JPH0583847B2 - - Google Patents
Info
- Publication number
- JPH0583847B2 JPH0583847B2 JP19425288A JP19425288A JPH0583847B2 JP H0583847 B2 JPH0583847 B2 JP H0583847B2 JP 19425288 A JP19425288 A JP 19425288A JP 19425288 A JP19425288 A JP 19425288A JP H0583847 B2 JPH0583847 B2 JP H0583847B2
- Authority
- JP
- Japan
- Prior art keywords
- fine
- calibration
- coarse
- ratio
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000035945 sensitivity Effects 0.000 claims description 31
- 238000005259 measurement Methods 0.000 claims description 26
- 238000000034 method Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000009529 body temperature measurement Methods 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Landscapes
- Supply And Installment Of Electrical Components (AREA)
- Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)
Description
【発明の詳細な説明】
<産業上の利用分野>
本発明は電子天びんに関し、更に詳しくは、粗
測定部と精測定部の2つの測定部を持ち、この両
測定部の出力の合計によつて計量値を決定する方
式の電子天びんに関する。[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to an electronic balance, and more specifically, it has two measuring sections, a rough measuring section and a fine measuring section, and a This invention relates to an electronic balance that uses a method to determine weighing values.
<従来の技術>
電子天びんにおいては、一般に、構成部材の持
つ温度係数等に起因して、温度変化に伴つて感度
が変化する。この温度変化に伴う感度の変化は、
電子天びん内に温度センサを設ける等によつて補
償するよう種々の工夫がなされているものの、あ
る程度以上の温度変化に対しては完全には補償し
きれず、特に高精度の測定を行うためには頻繁に
感度校正を行う必要がある。<Prior Art> In electronic balances, the sensitivity generally changes with temperature changes due to temperature coefficients of constituent members. The change in sensitivity due to this temperature change is
Although various measures have been taken to compensate for temperature changes, such as by installing a temperature sensor inside an electronic balance, it is not possible to completely compensate for temperature changes beyond a certain level. Sensitivity calibration must be performed frequently.
電子天びんの感度校正は、通常、皿等を含む荷
重受部に質量既知の分銅を負荷し、その状態での
計量値が分銅質量と一致するように感度係数を更
新する等によつて行われる。 Sensitivity calibration of electronic balances is usually performed by loading a weight of known mass onto a load receiver, such as a pan, and updating the sensitivity coefficient so that the measured value in that state matches the mass of the weight. .
このような感度校正作業を容易化するために、
従来、質量既知の分銅を電子天びん内に内蔵する
とともに、この内蔵分銅を荷重受部に負荷/負荷
解除するためのいわゆる分銅加除機構を設けて、
校正指令が発生したときに自動的に分銅を負荷し
て感度係数を更新する機能を持たせることが常用
されている。この校正指令は、電源投入時や温度
変化量が規定量以上に達したときに自動的に発生
するよう校正されたものや、あるいはこれに加え
てスイツチ操作等によつても発生するもの等があ
る。 In order to facilitate such sensitivity calibration work,
Conventionally, a weight with a known mass was built into an electronic balance, and a so-called weight addition/removal mechanism was installed to load/unload the built-in weight to a load receiver.
It is commonly used to have a function of automatically loading a weight and updating the sensitivity coefficient when a calibration command is issued. This calibration command may be calibrated to be generated automatically when the power is turned on or when the amount of temperature change exceeds a specified value, or may be generated by a switch operation, etc. be.
