necessary to determine the pattern coefficient and sensitivity coefficient in advance, and a standard gas is used for this purpose. The present invention relates to the composition of this standard gas.

〔従来の技術〕[Conventional technology]

質量分析計は周知のようにサンプルガスをイオ
ン化し、加速し、電界/磁界で偏向し、コレクタ
に入つたものをイオン化電流という形で検出す
る。ある値の質量数m/eのイオンがコレクタに
入るように調整すれば、他の質量数のイオンはコ
レクタに入らず、これにより質量数m/eの分
析、ひいてはガス種の分析ができる。
As is well known, a mass spectrometer ionizes a sample gas, accelerates it, deflects it with an electric/magnetic field, and detects what enters the collector in the form of an ionizing current. If the adjustment is made so that ions with a certain mass number m/e enter the collector, ions with other mass numbers will not enter the collector, thereby making it possible to analyze the mass number m/e and, by extension, the gas species.

しかし質量分析形では、異種のガスでもm/e
が一致するものは同じピーク(イオン化電流)に
含まれる。また、同じガスでも複数のピーク(メ
インピーク、フラグメントピーク)を作り、各ガ
スのそれが同じピークに含まれることがある。等
の問題がある。第3図はCO2、CO、N2混合ガス
の分析例であるが、この図に示されるようにCO2
はm/e=44の所にメインピークを作る他、m/
e=28及び12の所にもフラグメントピークを作
る。同様にN2はm/e=28にメインピークを、
またm/e=14にフラグメントピークを作り、
COはm/e=28にメインピークを、またm/e
=14と12にフラグメントピークを作る。m/e=
28ではCOとN2とCO2のピークがあるから、CO、
N2量を求めるにはこれらの分離が必要である。
However, with mass spectrometry, even different gases have m/e
Those that match are included in the same peak (ionization current). Furthermore, the same gas may produce multiple peaks (main peak, fragment peak), and the peaks of each gas may be included in the same peak. There are other problems. Figure 3 is an example of analysis of CO 2 , CO, and N 2 mixed gas ;
produces a main peak at m/e = 44, and also produces a main peak at m/e = 44.
Fragment peaks are also created at e=28 and 12. Similarly, N 2 has a main peak at m/e = 28,
Also, create a fragment peak at m/e = 14,
CO has a main peak at m/e = 28, and m/e
= Create fragment peaks at 14 and 12. m/e=
At 28, there are peaks for CO, N 2 and CO 2 , so CO,
These separations are necessary to determine the amount of N2 .

この分離は、パターン係数を用いて行なうこと
ができる。即ち、メインピークとフラグメントピ
ークの間には一定の関係(比;パターン係数)が
あるので、この関係を用いて、例えばm/e=28
のCO2成分のm/e=44のCO2成分から算出し…
…という要領でm/e=28のCO2、N2、CO各成
分を分離する、ことが可能である。
This separation can be done using pattern coefficients. That is, since there is a certain relationship (ratio; pattern coefficient) between the main peak and the fragment peak, using this relationship, for example, m/e = 28
Calculated from m/e of CO 2 component = 44 CO 2 component...
It is possible to separate CO 2 , N 2 , and CO components with m/e=28 in the following manner.

イオン化電流値Iはそのガス成分の分圧P、パ
ターン係数π、および感度Sに関係しており、I
=S・π・Pで表わされる。アルゴンArを基準
ガスとし、これにあるガスGASを種々の%で加
えた混合ガスのその比%Gas/%Arを横軸にと
り、質量分析計で得られた該ガスのメインピーク
hMGasとアルゴンのメインピークh40Arの比を縦
軸にとつてプロツトすると、ほヾy=ax+bな
る直線関係が得られる。この勾配aが感度係数で
ある。
The ionization current value I is related to the partial pressure P of the gas component, the pattern coefficient π, and the sensitivity S, and I
=S・π・P. Using argon as a reference gas, the horizontal axis is the ratio of %Gas/%Ar of a mixed gas in which various percentages of GAS are added, and the main peak of the gas obtained with a mass spectrometer is plotted.
When the ratio of h M Gas to the main peak h 40 Ar of argon is plotted on the vertical axis, a linear relationship such as y=ax+b is obtained. This gradient a is the sensitivity coefficient.

