JPH0583732U - Electro-Magnetic Optical Device - Google Patents

Electro-Magnetic Optical Device

Info

Publication number
JPH0583732U
JPH0583732U JP2166292U JP2166292U JPH0583732U JP H0583732 U JPH0583732 U JP H0583732U JP 2166292 U JP2166292 U JP 2166292U JP 2166292 U JP2166292 U JP 2166292U JP H0583732 U JPH0583732 U JP H0583732U
Authority
JP
Japan
Prior art keywords
optical device
fine particles
light
titanium compound
transparent electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2166292U
Other languages
Japanese (ja)
Inventor
靖弘 斎藤
正人 兵藤
弘明 多田
昌宏 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP2166292U priority Critical patent/JPH0583732U/en
Publication of JPH0583732U publication Critical patent/JPH0583732U/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

(57)【要約】 【目的】 パネルへの光の透過量を制御可能な電気磁気
光学装置を提供する。 【構成】 誘電体を一対の透明電極間に介在させた光弁
と、前記透明電極間に電圧を印加するための太陽電池と
からなる電気磁気光学装置であり、前記誘電体には無機
チタン化合物からなる異方性微粒子を分散含有してお
り、このこの無機チタン化合物の光吸収係数を5×10
3/cm以上としている。
(57) [Summary] [Object] To provide an electro-magnetic optical device capable of controlling the amount of light transmitted to a panel. A magneto-optical device comprising a light valve having a dielectric interposed between a pair of transparent electrodes and a solar cell for applying a voltage between the transparent electrodes, wherein the dielectric is an inorganic titanium compound. The anisotropic titanium fine particles are dispersed and contained, and the light absorption coefficient of this inorganic titanium compound is 5 × 10 5.
3 / cm or more.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は、昼間は光を透過させ、また夜間は光を遮断するようにした電気磁気 光学装置に関するものである。 The present invention relates to an electromagneto-optical device which transmits light in the daytime and blocks light in the nighttime.

【0002】[0002]

【従来の技術】[Prior Art]

従来より、電気磁気光学装置は、例えば建築物の窓ガラスなどの分野で用いら れてきた。 2. Description of the Related Art Conventionally, electromagnetism optical devices have been used in fields such as window glass of buildings.

【0003】 このような電気磁気光学装置は、昼間は外光が透過するようにし、また夜間は 外光を遮断するようにしたものである。上記従来の電気磁気光学装置においては 、電圧の印加状態を制御するためのスイッチング手段が設けられていた。Such an electromagnetism optical device is configured to allow outside light to pass therethrough during the daytime and to block outside light during the nighttime. In the above-mentioned conventional electromagnetism optical device, the switching means for controlling the applied state of the voltage is provided.

【0004】[0004]

【考案が解決しようとする課題】[Problems to be solved by the device]

しかしながら、このような従来の電気磁気光学装置では、昼間と夜間との明暗 に反応して光の透過及び遮断を自動的に行うことはできなかった。 However, in such a conventional electro-magneto-optical device, it was not possible to automatically transmit and block light in response to the light and darkness of daytime and nighttime.

【0005】 本考案は、かかる従来の電気磁気光学装置の欠点を是正すべく考案されたもの である。The present invention has been devised to correct the drawbacks of the conventional electromagnetism optical device.

【0006】[0006]

【課題を解決するための手段】[Means for Solving the Problems]

すなわち、本考案は誘電体を一対の透明電極間に介在させてなる光弁と、前記 透明電極間に電圧を印加するための太陽電池とからなる電気磁気光学装置におい て、前記誘電体が無機チタン化合物からなる異方性微粒子を分散含有しており、 かつ前記無機チタン化合物の光吸収係数が5×103/cm以上である電気磁気 光学装置である。That is, the present invention relates to an electro-magnetic optical device comprising a light valve having a dielectric material interposed between a pair of transparent electrodes and a solar cell for applying a voltage between the transparent electrodes, wherein the dielectric material is an inorganic material. This is an electromagneto-optical device in which anisotropic fine particles of a titanium compound are dispersedly contained, and the light absorption coefficient of the inorganic titanium compound is 5 × 10 3 / cm or more.

【0007】 前記微粒子の光吸収係数は、遮光面積を一定とした場合の遮光効率を決める因 子としての機能を有し、光吸収係数が大きくなる程光弁機能は向上する。このた め、本考案においては無機チタン化合物の光吸収係数を5×103/cm以上と している。The light absorption coefficient of the fine particles has a function as a factor for determining the light blocking efficiency when the light blocking area is constant, and the light valve function is improved as the light absorption coefficient is increased. Therefore, in the present invention, the light absorption coefficient of the inorganic titanium compound is set to 5 × 10 3 / cm or more.