ところで、電子天びんには、粗測定部と精測定
部の2つの測定部を備え、これら両測定部により
荷重受部に作用する荷重を分担測定し、この両測
定部の出力の合計によつて計量値を決定する方式
のものがある。すなわち、例えば荷重受部に作用
する荷重に抗して系を平衡させるための電磁力を
発生し、この電磁力を発生するのに要したコイル
電流から荷重を測定する、いわゆる電磁力平衡型
の天びんにおいて、例えば系に粗および精の2個
のコイルを設けて、粗コイルに流す電流により系
を概略平衡させるとともに、その状態で精コイル
にはサーボ機構によつて系を正確に平衡させる電
流を流すよう構成された電子天びんがこれに相当
する。 By the way, an electronic balance is equipped with two measuring sections, a rough measuring section and a fine measuring section, and these two measuring sections share and measure the load acting on the load receiving section, and the total output of both measuring sections is used to measure the load acting on the load receiving section. There is a method to determine the measured value. In other words, the so-called electromagnetic force balance type generates an electromagnetic force to balance the system against the load acting on the load receiver, and measures the load from the coil current required to generate this electromagnetic force. In a balance, for example, a system is provided with two coils, a coarse coil and a fine coil, and the system is approximately balanced by the current flowing through the coarse coil, and in that state, the current is applied to the fine coil by a servo mechanism to accurately balance the system. An example of this is an electronic balance configured to flow .
このような粗および精測定部を持つ電子天びん
においては、上述した感度校正のほかに、粗測定
部と精測定部の比率についても校正をする必要が
ある。すなわち、粗測定部の出力をR、精測定部
の出力をP、精・粗比率をα、感度係数をKとし
たとき、計量値Wは例えば
W=K(R+αP) ……(1)
の形で求められるが、内蔵分銅負荷時において計
量値Wが分銅質量W0と一致するようにKを更新
しても、未知質量の測定時における精測定部の分
担量Pが感度校正時における精測定部の分担量と
等しいかあるいはその近傍にないときには、αが
正しくない場合には計量値に誤差が含まれる。こ
の誤差を解消するためには、すなわち精測定部の
分担量の大小に拘わらず常に正しい計量値を得る
ためには、精・粗比率αをも校正する必要があ
る。 In such an electronic balance having coarse and fine measuring sections, in addition to the sensitivity calibration described above, it is also necessary to calibrate the ratio of the coarse measuring section to the fine measuring section. In other words, when the output of the coarse measuring section is R, the output of the precise measuring section is P, the fine/coarse ratio is α, and the sensitivity coefficient is K, the measured value W is, for example, W=K(R+αP)...(1) However, even if K is updated so that the measured value W matches the weight mass W0 when the built-in weight is loaded, the precision measuring part's share P when measuring an unknown mass will be smaller than the precision when calibrating the sensitivity. If α is not equal to or close to the amount shared by the measuring section, the measured value will contain an error. In order to eliminate this error, that is, to always obtain a correct measured value regardless of the size of the amount assigned to the precision measurement section, it is necessary to also calibrate the precision/coarse ratio α.
このようなことから、従来のこの種の電子天び
んでは、校正指令の発生時に、まず精・粗比率の
校正を行い、その後に感度校正を行つている。 For this reason, in conventional electronic balances of this type, when a calibration command is issued, the fine/coarse ratio is first calibrated, and then the sensitivity is calibrated.
<発明が解決しようとする課題>
前述したように、高精度の測定を行うためには
頻繁に感度校正を行う必要があるが、従来の精・
粗両測定部を持つ電子天びんでは、感度校正を行
うたびに精・粗比率の校正を行うから、校正時間
が長くなり、作業能率を低下させる原因ともなつ
ている。<Problem to be solved by the invention> As mentioned above, in order to perform high-precision measurements, it is necessary to perform sensitivity calibration frequently, but conventional precision
In electronic balances that have both coarse and coarse measurement sections, the fine and coarse ratios are calibrated each time sensitivity is calibrated, which lengthens the calibration time and reduces work efficiency.
この発明の目的は、精・粗両測定部を持つ電子
天びんにおいて、校正時間を短くすることがで
き、もつて作業能率を向上させることのできる電
子天びんを提供することにある。 An object of the present invention is to provide an electronic balance that has both fine and coarse measuring sections, which can shorten the calibration time and improve work efficiency.