質量分析計で分析するには、これらのパターン
係数と感度係数が必要であるが、従来、これらを
得るにはサンプルガス成分中のm/eが重ならな
いもの2つをとり、これらの2種混合ガスを標準
ガスとし、これを質量分析計にかけてその結果か
らパターン係数及び感度係数を得ている。例えば
真空脱炭装置(RH)で溶鋼の脱炭をするとき生
じる排ガスはCO、CO2、N2、O2、H2、Arなど
の混合ガスであるが、この混合ガスからCO、
CO2を質量分析計で分析する際の標準ガスとして
はCO用にArとCOの混合ガス、CO2用にArと
CO2の混合ガスを用い、混合比は同程度であつ
て、実際とは大きく異なるのが普通である。
These pattern coefficients and sensitivity coefficients are required for analysis with a mass spectrometer, but conventionally, to obtain them, two sample gas components with non-overlapping m/e are taken, and these two types are The mixed gas is used as a standard gas, and it is applied to a mass spectrometer and the pattern coefficient and sensitivity coefficient are obtained from the results. For example, the exhaust gas generated when molten steel is decarburized in a vacuum decarburizer (RH) is a mixed gas of CO, CO 2 , N 2 , O 2 , H 2 , Ar, etc. From this mixed gas, CO,
The standard gas when analyzing CO 2 with a mass spectrometer is a mixed gas of Ar and CO for CO, and a mixture of Ar and CO for CO 2.
Usually, a mixed gas of CO 2 is used, and the mixing ratio is about the same, but it is usually very different from the actual one.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

質量分析計で分析するに当つて必要なパターン
係数及び感度係数は従来、上記の如き標準ガスで
測定しているが、これは質量分析計でイオンソー
ス内の試料ガス圧力と二次電子増倍管出力信号I
との間には下記(1)式 I=kP ……(1) こゝでPはイオンソース内の試料ガス圧力、k
はガスのタイプ、機器の状態に依る定数、が成立
することを仮定しており、サンプルガスが理想気
体の場合は構成ガスの分圧に比例した出力信号が
得られ、従来方法で良い精度が得られる。
The pattern coefficient and sensitivity coefficient necessary for analysis with a mass spectrometer have conventionally been measured using the standard gases mentioned above, but this is because the mass spectrometer uses the sample gas pressure in the ion source and secondary electron multiplication. Tube output signal I
The equation (1) below is between I=kP...(1) where P is the sample gas pressure in the ion source and k
assumes that a constant that depends on the type of gas and the state of the equipment holds; if the sample gas is an ideal gas, an output signal proportional to the partial pressure of the constituent gases will be obtained, and the conventional method has good accuracy. can get.

しかし、実際のガスは厳密には理想気体ではな
く、またkは試料成分ガスのタイプに起因するミ
ーンフリーパス及びクロスセクシヨン、及び試料
ガスのイオン化電圧、等に左右されるため、(1)式
は厳密には成り立たない。
However, actual gases are not strictly ideal gases, and k depends on the mean free path and cross section caused by the type of sample component gas, the ionization voltage of the sample gas, etc. (1) The formula does not hold true strictly.