【0008】 また、アスペクト比は、電界印加前後における遮光面積を決める因子としての 機能を有する。すなわち、アスペクト比が大きな微粒子では、電界印加前後にお ける遮光面積が大きく異なる。したがって本考案の電気磁気光学装置の光弁中に 用いられる異方性微粒子としては、一般式:TiOxNy(式中、1.37≦x +y≦1.95、0.15≦y≦0.92)で表され、アスペクト比3.5以上 の形状異方性を有するチタン化合物、または一般式:TiOx(式中、1.35 ≦x≦1.85)で表され、アスペクト比5以上の形状異方性を有するチタン化 合物を用いることが好ましい。Further, the aspect ratio has a function as a factor that determines the light shielding area before and after the electric field is applied. That is, in the case of fine particles having a large aspect ratio, the light-shielding area before and after the application of an electric field is significantly different. Therefore, the anisotropic fine particles used in the light valve of the electro-magneto-optical device of the present invention have the general formula: TiOxNy (wherein 1.37 ≦ x + y ≦ 1.95, 0.15 ≦ y ≦ 0.92). ), And a titanium compound having an aspect anisotropy with an aspect ratio of 3.5 or more, or a compound represented by the general formula: TiOx (wherein 1.35 ≤ x ≤ 1.85) and having an aspect ratio of 5 or more. It is preferable to use a titanium compound having anisotropy.

【0009】 また、使用する微粒子としては、その長軸が3μm以下であることが好ましく 、望ましくは光の波長以下、すなわち0.7μm以下である。Further, the fine particles to be used preferably have a major axis of 3 μm or less, and preferably, the wavelength of light or less, that is, 0.7 μm or less.

【0010】 TiOxNy微粒子は、例えば予め形状異方性を有するチタン化合物を炉の中 に入れ、NH3、ヒドラジン、あるいはメチルアミンなどの窒素含有雰囲気中で 反応させることにより得られる。The TiOxNy fine particles can be obtained, for example, by previously placing a titanium compound having shape anisotropy in a furnace and reacting it in a nitrogen-containing atmosphere such as NH 3 , hydrazine, or methylamine.

【0011】 形状異方性を有するチタン化合物としては、酸化チタンをはじめ、一般式:M (II)TiO3〔式中、M(II)はBa、Pb、Srなどの2価の金属を示 す〕で表されるチタン化合物などを用いることができる。Examples of titanium compounds having shape anisotropy include titanium oxide and the general formula: M (II) TiO 3 [wherein M (II) represents a divalent metal such as Ba, Pb, or Sr. ]] And the like.

【0012】 また、TiOx微粒子は、形状異方性を有するTiO2微粒子を加熱して、H 2 やCOなどの還元性を有するガスのプラズマに曝すことによって容易に得るこ とができる。Further, TiOx fine particles can be easily obtained by heating TiO 2 fine particles having shape anisotropy and exposing them to plasma of a reducing gas such as H 2 or CO.

【0013】 異方性微粒子を分散させるための分散媒は、高絶縁性かつ高耐候性を有するも のであって、微粒子のブラウン運動がほどよく行える粘性を有し、かつ微粒子の 分散媒中での沈降抑制効果のあるものであればいかなるものも用いることができ るが、その中でも粘度が0.65〜1000CSの範囲にあるものが好ましい。 また、光弁の使用温度範囲が−20〜80℃程度の範囲であることを考慮すれば 、分散媒としては、例えばオルガノジメチルシロキサン系液状ポリマーを用いる ことが好ましい。さらに、分散媒中の微粒子の濃度は、重量分率で1〜10%の 範囲であることが好ましい。The dispersion medium for dispersing the anisotropic fine particles has a high insulating property and a high weather resistance, and has a viscosity that allows Brownian motion of the fine particles to be moderate and in the dispersion medium of the fine particles. Any substance can be used as long as it has the effect of suppressing sedimentation, and among them, those having a viscosity in the range of 0.65 to 1000 CS are preferable. Further, considering that the operating temperature range of the light valve is in the range of about −20 to 80 ° C., it is preferable to use, for example, an organodimethylsiloxane liquid polymer as the dispersion medium. Further, the concentration of fine particles in the dispersion medium is preferably in the range of 1 to 10% by weight.