<課題を解決するための手段>
上記の目的を達成するための構成を、第1図に
示す基本概念図を参照しつつ説明すると、本発明
では、荷重受部aに作用する荷重を粗測定部bと
精測定部cとで分担測定し、その両測定部b,c
からの出力を計量値決定手段dに導入して所定の
精・粗比率αのもとに合計し、かつ、感度係数K
を用いて計量値Wを決定するとともに、校正指令
の発生時に分銅加除機構eを駆動して荷重受部a
に内蔵分銅fを負荷し、その負荷時における計量
値Wとこの内蔵分銅fの既知質量とから感度係数
Kを更新する感度校正手段gと、粗および精測定
部bおよびcの出力を導入して精・粗比率αの校
正を行う比率校正手段hを備えた天びんにおい
て、当該天びん近傍の温度を測定する測温手段i
と、その測温手段iの出力を導入して精・粗比率
αの前回の校正時からの温度変化量があらかじめ
設定された量以上か否かで今回の精・粗比率の校
正の要否を判定する判定手段jを設ける。<Means for Solving the Problems> The configuration for achieving the above object will be explained with reference to the basic conceptual diagram shown in FIG. Part b and precision measurement part c share the measurement, and both measurement parts b and c
The outputs are introduced into the measured value determining means d and summed based on a predetermined fine/coarse ratio α, and the sensitivity coefficient K
is used to determine the measured value W, and at the same time, when a calibration command is issued, the weight adding/removing mechanism e is driven to adjust the load receiving part a.
A built-in weight f is loaded on the body, and a sensitivity calibration means g is introduced to update the sensitivity coefficient K from the measured value W at the time of loading and the known mass of the built-in weight f, and the outputs of the coarse and fine measuring parts b and c are introduced. In a balance equipped with a ratio calibration means h for calibrating the fine/coarse ratio α, a temperature measuring means i for measuring the temperature near the balance.
Then, by introducing the output of the temperature measuring means i, it is determined whether or not the current fine/coarse ratio calibration is necessary based on whether the amount of temperature change from the previous calibration of the fine/coarse ratio α is greater than a preset amount. A determining means j is provided for determining.
そして、校正指令の発生による感度係数Kの更
新時に、判定手段jが必要と判定したときに限
り、精・粗比率αの校正を併せて行うよう構成す
る。 Then, when the sensitivity coefficient K is updated due to generation of a calibration command, the calibration of the fine/coarse ratio α is also performed only when the determining means j determines that it is necessary.
<作用>
精・粗比率αの校正は、校正指令の発生のたび
ごとに行われるのではなく、測温手段iの出力に
基づいて判定手段jが必要と判定したときにの
み、つまり前回の精・粗比率αの校正時からの温
度変化量があらかじめ設定された量以上である場
合に限り、実行される。<Operation> Calibration of the fine/coarse ratio α is not performed every time a calibration command is issued, but only when the judgment means j determines that it is necessary based on the output of the temperature measurement means i, that is, the calibration of the previous This is executed only when the amount of temperature change from the time of calibration of the fine/coarse ratio α is greater than or equal to a preset amount.
精・粗比率αは、前述したように内蔵分銅fの
負荷による感度校正後も計量値に影響を与える
が、その程度は、感度係数Kに比して小さい。す
なわち、精測定部cの測定レンジが粗測定部bの
測定レンジに対して例えば1/100の電子天びんで
は、両測定部における分解能/測定レンジが同一
であるとすると、計量値に与える影響度は、αの
Kの1/100となる。温度変化に基づくK、αの変
化率は通常同程度であるから、Kの更新ごとにα
を校正する必要はなく、前回のαの校正時点から
の温度変化量が相当大となつたときに限つてαの
校正を実行すれば足りる。本発明はこの点に着目
し、この温度変化量に基づいて精・粗比率αの校
正の要否を判定し、必要なときにのみαの校正を
行うことで、所期の目的を達成している。 As described above, the fine/coarse ratio α influences the measured value even after sensitivity calibration by the load of the built-in weight f, but the degree of influence is smaller than the sensitivity coefficient K. In other words, in an electronic balance where the measurement range of the fine measurement section c is 1/100 of the measurement range of the coarse measurement section b, assuming that the resolution/measurement range of both measurement sections are the same, the degree of influence on the weighing value will be is 1/100 of K of α. Since the rate of change of K and α based on temperature changes is usually about the same, each time K is updated, α
It is not necessary to calibrate α, and it is sufficient to calibrate α only when the amount of temperature change from the previous calibration of α becomes considerably large. The present invention focuses on this point, determines whether or not it is necessary to calibrate the fine/coarse ratio α based on the amount of temperature change, and calibrates α only when necessary, thereby achieving the intended purpose. ing.