また質量分析計の出力データの処理にコンピユ
ータが用いられることが多くなり、信号がA/D
変換されて扱われるため、サンプルガス中の当該
成分の濃度と標準ガス中の当該成分の濃度が異な
ると、誤差が大きくなる恐れがある。例えばA/
D変換器は12ビツト、フルスケールは4095とし
て、2種混合標準ガスの各ガスの分圧は同程度と
すると、その検出出力(イオン化電流値)はこの
12ビツトの多くの部分を使つて表わされる
(MSBが上位にある)が、サンプルガス中の当該
ガスの分圧は微小とするとその検出出力は12ビツ
トの小部分を使つて表わされるだけである
(MSBが下位にある)。このような標準ガスで求
めたパターン係数は大きいもの同志の比であるの
に対し、サンプルガスでのパターン係数は小さい
もの同志の比であり、A/D変換における電子化
誤差等により両者は等しくない。実際にできるだ
け近づけるようにするには、標準ガスも実際に合
つたものであるのが好ましい。
In addition, computers are increasingly being used to process the output data of mass spectrometers, and the signals are
Since it is converted and handled, if the concentration of the relevant component in the sample gas differs from the concentration of the relevant component in the standard gas, there is a risk that the error will become large. For example, A/
Assuming that the D converter is 12 bits, the full scale is 4095, and the partial pressures of each gas in the two standard gas mixtures are about the same, the detection output (ionization current value) will be
It is expressed using many parts of 12 bits (MSB is at the top), but if the partial pressure of the gas in question in the sample gas is extremely small, its detection output is expressed using only a small part of 12 bits. (MSB is at the bottom). The pattern coefficients obtained using such a standard gas are a ratio of large numbers to each other, whereas the pattern coefficients for a sample gas are a ratio of small numbers to each other, and due to electronic errors in A/D conversion, etc., the two are equal. do not have. In order to be as close as possible to reality, it is preferred that the standard gas also be a true match.

それ故本発明は、パターン係数、感度係数を測
定する際用いる標準ガス成分をできるだけサンプ
ルガスと一致させ、不要なガス成分はサンプルガ
ス系で反応、また変質せざるガスで代替すること
によつて分析精度を大幅に向上することを目的と
するものである。
Therefore, the present invention makes the standard gas components used when measuring pattern coefficients and sensitivity coefficients match the sample gas as much as possible, and replaces unnecessary gas components with gases that do not react or change in the sample gas system. The purpose is to significantly improve analysis accuracy.

〔課題を解決するための手段〕[Means to solve the problem]

本発明では、サンプルガスを質量分析計で分析
するにあたつてその際用いるパターン係数、及び
感度係数の測定用の標準ガス成分をサンプルガス
成分にできるだけ近づけ、サンプルガス測定時の
パターン係数、感度係数に可及的に近いものが得
られるようにする。
In the present invention, when analyzing a sample gas with a mass spectrometer, standard gas components for measuring the pattern coefficients and sensitivity coefficients used at that time are as close as possible to the sample gas components, and the pattern coefficients and sensitivity coefficients used when measuring the sample gas are adjusted as close as possible to the sample gas components. Try to get as close to the coefficients as possible.

即ちサンプルガス構成成分をGasi、各々の量
をgi(%)とし、そのうちのGaskのパターン係数
を得るとき使用する標準ガスは、質量分析計での
該Gaskの分析に影響を与えない(サンプルガス
と反応しない、変質しない、ピークが重ならな
い)ガスGasxと、Gasi中のベースガスGasbと、
該ガスGaskとの3種混合ガスで、各々の量は gb′+gk′+gx=100(%) とする。こゝでgb′はサンプルガス中のベースガ
スGasbの量のgb(%)に近い量、gkはサンプル
ガス中のGaskの量gk(%)に近い量、gxはGasx
の量(%)である。
In other words, the sample gas component is gasi, the amount of each is gi (%), and the standard gas used to obtain the gask pattern coefficient does not affect the analysis of the gask by the mass spectrometer (sample gas (does not react with, does not change in quality, does not have overlapping peaks) gas Gasx and the base gas Gasb in Gasi,
Three kinds of gases are mixed with Gask, and the amount of each gas is gb'+gk'+gx=100 (%). Here, gb' is an amount close to gb (%) of the amount of base gas Gasb in the sample gas, gk is an amount close to the amount gk (%) of Gask in the sample gas, and gx is Gasx
is the amount (%).

例えばRH装置での排ガスの成分および量、そ
の経時変化の概略は分つているから、サンプルガ
ス中の量gb、gkの概略値は推定でき、従つて
gb′、gk′はこの推定値として決定できる。
For example, since we know the components and amounts of exhaust gas in an RH device and their approximate changes over time, we can estimate the approximate values of the amounts gb and gk in the sample gas, and therefore
gb′ and gk′ can be determined as these estimated values.