【0014】 また、本考案において使用される光弁は、透明電極を一対の透明板状体の内側 間にそれぞれ配設し、前記一対の透明電極間に異方性微粒子を分散含有する誘電 体を介在させる。前記透明電極付きの透明板状体としては、インジウム錫酸化物 (ITO)膜や、錫酸化物(SnO2)膜が表面に形成された一般的なガラス基 板のほか、光透過性を有する他の部材、例えばプラスチック基板あるいはフレキ シブルなプラスチックフィルムなどを適用することができる。In the light valve used in the present invention, a transparent electrode is disposed between the insides of a pair of transparent plates, and a dielectric material containing anisotropic fine particles dispersed between the pair of transparent electrodes. Intervene. Examples of the transparent plate-like body with the transparent electrode include a general glass substrate having an indium tin oxide (ITO) film and a tin oxide (SnO 2 ) film formed on the surface thereof, and a light-transmitting material. Other members such as a plastic substrate or a flexible plastic film can be applied.

【0015】 太陽電池としては、単結晶、多結晶、アモルファス、薄膜等いかなるものも用 いることができるが、所用電圧は20V以上であることが好ましい。As the solar cell, any of single crystal, polycrystal, amorphous, thin film and the like can be used, but the required voltage is preferably 20 V or more.

【0016】[0016]

【作用】[Action]

本考案は、太陽電池が電源として用いられているので、昼間は電極へ電圧が印 加され、夜間は電極への電圧印加が停止される。また、この場合において、特に 異方性微粒子が無機チタン化合物からなり、この無機チタン化合物の光吸収係数 が5×103/cm以上であるため、光弁の透明電極間に印加する電圧を制御し て光弁の透明性を変化させることにより、光弁を通してパネルへの光の透過量を 調節することができる。In the present invention, since the solar cell is used as a power source, the voltage is applied to the electrodes during the daytime and the voltage application to the electrodes is stopped during the nighttime. In this case, the anisotropic fine particles are made of an inorganic titanium compound, and the light absorption coefficient of this inorganic titanium compound is 5 × 10 3 / cm or more. Therefore, the voltage applied between the transparent electrodes of the light valve is controlled. By changing the transparency of the light valve, the amount of light transmitted to the panel through the light valve can be adjusted.

【0017】[0017]

【実施例】【Example】

以下、実施例に基づいて本考案を詳細に説明する。 Hereinafter, the present invention will be described in detail based on embodiments.

【0018】 図1は、本考案の電気磁気光学装置の外観を示す正面図である。同図において 電気磁気光学装置1は、4個のパネル2が直流−交流変換装置3を介して太陽電 池4に接続されている。FIG. 1 is a front view showing the appearance of the electro-magnetic optical device of the present invention. In the figure, in the electro-magnetic optical device 1, four panels 2 are connected to a solar battery 4 via a DC-AC converter 3.

【0019】 また、前記パネル2は、図2に示すように透明電極5、6を各々の内面に配設 したガラス基板7、8間に、無機チタン化合物の微粒子とビーズ状スペーサーを ポリジメチルシロキサン中によく混合して得た誘電体9を挟んだ光弁10が取り 付けられている。As shown in FIG. 2, the panel 2 includes polydimethylsiloxane having fine particles of an inorganic titanium compound and bead-shaped spacers between glass substrates 7 and 8 having transparent electrodes 5 and 6 disposed on the inner surfaces thereof. A light valve 10 sandwiching a dielectric 9 obtained by mixing well is attached.

【0020】 前記光弁10は、透明電極5、6間に電圧が印加されていない時は、透明電極 5、6間の無機チタン化合物の微粒子がブラウン運動によりランダム配向し、多 方向散乱状態となって光を散乱させる。したがって、太陽電池4に起電力が生じ ていない夜間などは、パネル2は外光を光弁10遮断する。In the light valve 10, when no voltage is applied between the transparent electrodes 5 and 6, the fine particles of the inorganic titanium compound between the transparent electrodes 5 and 6 are randomly oriented due to Brownian motion, resulting in a multidirectional scattering state. And scatter light. Therefore, the panel 2 blocks the external light from the light valve 10 at night when no electromotive force is generated in the solar cell 4.