<実施例>
第2図は本発明実施例の構成を示すブロツク図
で、電磁力平衡型の天びんに本発明を適用した例
を示している。<Embodiment> FIG. 2 is a block diagram showing the configuration of an embodiment of the present invention, and shows an example in which the present invention is applied to an electromagnetic force balance type balance.
皿1aが装着された荷重受部1は、鉛直方向に
変位自在に天びんベースに支承されており、永久
磁石(図示せず)による静磁場内に置かれた粗コ
イル2aと精コイル3aにそれぞれ電流を流すこ
とによつて生ずるそれぞれの電磁力の和が、荷重
受部1への作用荷重に対抗してこの荷重受部1を
平衡させるよう構成されている。 The load receiver 1, to which the dish 1a is mounted, is supported by a balance base so as to be freely displaceable in the vertical direction, and is supported by a coarse coil 2a and a fine coil 3a, respectively, which are placed in a static magnetic field by a permanent magnet (not shown). The sum of the respective electromagnetic forces generated by flowing current counteracts the load acting on the load receiver 1 and balances the load receiver 1.
粗コイル2aには粗測定部2から電流が供給さ
れ、また、精コイル3aには精測定部3から電流
が供給される。粗測定部2と精測定部3の構成に
ついては、種々の公知の方式を採用することがで
きるが、例えば次のような構成を採ることができ
る。 A current is supplied to the coarse coil 2a from the coarse measuring section 2, and a current is supplied from the fine measuring section 3 to the fine coil 3a. Regarding the configuration of the rough measurement section 2 and the fine measurement section 3, various known methods can be adopted, and for example, the following configuration can be adopted.
粗測定部2は定電流源と、その出力をチヨツピ
ングする電子スイツチ、およびその駆動回路等に
よつて構成され、粗コイル2aには制御部4から
供給される指令に応じたデユーテイ比を持つパル
ス状の電流が流される。 The coarse measuring section 2 is composed of a constant current source, an electronic switch for chopping its output, and its drive circuit. A current of
精測定部3は、荷重受部1の変位を検出する変
位センサおよびアンプ、そのアンプの出力を入力
するPID制御器、そのPID制御器の出力を入力し
て精コイル3aに流すべき電流に変換するパワー
アンプ等からなるサーボ機構と、精コイル3aに
流れている電流を出力抵抗で電圧値に変換した
後、デジタル化して制御部4に供給するためのA
−D変換器等によつて構成されている。 The precision measurement section 3 includes a displacement sensor and an amplifier that detect the displacement of the load receiving section 1, a PID controller that inputs the output of the amplifier, and a PID controller that inputs the output of the PID controller and converts it into a current to be passed through the precision coil 3a. A servo mechanism consisting of a power amplifier etc. that converts the current flowing through the fine coil 3a into a voltage value with an output resistor, digitizes it, and supplies it to the control unit 4.
- It is composed of a D converter and the like.