またガスGaskの感度係数を得るとき使用する
標準ガスは、該ガスGasbとGaskとGasxとの3
種混合で、各々の量は、Gasbはサンプルガス中
の量に近い量、Gaskの量は感度係数測定に必要
な範囲(第4図の係数aを決めるに必要な範囲)
で変えたもの、Gasxは残りを満たす量とする。
In addition, the standard gas used when obtaining the sensitivity coefficient of gas Gask is the 3 of gas Gasb, Gask, and Gasx.
In the mixture of species, the amount of each gas is close to the amount in the sample gas, and the amount of Gask is within the range necessary to measure the sensitivity coefficient (the range necessary to determine the coefficient a in Figure 4).
Gasx is the amount that fills the remainder.

〔作用〕[Effect]

このようにガスGaskのパターン係数、感度係
数の決定に用いる標準ガスを、該ガスGaskに関
してサンプルガスと類似のものとすると、実際の
分析時に近いパターン係数、感度係数が得られ、
分析を正確に、実際に近いものにすることができ
る。
In this way, if the standard gas used to determine the pattern coefficient and sensitivity coefficient of the gas Gask is similar to the sample gas with respect to the gas Gask, pattern coefficients and sensitivity coefficients that are close to those in actual analysis can be obtained.
The analysis can be accurate and close to reality.

〔実施例〕〔Example〕

第1図に、RH排ガス分析についての例を示
す。aはRH排ガスの代表的な成分例を示し、図
示のようにこれはアルゴンAr、二酸化炭素CO2
一酸化炭素CO、窒素N2、酸素O2、水素H2から
なる。このうちのCO、CO2は溶鋼中のCが脱炭
されて生じたもの、N2は空気中の窒素がRH装置
の間隙などから侵入したもの、O2も同様である
がこれには溶鋼等に含まれていたものも含まれ
る。ArはRH装置で溶鋼の循環に用いたものであ
る。このArガスは第4図の如く、感度係数測定
のベースガスになつており、x=Gask/Ar、y
=hMGask/h40Arとして複数の測定点を得、こ
れらの複数点を代表する直線y=ax+bの該a
が感度係数になる。
Figure 1 shows an example of RH exhaust gas analysis. A shows typical examples of components of RH exhaust gas, and as shown in the figure, these include argon Ar, carbon dioxide CO 2 ,
Consists of carbon monoxide CO, nitrogen N2 , oxygen O2 , and hydrogen H2 . Of these, CO and CO 2 are generated when C in the molten steel is decarburized, N 2 is the result of nitrogen in the air entering through the gaps in the RH equipment, and O 2 is the same, but this includes the molten steel. This also includes items that were included in the above. Ar was used for circulating molten steel in the RH equipment. As shown in Figure 4, this Ar gas is the base gas for sensitivity coefficient measurement, where x=Gask/Ar, y
Obtain multiple measurement points as = h M Gask/h 40 Ar, and obtain the corresponding a of the straight line y = ax + b representing these multiple points.
becomes the sensitivity coefficient.

第1図aの成分の排ガス中のCO2のパターン係
数、感度係数測定用の標準ガスは、従来は第1図
dに示す如く、ベースガスArとCO2ガスをほヾ
等量(本例では4対6程度)混合したものであつ
た。これに対して本発明では第1図bに示すよう
に、ベースガス(Gasb)Arと、パターン係数及
び感度係数の測定対象であるガス(Gask)CO2
と、該ガスCO2の分析に影響を与えないガス
(Gasx)Heとの3種混合ガスを標準ガスにする。
各々の量はパターン係数用には、ArとCO2はサ
ンプルガス(排ガス)中の量にほヾ等しい量と
し、Heは残りを埋める量とする。
Conventionally, the standard gas for measuring the pattern coefficient and sensitivity coefficient of CO 2 in the exhaust gas of the components shown in Figure 1a has been prepared by using base gas Ar and CO 2 gas in approximately equal amounts (in this example), as shown in Figure 1d. It was a mixture of about 4:6). On the other hand, in the present invention, as shown in FIG .
The standard gas is a three-component mixture of gas (Gasx) and He, which does not affect the analysis of the gas CO 2 .
For the pattern coefficients, the amounts of Ar and CO 2 are approximately equal to the amounts in the sample gas (exhaust gas), and the amount of He is to fill in the remaining amount.