【0021】 これに対して、太陽光によって太陽電池4に起電力が生じている状態では、光 弁10の透明電極5、6間に電圧が印加され、透明電極5、6間に生じる電界の 作用により無機チタン化合物の微粒子が電界方向に配向する。このため、外光は パネル2の光弁10で遮断されることなく透過することができる。On the other hand, in a state in which the solar cell 4 has an electromotive force generated by sunlight, a voltage is applied between the transparent electrodes 5 and 6 of the light valve 10 to generate an electric field between the transparent electrodes 5 and 6. By the action, the fine particles of the inorganic titanium compound are oriented in the electric field direction. Therefore, external light can be transmitted without being blocked by the light valve 10 of the panel 2.

【0022】 (実施例1) 平均アスペクト比が5.0の針状TiO2微粒子500mgを静置式の管状炉 に入れ、炉内の圧力を室温で真空排気し、その後、窒素ガスをガス供給管から炉 内に供給して、炉内の圧力を大気圧に調節した。そして、常圧下にて流量200 ml/分の窒素ガスを供給しながら予備加熱を行い、しかる後、窒素ガスをアン モニアガスで置換した。さらに、炉内の温度を750℃に加熱昇温し、温度一定 のまま3時間保持した。Example 1 500 mg of needle-shaped TiO 2 particles having an average aspect ratio of 5.0 was placed in a stationary tube furnace, the pressure inside the furnace was evacuated to room temperature, and then nitrogen gas was supplied to the gas supply pipe. It was supplied from the inside to the furnace and the pressure inside the furnace was adjusted to atmospheric pressure. Then, preheating was performed under a normal pressure while supplying a nitrogen gas at a flow rate of 200 ml / min, and then the nitrogen gas was replaced with ammonia gas. Furthermore, the temperature inside the furnace was raised to 750 ° C. and kept at that temperature for 3 hours.

【0023】 この後、加熱を停止するとともに炉内を再度真空排気して、アンモニアガスを 除去した。さらに、炉内に窒素ガスを流しながら排気を続け、室温まで冷却する ことにより、平均アスペクト比が5.0、光吸収係数が2.0×104/cmの TiOxNy微粒子を得た。After that, the heating was stopped and the inside of the furnace was evacuated again to remove the ammonia gas. Further, the nitrogen gas was allowed to flow in the furnace and the exhaust was continued and cooled to room temperature to obtain TiOxNy fine particles having an average aspect ratio of 5.0 and a light absorption coefficient of 2.0 × 10 4 / cm.

【0024】 次に、得られたTiOxNy微粒子500mgを粘度20CSのシリコーンオ イル5g中に分散させ、さらに微少量のビーズ状スペーサー(平均粒径25μm )を分散させ、この誘電体を2枚の透明電極付きガラス基板(面積抵抗率200 Ω/□)の間に挟んでサンドイッチセルとし、本考案の光弁を作製した。Next, 500 mg of the obtained TiOxNy fine particles were dispersed in 5 g of silicone oil having a viscosity of 20CS, and a very small amount of a bead-like spacer (average particle diameter 25 μm) was dispersed therein. The sandwiched cell was sandwiched between glass substrates with electrodes (area resistance of 200 Ω / □) to prepare a sandwich cell, and the light valve of the present invention was produced.

【0025】 この光弁を用いて、電圧を印加していないとき(オフ状態)及び交流40V× 60Hzの電圧を印加したとき(オン状態)の透過率変化スペクトルを測定した 。その結果を図3に示す。同図において明かなように、オフ状態で可視域(10 00〜1500nm付近)に強い吸収が得られた。また、この透過率変化スペク トルから、オン・オフ状態の可視光透過率を計算したところ、約36%の透過率 変化幅が得られた。また、電圧をオン状態からオフ状態とした時に、TiOxN y微粒子がランダムに配向するのに要する時間は、0.1秒程度であった。Using this light valve, the transmittance change spectrum was measured when no voltage was applied (OFF state) and when a voltage of AC 40 V × 60 Hz was applied (ON state). The result is shown in FIG. As is clear from the figure, strong absorption was obtained in the visible region (near 1000 to 1500 nm) in the off state. The visible light transmittance in the on / off state was calculated from this transmittance change spectrum, and a transmittance change width of about 36% was obtained. Moreover, when the voltage was changed from the on state to the off state, the time required for the TiOxN y fine particles to be randomly oriented was about 0.1 second.