そして、精測定部3は制御部4からの指令によ
つて大、小2レンジを選択できるように構成され
ており、皿1a上に試料を載せた当初は大レンジ
が選択されて精測定部3によつて作用荷重を検出
し、制御部4はその検出データに基づいて粗コイ
ル2aに流すべきパルス電流のデユーテイ比を決
定する。粗コイル2aにこのパルス電流を流すと
同時に精測定部3は小レンジに切換えられ、粗コ
イル2aと精コイル3aそれぞれが発生する電磁
力の合計によつて荷重受部1を平衡させる。この
状態において制御部4は、粗コイル2aに流して
いるパルス電流のデユーテイ比と精コイル3aに
流れている電流値とから、例えば前述した(1)式に
基づく演算を行つて計量値を決定する。 The precision measurement section 3 is configured to be able to select two ranges, large and small, according to commands from the control section 4. When the sample is placed on the plate 1a, the large range is initially selected and the precision measurement section 3 detects the applied load, and the control section 4 determines the duty ratio of the pulse current to be passed through the coarse coil 2a based on the detected data. At the same time as this pulse current is passed through the coarse coil 2a, the precision measuring section 3 is switched to the small range, and the load receiving section 1 is balanced by the sum of the electromagnetic forces generated by the coarse coil 2a and the fine coil 3a. In this state, the control unit 4 determines the measured value by performing calculations based on the above-mentioned equation (1), for example, from the duty ratio of the pulse current flowing through the coarse coil 2a and the current value flowing through the fine coil 3a. do.
制御部4はCPU41、ROM42、RAM43
および入出力ポート44等を備えたマイクロコン
ピユータによつて構成されており、ROM42に
は通常の測定プログラムのほかに、後述する校正
プログラムが書き込まれているとともに、RAM
43にはワークエリアのほかに感度係数Kと精・
粗比率α、および後述する温度データT0を記憶
するエリア等が設定されている。この制御部4に
は、決定した計量値を表示するための表示器5が
接続されている。 The control unit 4 includes a CPU 41, a ROM 42, and a RAM 43.
It is composed of a microcomputer equipped with an input/output port 44, etc. In addition to the normal measurement program, the ROM 42 also has a calibration program written in it, which will be described later.
In addition to the work area, 43 has the sensitivity coefficient K and precision
Areas for storing the rough ratio α and temperature data T 0 to be described later are set. A display 5 for displaying the determined measurement value is connected to the control section 4.
天びんケース内には質量既知の内蔵分銅6が収
容されており、この内蔵分銅6は分銅加除機構7
の駆動により荷重受部1に負荷/負荷解除するこ
とができる。分銅加除機構7の駆動指令は制御部
4から供給される。 A built-in weight 6 with a known mass is housed in the balance case, and this built-in weight 6 is connected to a weight addition/removal mechanism 7.
The load receiver 1 can be loaded/unloaded by driving. A drive command for the weight addition/removal mechanism 7 is supplied from the control section 4 .
天びんケース内には、例えば粗コイル2a、精
コイル3aが置かれている静磁場を作る永久磁石
の近傍に、温度センサ8aが配設されており、こ
の温度センサ8aの出力は、アンプ、A−D変換
器等からなる測温部8を介して制御部4に採り込
まれる。 Inside the balance case, a temperature sensor 8a is disposed near a permanent magnet that creates a static magnetic field, on which a coarse coil 2a and a fine coil 3a are placed, for example, and the output of this temperature sensor 8a is sent to an amplifier, The temperature is taken into the control section 4 via the temperature measuring section 8, which includes a -D converter or the like.
第3図はROM42に書き込まれた校正プログ
ラムの内容を示すフローチヤートで、この図を参
照しつつ以下に各部の動作を説明する。 FIG. 3 is a flowchart showing the contents of the calibration program written in the ROM 42, and the operation of each part will be explained below with reference to this diagram.
この校正プログラムは、校正指令の発生によつ
てスタートするが、この実施例において校正指令
は、電源投入時と、通常の測定状態において測温
部8からの温度データを刻々と採り込んで例えば
0.5℃の温度変化があるごとに、自動的に発生す
るよう構成されているとともに、測定者が希望す
る場合にはスイツチ操作等によつても発生するよ
う構成されている。 This calibration program starts with the generation of a calibration command, and in this embodiment, the calibration command is performed by taking temperature data from the temperature measurement unit 8 every moment when the power is turned on and under normal measurement conditions.
It is configured to be generated automatically every time there is a temperature change of 0.5°C, and also configured to be generated by a switch operation etc. if desired by the measurer.