パターン係数と感度係数の測定対象ガスがCO
であれば、標準ガスは第1図cに示すようにAr
とCOとHeの3種混合で、量は、ArとCOについ
てはサンプルガスのそれとほヾ同量、Heはこれ
らの残りとする。他も、同様である。
The gas to be measured for the pattern coefficient and sensitivity coefficient is CO.
If so, the standard gas is Ar as shown in Figure 1c.
The amount of Ar and CO is approximately the same as that of the sample gas, and the amount of He is the remaining amount. The same goes for the others.

分析に影響しないガスGasxとしてはHeの他に
Arなどがある。なおArをベースガスとしている
場合はそれを入れ替えて、Heがベースガス、Ar
がGasxとすることができる。
In addition to He, gases that do not affect analysis include
There are Ar, etc. If Ar is used as the base gas, replace it so that He is the base gas and Ar is the base gas.
can be Gasx.

第2図に分析例を示す。aは従来の標準ガスを
用いた場合で、COの存在を示している。bは本
発明の標準ガスを用いた場合で、COの存在は認
められない。ガスクロによる分析でもCOは検出
されず、従つてbが正しい。
Figure 2 shows an example of analysis. A shows the presence of CO when a conventional standard gas is used. b is the case where the standard gas of the present invention was used, and the presence of CO was not observed. CO was not detected in gas chromatography analysis, so b is correct.

第2図aでCOが検出されてしまうのは、パタ
ーン係数及び感度係数の測定精度が不十分、第3
図に示したようにN2とCOは同じm/e=28にメ
インピークを待ちこれらの分離が不完全、などに
よる。
The reason why CO is detected in Figure 2a is because the measurement accuracy of the pattern coefficient and sensitivity coefficient is insufficient, and the third
As shown in the figure, N 2 and CO have a main peak at the same m/e = 28, and their separation is incomplete.

本発明の改善した標準ガスを用いると、分析誤
差が1%以内に収まることが判明した。
It has been found that when the improved standard gas of the present invention is used, the analytical error is within 1%.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明による標準ガスを用
いると、実際の分析時に近いパターン係数及び感
度係数が得られ、分析誤差を小さくすることがで
きる。
As explained above, when the standard gas according to the present invention is used, pattern coefficients and sensitivity coefficients that are close to those in actual analysis can be obtained, and analysis errors can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の説明図、第2図は分析例を示
すグラフ、第3図は排ガスの質量分析例を示すグ
ラフ、第4図は感度係数の説明図である。
Fig. 1 is an explanatory diagram of the present invention, Fig. 2 is a graph showing an analysis example, Fig. 3 is a graph showing an example of mass analysis of exhaust gas, and Fig. 4 is an explanatory diagram of the sensitivity coefficient.

Claims (1)