【0026】 (実施例2) 平均アスペクト比が10の針状TiO2微粒子500mgを静置式の管状炉に 入れ、炉内の圧力を室温で真空排気し、その後、窒素ガスをガス供給管から炉内 に供給して炉内の圧力を大気圧に調節した。そして、常圧下で流量200ml/ 分の窒素ガスを供給しながら予備加熱を行い、しかる後、窒素ガスを水素ガスで 置換した。さらに、炉内の温度を950℃に加熱昇温し、温度一定のまま3時間 保持した。Example 2 500 mg of needle-shaped TiO 2 fine particles having an average aspect ratio of 10 were placed in a stationary tube furnace, the pressure in the furnace was evacuated at room temperature, and then nitrogen gas was supplied from the gas supply pipe to the furnace. It was supplied into the furnace and the pressure inside the furnace was adjusted to atmospheric pressure. Then, preheating was performed under a normal pressure while supplying a nitrogen gas at a flow rate of 200 ml / min, and then the nitrogen gas was replaced with hydrogen gas. Furthermore, the temperature inside the furnace was raised to 950 ° C. and held for 3 hours with the temperature kept constant.

【0027】 この後、加熱を停止するとともに炉内を再度真空排気して、水素ガスを除去し た。さらに、炉内に窒素ガスを流しながら排気を続け、室温まで冷却することに より、平均アスペクト比が7.5、光吸収係数が5.1×103/cmのTiO x微粒子を得た。After that, heating was stopped and the inside of the furnace was evacuated again to remove hydrogen gas. Further, exhausting was continued while flowing nitrogen gas into the furnace, and the mixture was cooled to room temperature to obtain TiO x fine particles having an average aspect ratio of 7.5 and a light absorption coefficient of 5.1 × 10 3 / cm 3 .

【0028】 次に、上記で得たTiOx微粒子500mgをポリジメチルシロキサン5g中 に添加し、十分に攪拌することによってサスペンション状態にした。これに、微 少量のビーズ状スペーサー(平均粒径25μm)を分散させ、この誘電体を2枚 の透明電極付きガラス基板(面積抵抗率200Ω/□)の間に挟んでサンドイッ チセルとし、光弁を作製した。Next, 500 mg of the TiOx fine particles obtained above was added to 5 g of polydimethylsiloxane, and agitated sufficiently to obtain a suspension state. A small amount of bead-shaped spacers (average particle size 25 μm) were dispersed in this, and this dielectric was sandwiched between two glass substrates with transparent electrodes (area resistivity 200 Ω / □) to form a sandwich cell. Was produced.

【0029】 上記TiOx微粒子を用いた光弁について、40V×60Hz電圧のオン・オ フ状態の透過スペクトルを測定し、可視光透過率を計算したところ約35%の透 過率変化幅が得られた。また、電圧をオン状態からオフ状態とした時に、TiO x微粒子がランダムに配向するのに要する時間は、0.1秒程度であった。With respect to the light valve using the above TiOx fine particles, the transmission spectrum of the on-off state at a voltage of 40 V × 60 Hz was measured, and the visible light transmittance was calculated. As a result, a transmittance variation width of about 35% was obtained. It was Moreover, when the voltage was changed from the on state to the off state, the time required for the TiO x fine particles to be randomly oriented was about 0.1 second.

【0030】[0030]

【考案の効果】[Effect of the device]

本考案の電気磁気光学装置では、光弁の一対の透明電極間に印加する電圧を制 御して光弁の透明性を変化させることにより、光弁を通してパネルへの光の透過 及び遮断を自動的に行うことができる。 In the electro-magneto-optical device of the present invention, by controlling the voltage applied between the pair of transparent electrodes of the light valve to change the transparency of the light valve, it is possible to automatically transmit and block light to the panel through the light valve. Can be done on a regular basis.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本考案の一実施例を示す電気磁気光学的
装置の正面図
FIG. 1 is a front view of an electro-magnetic device according to an embodiment of the present invention.

【図2】 光弁の断面図FIG. 2 is a sectional view of the light valve.

【図3】 透過率変化スペクトルFIG. 3 Transmittance change spectrum

【符号の説明】[Explanation of symbols]

1 電気磁気光学装置 2 パネル 3 直流−交流変換装置 4 太陽電池 5、6 透明電極 7、8 ガラス基板 9 誘電体 10 光弁 1 Electro-Magnetic Optical Device 2 Panel 3 DC-AC Converter 4 Solar Cell 5, 6 Transparent Electrode 7, 8 Glass Substrate 9 Dielectric 10 Light Valve

───────────────────────────────────────────────────── フロントページの続き (72)考案者 平田 昌宏 大阪府大阪市中央区道修町3丁目5番11号 日本板硝子株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masahiro Hirata 3-5-11 Doshomachi, Chuo-ku, Osaka-shi, Osaka Inside Nippon Sheet Glass Co., Ltd.

Claims (3)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 誘電体を一対の透明電極間に介在させて
なる光弁と、前記透明電極間に電圧を印加するための太
陽電池とからなる電気磁気光学装置において、前記誘電
体が無機チタン化合物からなる異方性微粒子を分散含有
しており、かつ前記無機チタン化合物の光吸収係数が5
×103/cm以上である電気磁気光学装置。
1. An electromagneto-optical device comprising a light valve having a dielectric interposed between a pair of transparent electrodes and a solar cell for applying a voltage between the transparent electrodes, wherein the dielectric is inorganic titanium. The compound contains anisotropic fine particles of a compound dispersed therein, and the inorganic titanium compound has a light absorption coefficient of 5
An electro-magnetic optical device having a density of × 10 3 / cm or more.
【請求項2】 前記異方性微粒子が、一般式:TiOx
Ny(式中、1.37≦x+y≦1.95、0.15≦
y≦0.92で表され、アスペクト比3.5以上の形状
異方性を有するチタン化合物である請求項1に記載の電
気磁気光学装置。
2. The anisotropic fine particles have the general formula: TiOx.
Ny (wherein 1.37 ≦ x + y ≦ 1.95, 0.15 ≦
The electromagneto-optical device according to claim 1, which is a titanium compound represented by y ≦ 0.92 and having a shape anisotropy with an aspect ratio of 3.5 or more.
【請求項3】 前記異方性微粒子が、一般式:TiOx
(式中、1.35≦x≦1.85)で表され、アスペク
ト比5以上の形状異方性を有するチタン化合物である請
求項1に記載の電気磁気光学装置。
3. The anisotropic fine particles have the general formula: TiOx.
The electromagneto-optical device according to claim 1, which is a titanium compound represented by the formula (1.35 ≦ x ≦ 1.85) and having a shape anisotropy with an aspect ratio of 5 or more.
JP2166292U 1992-04-08 1992-04-08 Electro-Magnetic Optical Device Pending JPH0583732U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2166292U JPH0583732U (en) 1992-04-08 1992-04-08 Electro-Magnetic Optical Device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2166292U JPH0583732U (en) 1992-04-08 1992-04-08 Electro-Magnetic Optical Device

Publications (1)

Publication Number Publication Date
JPH0583732U true JPH0583732U (en) 1993-11-12

Family

ID=12061257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2166292U Pending JPH0583732U (en) 1992-04-08 1992-04-08 Electro-Magnetic Optical Device

Country Status (1)

Country Link
JP (1) JPH0583732U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200076295A (en) * 2018-12-19 2020-06-29 쓰리디아이즈 주식회사 Smart window

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200076295A (en) * 2018-12-19 2020-06-29 쓰리디아이즈 주식회사 Smart window

Similar Documents

Publication Publication Date Title
EP0669012B1 (en) Stand-alone photovoltaic (pv) powered electrochromic window
US5650872A (en) Light valve containing ultrafine particles
US6605239B2 (en) Electrochromic system
JP3358893B2 (en) Transparent conductor containing gallium-indium oxide
KR950001666B1 (en) Variable transmission glazings and method of making same
ES2304469T3 (en) ELECTRODE OF ELECTROCHEMICAL AND / OR ELECTROCOMMANDABLE DEVICES.
JP2000044236A (en) Article having transparent conductive oxide thin film and its production
JPH0519306A (en) Fully solid-state dimming device and dimming method with the same
WO2019033873A1 (en) Light-dimming device and light-dimming method therefor
JPH07504514A (en) Electrochromic device with refractive index matching structure and its operation and manufacturing method
US5204772A (en) Electrically responsive light controlling device
WO2019010889A1 (en) Electrically controlled smart window, manufacturing method, and light regulation method
KR20150086892A (en) Smart windows for infrared cut
JPH0583732U (en) Electro-Magnetic Optical Device
Tada et al. A novel switchable glazing formed by electrically induced chains of suspensions
JP2001083315A5 (en)
JPH0527271A (en) Fully solid-state light control device
JPH0583898U (en) Signal light
JPH0583791U (en) Traffic sign device
JPS6280918A (en) Manufacturing transparent conductive film
Lampert The world of large-area glazing and displays
JPH046526A (en) Light control element
KR960017736A (en) Transparent conductor and film production method comprising zinc-indium-oxide
KR20180063586A (en) Switchable window using a dichroic dye mixture
Mackenzie Multifunctional Ceramic Materials–Review and Projections