さて、校正指令が発生すると、測温部8からの
現時点の温度データT1が採り込む(ST1)。次
に、この校正指令が電源投入後の最初の指令であ
るか否かを判定し(ST2)、最初の指令である場
合には無条件で精・粗比率αの校正を行つた後
(ST3)、感度校正を行う(ST5、ST6)。 Now, when a calibration command is issued, the current temperature data T1 from the temperature measuring section 8 is taken (ST1). Next, it is determined whether this calibration command is the first command after the power is turned on (ST2), and if it is the first command, the fine/coarse ratio α is unconditionally calibrated (ST3). ), perform sensitivity calibration (ST5, ST6).
精・粗比率αの校正の手法は公知であるが、例
えば無負荷状態で精測定部3を小レンジにして平
衡している状態で、粗測定部2に流すパルス電流
のデユーテイ比を所定の質量相当分だけ変化させ
る。これによつて精測定部3に流れる電流は平衡
状態を保つべく変化するが、この変化量と上述の
デユーテイ比変化量とから正しい精・粗比率αを
求めることができる。 The method for calibrating the fine/coarse ratio α is well known. For example, when the precision measuring section 3 is set to a small range in a balanced state with no load, the duty ratio of the pulse current flowing through the coarse measuring section 2 is set to a predetermined value. Change by the amount equivalent to the mass. As a result, the current flowing through the precision measuring section 3 changes in order to maintain a balanced state, but the correct fine/coarse ratio α can be determined from this amount of change and the above-mentioned amount of change in the duty ratio.
この精・粗比率αの校正を行つた場合には、現
時点の温度データT1をT0としてRAM43内に格
納する(ST4)。 When the fine/coarse ratio α is calibrated, the current temperature data T 1 is stored as T 0 in the RAM 43 (ST4).
感度校正の手法も公知であるが、分銅加除機構
7に駆動指令を発して内蔵分銅6を荷重受部1に
負荷し、その質量を測定する。次にその測定値
が、既知の内蔵分銅質量と一致するように、感度
係数Kを逆算して求める。 The method of sensitivity calibration is also known, and a drive command is issued to the weight addition/removal mechanism 7 to load the built-in weight 6 onto the load receiver 1, and its mass is measured. Next, the sensitivity coefficient K is calculated back so that the measured value matches the mass of the known built-in weight.
以上のように求められた精・粗比率αと感度係
数KはRAM43内に格納され、以後の測定ルー
チンにおいて計量値の決定に供される。 The fine/coarse ratio α and the sensitivity coefficient K obtained as described above are stored in the RAM 43 and used for determining the measured value in the subsequent measurement routine.
校正指令が電源投入後の最初のものではない場
合には、前回の精・粗比率αの校正時の温度T0
に対して現時点の温度T1があらかじめ設定され
た温度、例えば5℃以上変化したときに限り、
精・粗比率αの校正を行なう。 If the calibration command is not the first one after the power is turned on, the temperature T 0 at the time of the previous calibration of the fine/coarse ratio α
Only when the current temperature T 1 changes by more than a preset temperature, e.g. 5℃,
Calibrate the fine/coarse ratio α.
すなわち、現時点の温度データT1と前回の
精・粗比率αの校正時にRAM43内に格納した
データT0を比較し(ST7)、その差が5℃以上の
場合にはST3以下へと進み、αとKを更新すると
ともにT1をT0としてRAM43内に格納する。差
が5℃未満の場合にはST5へと進み、Kの更新の
みを行なう。 That is, the current temperature data T 1 is compared with the data T 0 stored in the RAM 43 during the previous calibration of the fine/coarse ratio α (ST7), and if the difference is 5°C or more, proceed to ST3 or below. α and K are updated and T 1 is stored in the RAM 43 as T 0 . If the difference is less than 5°C, the process advances to ST5 and only updates K.
以上のように、この実施例では、電源投入後最
初の校正指令の発生時を除いて、感度係数Kは
0.5℃の温度変化があるごとに、もしくは測定者
がスイツチ操作を行なうごとに更新されるが、
精・粗比率αは5℃の温度変化があつたときに限
つて更新される。精・粗比率αは前述したように
感度係数Kよりも計量誤差に対する影響度は低
く、5℃の温度変化時にのみ校正しても計量値に
誤差を含むことはない。 As described above, in this embodiment, the sensitivity coefficient K is
It is updated every time there is a temperature change of 0.5℃ or every time the measurer operates a switch.