【特許請求の範囲】 1 サンプルガスを質量分析計で分析するに当つ
て使用するパターン係数及び感度係数の測定用標
準ガスを、 サンプルガス構成成分をGasi、各々の量をgi
(%)とし、そのうちのガスGaskのパターン係数
を得るとき使用する標準ガスは、質量分析計での
該ガスGaskの分析に影響を与えないガスGasx
と、該Gasi中のベースガスGasbと、該ガスGask
との3種混合ガスで、各々の量は、 gb′+gk′+gx=100(%) ここでgb′はサンプルガス中のGasbの量gb(%)
に近い量、gk′はサンプルガス中のGaskの量gk
(%)に近い量、gxはGasxの量(%)、とし、 また該Gaskの感度係数を得るとき使用する標
準ガスは、該ガスGasbとGaskとGasxとの3種
混合で、ガスGasbの量はサンプルガス中のそれ
に近い値とし、ガスGaskの量は種々変え、残り
はガスGasxで埋めたものとすることを特徴とす
る質量分析計用標準ガス成分構成方法。
[Claims] 1. A standard gas for measuring pattern coefficients and sensitivity coefficients used when analyzing a sample gas with a mass spectrometer.
(%), of which the standard gas used when obtaining the gas Gask pattern coefficient is a gas Gasx that does not affect the analysis of the gas Gask with the mass spectrometer.
, the base gas Gasb in the Gasi, and the gas Gask
The amount of each gas is gb′ + gk′ + gx = 100 (%) where gb′ is the amount of Gasb in the sample gas gb (%)
, gk′ is the amount of Gask in the sample gas gk
(%), gx is the amount (%) of Gasx, and the standard gas used to obtain the sensitivity coefficient of the gas is a mixture of three types of gas Gasb, Gask, and Gasx, and A method for composing standard gas components for a mass spectrometer, characterized in that the amount is set to a value close to that in the sample gas, the amount of gas Gask is varied, and the remainder is filled with gas Gasx.
JP12001389A 1989-05-12 1989-05-12 Method for constituting standard gas components for mass spectrometer Granted JPH02298860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12001389A JPH02298860A (en) 1989-05-12 1989-05-12 Method for constituting standard gas components for mass spectrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12001389A JPH02298860A (en) 1989-05-12 1989-05-12 Method for constituting standard gas components for mass spectrometer

Publications (2)

Publication Number Publication Date
JPH02298860A JPH02298860A (en) 1990-12-11
JPH0583864B2 true JPH0583864B2 (en) 1993-11-29

Family

ID=14775742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12001389A Granted JPH02298860A (en) 1989-05-12 1989-05-12 Method for constituting standard gas components for mass spectrometer

Country Status (1)

Country Link
JP (1) JPH02298860A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2767197B1 (en) * 1997-08-11 1999-12-03 Alsthom Cge Alcatel GAS ANALYZER

Also Published As

Publication number Publication date
JPH02298860A (en) 1990-12-11

Similar Documents

Publication Publication Date Title
US2373151A (en) Analytical system
Gorman et al. Analysis of Solids with Mass Spectrometer
CN109358095B (en) Quantitative measurement method and system for gas concentration of each component of mixed gas
CA1126879A (en) Trace water measurement
JPH0746074B2 (en) Vacuum gauge
JP3683749B2 (en) Mass spectrometry method
JP4256208B2 (en) Isotope ratio analysis using a plasma ion source mass spectrometer
US3946229A (en) Gain control for a quadrupole mass spectrometer
Nier et al. Recording mass spectrometer for process analysis
US4529879A (en) Process for the determination of isotopes by mass spectrometry
KR100809149B1 (en) A method for measuring the concentration of impurities in nitrogen, hydrogen and oxygen by means of ion mobility spectrometry
JPH0583864B2 (en)
US2551637A (en) Self-calibrating mass spectrometer
US4538066A (en) Modulated voltage metastable ionization detector
Schoeller et al. Double-comparison method for mass spectrometric determination of hydrogen isotopic abundances
JPS63111461A (en) Mass spectroscopy with gas chromatography
Fisher et al. The analysis of deuterium content of hydrogen at and below natural abundance levels
CN116087309A (en) Method for measuring helium content in hydrogen isotope based on mass spectrometer
SU885871A2 (en) Automatic gas analyzing system
CN116148376A (en) Method for calibrating sensitivity of hydrogen isotope gas and application thereof
SU1499202A1 (en) Method of determining content of hydrogen in gases
JPH0752163B2 (en) Simplified quantitative analysis method using wavelength dispersive X-ray spectrometer
JPS5815733B2 (en) sekisouchi
Plavinskii Mass spectrometric determination of nitrogen in technological gases
CN116930302A (en) Mass spectrometry method for nickel stable isotope abundance in tetra (trifluorophosphine) nickel