The fine/rough ratio α is updated only when the temperature changes by 5°C. As described above, the fine/coarse ratio α has a lower influence on measurement errors than the sensitivity coefficient K, and even if the calibration is performed only when the temperature changes by 5° C., no error will be included in the measurement value.
なお、以上の実施例では、電源投入後1回目の
校正指令発生時にのみ無条件でαとKを更新する
よう構成した例を示したが、1回目と2回目を無
条件で、あるいは電源投入後の経過時間が設定時
間に達するまでは無条件でα、Kを更新する等、
種々の変形は可能である。 In addition, in the above embodiment, an example was shown in which α and K are updated unconditionally only when the first calibration command is generated after the power is turned on. Until the elapsed time reaches the set time, α and K are updated unconditionally, etc.
Various modifications are possible.
また、精・粗比率αの校正を実行するか否かの
判定基準となる温度差は、適用する電子天びんの
特性に基づいて決定すべきであることは勿論であ
る。 Furthermore, it goes without saying that the temperature difference, which is the criterion for determining whether or not to calibrate the fine/coarse ratio α, should be determined based on the characteristics of the electronic balance to be applied.
更に、粗測定部2と精測定部3の構成は上述し
た例に限られることなく、公知の構成の任意のも
のを採用し得ることは云うまでもない。 Furthermore, it goes without saying that the configurations of the coarse measuring section 2 and the fine measuring section 3 are not limited to the example described above, and any known configuration can be adopted.
<発明の効果>
以上説明したように、本発明によれば、精・粗
比率αの校正を、従来のように感度校正を行なう
ごとに実行するのではなく、ある一定の温度変化
があつた場合に限つて実行するから、つまり、校
正指令発生時に必要とする校正動作だけが行わ
れ、不要な動作は行われず、従つて無駄な時間が
費やされずに校正時間を短縮することができ、ひ
いては測定作業の能率を向上させることができ
る。<Effects of the Invention> As explained above, according to the present invention, the fine/coarse ratio α is calibrated when a certain temperature change occurs, instead of being performed every time sensitivity calibration is performed as in the past. Because it is executed only when a calibration command is issued, only the necessary calibration operations are performed when a calibration command is issued, and unnecessary operations are not performed. Therefore, the calibration time can be shortened without wasting time. The efficiency of measurement work can be improved.
第1図は本発明の構成を示す基本概念図、第2
図は本発明実施例の構成を示すブロツク図、第3
図はそのROM42に書き込まれた校正プログラ
ムの内容を示すフローチヤートである。
1……荷重受部、2……粗測定部、3……精測
定部、4……制御部、6……内蔵分銅、7……分
銅加除機構、8……測温部。
Figure 1 is a basic conceptual diagram showing the configuration of the present invention;
The figure is a block diagram showing the configuration of an embodiment of the present invention.
The figure is a flowchart showing the contents of the calibration program written in the ROM 42. DESCRIPTION OF SYMBOLS 1...Load receiving part, 2...Rough measurement part, 3...Precision measurement part, 4...Control part, 6...Built-in weight, 7...Weight addition/removal mechanism, 8...Temperature measurement part.
Claims (1)
部とで分担測定し、その両測定部からの出力を計
量値決定手段に導入して所定の精・粗比率のもと
に合計し、かつ、感度係数を用いて計量値を決定
するとともに、校正指令の発生時に分銅加除機構
を駆動して上記荷重受部に内蔵分銅を負荷し、そ
の負荷時における計量値とこの内蔵分銅の既知の
質量とから上記感度係数を更新する感度校正手段
と、上記粗および精測定部の出力を導入して上記
精・粗比率の校正を行う比率校正手段を備えた天
びんにおいて、当該天びん近傍の温度を測定する
測温手段と、その測温手段の出力を導入して上記
精・粗比率の前回の校正時からの温度変化量があ
らかじめ設定された量以上か否かで今回の精・粗
比率の校正の要否を判定する判定手段を有し、上
記校正指令の発生による上記感度係数の更新時
に、上記判定手段が必要と判定したときに限り上
記精・粗比率の校正を併せて行うよう校正したこ
とを特徴とする電子天びん。1. The load acting on the load receiving part is dividedly measured by a coarse measuring part and a fine measuring part, and the outputs from both measuring parts are introduced into the measurement value determining means and summed based on a predetermined fine/rough ratio. , and determines the measured value using the sensitivity coefficient, and when a calibration command is issued, drives the weight addition/removal mechanism to load the built-in weight on the load receiver, and calculates the measured value at that time and the known value of this built-in weight. In a balance equipped with a sensitivity calibration means for updating the sensitivity coefficient from the mass of The current fine/coarse ratio is determined by introducing a temperature measuring means that measures the temperature and the output of the temperature measuring means and determining whether the temperature change from the previous calibration of the fine/coarse ratio is greater than or equal to a preset amount. It has a determination means for determining whether or not calibration is necessary, and when the sensitivity coefficient is updated due to generation of the calibration command, the calibration of the fine/coarse ratio is also performed only when the determination means determines that it is necessary. An electronic balance that is characterized by being calibrated.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19425288A JPH0244215A (en) | 1988-08-03 | 1988-08-03 | Electronic balance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19425288A JPH0244215A (en) | 1988-08-03 | 1988-08-03 | Electronic balance |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0244215A JPH0244215A (en) | 1990-02-14 |
JPH0583847B2 true JPH0583847B2 (en) | 1993-11-29 |
Family
ID=16321523
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19425288A Granted JPH0244215A (en) | 1988-08-03 | 1988-08-03 | Electronic balance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0244215A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102853894A (en) * | 2011-06-28 | 2013-01-02 | 福建新大陆电脑股份有限公司 | Electronic scale, calibrating method and calibrating device thereof |
CN105371937A (en) * | 2014-08-22 | 2016-03-02 | 徐亚珍 | Waterproof portable kitchen electronic balance |
-
1988
- 1988-08-03 JP JP19425288A patent/JPH0244215A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH0244215A (en) | 1990-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5321634A (en) | Automatic thin-film measuring apparatus | |
CN1021369C (en) | Method for correcting sensitivity and linearity of weigher of electronic balance and electronic balance | |
US7361867B2 (en) | Electronic scale and method for weight measurement including correction means for correcting a weight dependent signal | |
JPS6145932A (en) | Creep compensation type balancer and method of correcting output for creep | |
JPS62280623A (en) | Automatic calibrating method of high-sensitivity electronic balance | |
JP2001013001A (en) | Electronic weighing apparatus with built-in weight | |
US9903750B2 (en) | Method and device for determining information relating to the mass of a semiconductor wafer | |
JPH0245783Y2 (en) | ||
JPH0583847B2 (en) | ||
WO2006132234A1 (en) | Electronic balance | |
JP2000121423A (en) | Electronic force balance having judging mechanism of calibration propriety/impropriety | |
JP2505562B2 (en) | Sensor characteristic compensation type temperature control method and apparatus | |
JPH0349052B2 (en) | ||
JPH07209102A (en) | Temperature compensation method and device for load cell | |
JP2576338B2 (en) | Automatic wafer weighing system | |
JPH0550691B2 (en) | ||
JPH06331427A (en) | Electronic balance | |
JP4729988B2 (en) | Electronic balance | |
JPS60133321A (en) | Temperature compensating apparatus for electronic balance | |
JPH1151757A (en) | Electronic weighing apparatus | |
JPH08166297A (en) | Temperature compensating method for load cell type balance | |
JP2973875B2 (en) | Electronic balance | |
JP2000111425A (en) | Temperature compensating device of digital load cell | |
JPH0347445B2 (en) | ||
JPH09318427A (en) | Electronic force balance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |