JPH0583599B2 - - Google Patents

Info

Publication number
JPH0583599B2
JPH0583599B2 JP59251034A JP25103484A JPH0583599B2 JP H0583599 B2 JPH0583599 B2 JP H0583599B2 JP 59251034 A JP59251034 A JP 59251034A JP 25103484 A JP25103484 A JP 25103484A JP H0583599 B2 JPH0583599 B2 JP H0583599B2
Authority
JP
Japan
Prior art keywords
extreme pressure
sulfur
lubricating oil
pressure agent
based extreme
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59251034A
Other languages
Japanese (ja)
Other versions
JPS61127797A (en
Inventor
Masuhiko Kawamura
Koji Morya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP25103484A priority Critical patent/JPS61127797A/en
Publication of JPS61127797A publication Critical patent/JPS61127797A/en
Publication of JPH0583599B2 publication Critical patent/JPH0583599B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Lubricants (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は自動車用エンジン、工作機械等の摺動
部分における摩耗・摩擦を低減する潤滑油組成物
に関する。 〔従来の技術〕 現在、自動車用エンジン、工作機械等の装置は
高速化時代に入り、摺動部分では激しい摩耗・摩
擦が生ずる危険性があり、そこに使用される潤滑
油は高温状態にさらされる機会が多くなつてい
る。そのため、使用される潤滑油にも種々の改良
が行なわれている。 特に、自動車用エンジンの場合、燃費向上の観
点から、使用される潤滑油の性能が改良されてい
る。即ち、自動車での燃焼による全熱エネルギー
の中で5〜10%が機械損失として失なわれてお
り、このうちの1/2以上がエンジン油が関与する
ピストン摺動部の摩擦損失である。燃費を向上さ
せるためにはこの摩擦損失を少なくすることが必
要である。 この摩擦損失低減のひとつとして低摩擦化があ
げられる。摩擦を低下させるために現在ではジン
クジアルキルジチオホスフエート(ZnDTP)、モ
リブデンジアルキルジチオホスフエート
(MoDTP)等の極圧剤が潤滑油に添加されてい
る。その中でも上記ZnDTPは摩擦係数が0.1以上
と大きいものの、摩耗低減効果は極めて優れてい
る。一方上記MoDTPは摩擦係数が0.05と極圧剤
の中では最も低いものである。しかし、上記
ZnDTPもMoDTPも分子中にリン(P)を含有して
いるため排ガス、排液により環境を汚染するおそ
れがある。特に自動車用エンジンの場合、このリ
ンにより排気触媒が被毒してしまうという問題が
生じている。それ故、その添加量は制限されてい
る。 また、分子中にリンを含有しない極圧剤として
二硫化モリブデン(MoS2)あるいはモリブデン
ジアルキルジチオカーバメイト(MoDTC)が知
られている。しかし、上記MoS2は不油溶性の固
体であるため潤滑油に配合した場合に沈澱し易
く、実用上不都合である。 また上記MoDTCは潤滑油に添加しても十分な
摩耗低減効果及び摩耗低減性を得ることはできな
い。 〔発明が解決しようとする問題点〕 本発明は上記従来の問題点に鑑み、摩擦低減効
果が大きく、摩耗低減性に優れ、しかもリンを含
有しない添加剤を配合してなる潤滑油組成物を提
供するものである。 〔問題点を解決するための手段〕 本発明の潤滑油組成物は、潤滑油と、モリブデ
ンジアルキルジチオカーバメイト(以下、
MoDTCと称する)と、該モリブデンジチオカー
バメイト以外の硫黄系極圧剤とからなる潤滑油組
成物であつて、上記硫黄系極圧剤は、下記(a)また
は(b)のうちの少なくとも一方または(c)であり、(a)
または(b)のうちの少なくとも一方よりなる硫黄系
極圧剤の配合量は、潤滑油に対して硫黄濃度に換
算して0.05〜0.2重量%であり、(c)よりなる硫黄
系極圧剤の配合量は、潤滑油に対して硫黄濃度に
換算して0.01〜0.3重量%であることを特徴とす
るものである。 (a) 硫化パラフイン系極圧剤 (b) 単体硫黄 (c) 硫化油脂系極圧剤 本発明において使用する潤滑油は、動物油、植
物油、鉱物油、合成潤滑油等であり、特に制限は
されない。例えば、ヒマシ油、魚油、鉱油あるい
はアジピン酸ジオクチル、セパシン酸ジオクチ
ル、コハク酸ジデシル、ポリα−オレフイン等が
挙げられ、これらのうちの1種または2種以上の
混合物で使用する。 また、モリブデンジアルキルジチオカーバメイ
ト(MoDTC)は、下記化学式〔A〕で表わされ
るものである。式中のmとnの組合せにおいて5
種類のものが存在する。本発明においては、上記
5種類とも使用することができ、これらのうちの
1種または2種以上の混合物で使用する。
[Industrial Application Field] The present invention relates to a lubricating oil composition that reduces wear and friction in sliding parts of automobile engines, machine tools, etc. [Conventional technology] Currently, equipment such as automobile engines and machine tools has entered an era of high speed, and there is a risk of severe wear and friction occurring in sliding parts, and the lubricating oil used there is exposed to high temperatures. There are more and more opportunities to Therefore, various improvements have been made to the lubricating oils used. In particular, in the case of automobile engines, the performance of lubricating oils used has been improved from the viewpoint of improving fuel efficiency. That is, 5 to 10% of the total heat energy due to combustion in an automobile is lost as mechanical loss, and more than half of this is friction loss in piston sliding parts involving engine oil. In order to improve fuel efficiency, it is necessary to reduce this friction loss. One way to reduce this friction loss is to reduce friction. Extreme pressure agents such as zinc dialkyldithiophosphate (ZnDTP) and molybdenum dialkyldithiophosphate (MoDTP) are currently added to lubricating oils to reduce friction. Among them, ZnDTP has a large friction coefficient of 0.1 or more, but has an extremely excellent wear reduction effect. On the other hand, the above-mentioned MoDTP has a friction coefficient of 0.05, which is the lowest among extreme pressure agents. But above
Both ZnDTP and MoDTP contain phosphorus (P) in their molecules, so there is a risk of polluting the environment with exhaust gas and liquid. Particularly in the case of automobile engines, there is a problem in that the exhaust catalyst is poisoned by this phosphorus. Therefore, the amount added is limited. Furthermore, molybdenum disulfide (MoS 2 ) or molybdenum dialkyldithiocarbamate (MoDTC) is known as an extreme pressure agent that does not contain phosphorus in its molecule. However, since MoS 2 is an oil-insoluble solid, it tends to precipitate when added to lubricating oil, which is inconvenient in practice. Furthermore, even when MoDTC is added to lubricating oil, sufficient wear-reducing effects and wear-reducing properties cannot be obtained. [Problems to be Solved by the Invention] In view of the above-mentioned conventional problems, the present invention provides a lubricating oil composition that has a large friction-reducing effect, excellent wear-reducing properties, and contains an additive that does not contain phosphorus. This is what we provide. [Means for Solving the Problems] The lubricating oil composition of the present invention comprises a lubricating oil and a molybdenum dialkyl dithiocarbamate (hereinafter referred to as
MoDTC) and a sulfur-based extreme pressure agent other than the molybdenum dithiocarbamate, wherein the sulfur-based extreme pressure agent is at least one of the following (a) or (b) or (c) and (a)
The blending amount of the sulfur-based extreme pressure agent consisting of at least one of (b) or (b) is 0.05 to 0.2% by weight in terms of sulfur concentration based on the lubricating oil, and the sulfur-based extreme pressure agent consisting of (c) The blending amount is 0.01 to 0.3% by weight in terms of sulfur concentration based on the lubricating oil. (a) Sulfurized paraffin-based extreme pressure agent (b) Elemental sulfur (c) Sulfurized oil-based extreme pressure agent The lubricating oil used in the present invention is animal oil, vegetable oil, mineral oil, synthetic lubricating oil, etc., and is not particularly limited. . For example, castor oil, fish oil, mineral oil, dioctyl adipate, dioctyl sepacate, didecyl succinate, poly-α-olefin, etc. are used, and one type or a mixture of two or more of these can be used. Moreover, molybdenum dialkyldithiocarbamate (MoDTC) is represented by the following chemical formula [A]. In the combination of m and n in the formula, 5
There are different types. In the present invention, all of the above five types can be used, and one type or a mixture of two or more of these types can be used.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、摩擦低減効果が大きく、かつ
摩耗低減性に優れた潤滑油組成物を提供すること
ができる。また、本発明にかかる潤滑油組成物は
リンを含まないため、使用中にリンによる大気汚
染が発生せず、特に自動車用エンジンに使用した
場合、リンによる排気触媒の被毒も生じない。 〔実施例〕 以下、本発明の実施例を説明する。 実施例 1 本実施例に入いる前に種々の硫黄系極圧剤の性
質を以下の方法で調査した。 まず第1表に示すような9種類の硫黄系極圧剤
(第1表のNo.A1〜D3)について示差熱分析を行
なつた。得られた示差熱曲線が類似したものをひ
とつのグループとしてA〜Dの4種類のグループ
に分類した(なお、Bグループは1種類のみであ
る。)次に上記9種類の硫黄系極圧剤を鉱油(40
℃における粘度が83cstのもの)にそれぞれ5wt
%ずつ配合し、クロスピン型潤滑油試験機を用い
て潤滑性試験を行なつた。このクロスピン型潤滑
油試験機は第1図に示すように直径20mmの一対の
SUJ2製丸棒(ピン)1,2を互いに直角に配し、
一方のピン1を回転させ、他方のピン2を固定さ
せるとともにエアシリンダー3で押しつけ、一対
のピンが点接触の状態で試験するものである。温
度を調節し一対の接触点近傍に試料油を供給す
る。試験後、固定させたピン2上に残る円形の摩
耗痕の摺動方向に対し直角方向の直径(摩耗痕
径)を測定し、更にひずみゲージ4により摩擦係
数を測定する。この摩耗痕径と摩擦係数とを潤滑
性の指標とする。なお、この硫黄系極圧剤の潤滑
性試験において、試験条件は回転するピン1の回
転数600rpm、荷重12.6Kg・f、油温80℃、試験
時間1hrとした。 上記硫黄系極圧剤についての摩耗痕径を第1表
に示す。 第1表において、A〜Dの各グループとも、同
一グループのものは、同じような摩耗痕径を示し
ており、類似の潤滑性を有することを示してい
る。 なお、第1表のA及びBグループの硫黄系極圧
剤は硫化油脂系のもの、C及びDグループの硫黄
系極圧剤は硫化パラフイン系のものである。 これらの各硫黄系極圧剤とMoDTC(前記式
〔A)においてm=2、n=2)と鉱油(40℃に
おける粘度が83cstのもの)とを混合して潤滑油
組成物となし、クロスピン型潤滑油試験機を用い
て、前記と同様な条件で潤滑油試験を行なつた。 なお、上記潤滑油組成物中のMoDTCの配合量
は鉱油に対しMo濃度で0.06wt%、硫黄系極圧剤
の配合量は、第1表のA,B,C,Dの各グルー
プが鉱油に対しS濃度でそれぞれ0〜0.10wt%、
0〜0.12wt%、0〜0.50wt%、0〜0.50wt%の範
囲である。
According to the present invention, it is possible to provide a lubricating oil composition that has a large friction-reducing effect and excellent wear-reducing properties. Furthermore, since the lubricating oil composition according to the present invention does not contain phosphorus, it does not cause air pollution due to phosphorus during use, and particularly when used in an automobile engine, does not cause poisoning of exhaust catalysts due to phosphorus. [Examples] Examples of the present invention will be described below. Example 1 Before starting this example, the properties of various sulfur-based extreme pressure agents were investigated using the following method. First, differential thermal analysis was conducted on nine types of sulfur-based extreme pressure agents (Nos. A1 to D3 in Table 1) as shown in Table 1. Those with similar differential thermal curves were classified into four groups, A to D (Group B is only one type).Next, the above nine types of sulfur-based extreme pressure agents mineral oil (40
5wt each (with a viscosity of 83cst at °C)
A lubricity test was conducted using a cross-pin type lubricating oil tester. This cross-pin type lubricant tester has a pair of 20mm diameter testers as shown in Figure 1.
SUJ2 round bars (pins) 1 and 2 are arranged at right angles to each other,
One pin 1 is rotated, the other pin 2 is fixed, and an air cylinder 3 is used to press the pin 1, and the test is performed with the pair of pins in point contact. Adjust the temperature and supply sample oil near the pair of contact points. After the test, the diameter of the circular wear mark left on the fixed pin 2 in the direction perpendicular to the sliding direction (wear mark diameter) is measured, and the coefficient of friction is further measured using the strain gauge 4. This wear scar diameter and friction coefficient are used as indicators of lubricity. In addition, in the lubricity test of this sulfur-based extreme pressure agent, the test conditions were a rotation speed of the rotating pin 1 of 600 rpm, a load of 12.6 kg·f, an oil temperature of 80° C., and a test time of 1 hr. Table 1 shows the wear scar diameters for the sulfur-based extreme pressure agents. In Table 1, in each group A to D, those in the same group have similar wear scar diameters, indicating that they have similar lubricity. The sulfur-based extreme pressure agents in Groups A and B in Table 1 are based on sulfurized oils and fats, and the sulfur-based extreme pressure agents in Groups C and D are based on sulfurized paraffin. A lubricating oil composition was prepared by mixing each of these sulfur-based extreme pressure agents, MoDTC (m = 2, n = 2 in the above formula [A)], and mineral oil (with a viscosity of 83 cst at 40°C). A lubricant test was conducted using a type lubricant tester under the same conditions as above. The blending amount of MoDTC in the above lubricating oil composition is 0.06wt% in terms of Mo concentration based on the mineral oil, and the blending amount of the sulfur-based extreme pressure agent is as follows: Groups A, B, C, and D in Table 1 are mineral oil. S concentration is 0 to 0.10wt%, respectively.
The range is 0 to 0.12 wt%, 0 to 0.50 wt%, and 0 to 0.50 wt%.

【表】【table】

【表】 上記潤滑油試験の結果を、硫黄系極圧剤のA〜
DグループからそれぞれNo.A1,B1,C3,D3を
配合したものについて各グループの代表として、
第2図ないし第5図に示す。なお、第2ないし第
5図は、横軸が硫黄系極圧剤のS濃度に換算した
配合量(Swt%)、縦軸が摩耗痕径(mm)及び摩
擦係数を示すグラフである。また、第2図はNo.
A1の硫黄系極圧剤、第3図はNo.B1のもの、第4
図はNo.C3のもの、第5図はNo.D3のものを使用し
た結果を表わし、各図とも曲線Pが摩耗痕径を、
曲線Qが摩擦係数を示している。 また、比較のため、MoDTCは含まず、上記と
同様な鉱油にNo.A1、No.B1、No.C3、No.D3の硫黄
系極圧剤をそれぞれ、0.02wt%、0.02wt%、
0.15wt%、0.15wt%配合して4種類の比較用潤滑
油組成物を調製し、上記と同様に潤滑性試験を行
なつた。その結果を第2ないし第5図に示す。な
お各図とも、点Xは摩耗痕径、点Yは摩耗係数を
示している。 第2図及び第3図より明らかなように、本発明
にかかる潤滑油組成物は、硫化油脂系極圧剤を使
用した場合、該極圧剤をS濃度に換算して0.01〜
0.03wt%の範囲内で配合した場合に、比較例のも
のよりも優れた潤滑性を示し、しかも摩擦係数に
おいて、最も低いとされているMoDTP(摩擦係
数0.05)よりも低く、優れた潤滑性を有してい
る。 また、第4図及び第5図より明らかなように、
硫化パラフイン系極圧剤を使用する場合、本発明
の潤滑油組成物は該極圧剤をS濃度に換算して
0.05〜0.2wt%の範囲内で配合した場合に、比較
例及びMoDTPよりも優れた潤滑性を有する。 また、上記の図には示さなかつた残りの組成物
の測定結果は、硫黄系極圧剤No.A2の場合はA1
と、No.C1、C2はC3と、No.D1、D2はD3とほぼ同
様な効果を得た。 実施例 2 実施例1と同様の鉱油と該鉱油に対してMo濃
度で0.03wt%、0.09wt%のMoDTC(前記式〔A〕
においてm=2、n=2)とS濃度で0〜0.5wt
%のNo.C3の硫化パラフイン系極圧剤とを混合し、
2種類の潤滑油組成物を調製した。この潤滑油組
成物についてクロスピン型潤滑油試験機により実
施例1と同様な条件により潤滑性試験を行なつ
た。 その結果を第6図及び第7図に示す。なお、第
6図はMoDTCをMo濃度で0.03wt%、第7図は
0.09wt%配合したものである。また、両図とも曲
線Pが摩耗痕径、曲線Qが摩擦係数を表わす。 第6図及び第7図より明らかなように本発明に
かかる潤滑油組成物は硫化パラフイン系極圧剤を
0.05〜0.2wt%の範囲内で配合した場合に、
MoDTP(摩擦係数0.05)よりも優れた潤滑性を
有している。
[Table] The results of the above lubricating oil test are shown below for sulfur-based extreme pressure agents.
As a representative of each group, for the mixture of No.A1, B1, C3, and D3 from Group D,
This is shown in FIGS. 2 to 5. Note that FIGS. 2 to 5 are graphs in which the horizontal axis shows the amount (Swt%) of the sulfur-based extreme pressure agent converted into S concentration, and the vertical axis shows the wear scar diameter (mm) and the friction coefficient. Also, Figure 2 shows No.
A1 sulfur-based extreme pressure agent, Figure 3 is No.B1, Figure 4
The figure shows the results using No.C3, and Figure 5 shows the results using No.D3. In each figure, the curve P represents the wear scar diameter,
Curve Q shows the coefficient of friction. For comparison, sulfur-based extreme pressure agents No.A1, No.B1, No.C3, and No.D3 were added to the same mineral oil as above without MoDTC at 0.02wt%, 0.02wt%, respectively.
Four types of comparative lubricating oil compositions were prepared by blending 0.15 wt% and 0.15 wt%, and the lubricity test was conducted in the same manner as above. The results are shown in Figures 2 to 5. In each figure, point X indicates the wear scar diameter, and point Y indicates the wear coefficient. As is clear from FIGS. 2 and 3, when a sulfurized oil-based extreme pressure agent is used in the lubricating oil composition of the present invention, the S concentration of the extreme pressure agent is 0.01 to
When blended within the range of 0.03wt%, it shows better lubricity than the comparative example, and the friction coefficient is lower than MoDTP (friction coefficient 0.05), which is considered to be the lowest. have. Furthermore, as is clear from Figures 4 and 5,
When a sulfurized paraffin type extreme pressure agent is used, the lubricating oil composition of the present invention has a concentration of the extreme pressure agent in terms of S concentration.
When blended within the range of 0.05 to 0.2 wt%, it has better lubricity than the comparative example and MoDTP. In addition, the measurement results for the remaining compositions not shown in the above figure are as follows: In the case of sulfur-based extreme pressure agent No.A2, A1
And, No.C1 and C2 obtained almost the same effect as C3, and No.D1 and D2 obtained almost the same effect as D3. Example 2 Mineral oil similar to Example 1 and MoDTC (formula [A] above) with a Mo concentration of 0.03 wt% and 0.09 wt% with respect to the mineral oil
m = 2, n = 2) and S concentration from 0 to 0.5wt.
% of No.C3 sulfurized paraffin-based extreme pressure agent,
Two lubricating oil compositions were prepared. This lubricating oil composition was subjected to a lubricity test using a cross-pin type lubricating oil tester under the same conditions as in Example 1. The results are shown in FIGS. 6 and 7. In addition, Fig. 6 shows MoDTC at Mo concentration of 0.03wt%, and Fig. 7 shows MoDTC at Mo concentration of 0.03wt%.
It contains 0.09wt%. Further, in both figures, the curve P represents the wear scar diameter, and the curve Q represents the friction coefficient. As is clear from FIGS. 6 and 7, the lubricating oil composition according to the present invention contains a sulfurized paraffin extreme pressure agent.
When blended within the range of 0.05-0.2wt%,
It has better lubricity than MoDTP (coefficient of friction 0.05).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はクロスピン型潤滑油試験機の斜視図、
第2図ないし第5図は実施例1の潤滑油試験の結
果を示す図、第6図及び第7図は実施例2の潤滑
油試験の結果を示す図である。 1,2…クロスピン、P…本実施例の摩耗痕
径、Q…本実施例の摩擦係数、X…比較例の摩耗
痕径、Y…比較例の摩擦係数。
Figure 1 is a perspective view of the cross-pin type lubricating oil tester.
2 to 5 are diagrams showing the results of the lubricating oil test of Example 1, and FIGS. 6 and 7 are diagrams showing the results of the lubricating oil test of Example 2. 1, 2... Cross pin, P... Wear scar diameter of this example, Q... Friction coefficient of this example, X... Wear scar diameter of comparative example, Y... Friction coefficient of comparative example.

Claims (1)

【特許請求の範囲】 1 潤滑油と、モリブデンジアルキルジチオカー
バメイトと、該モリブデンジアルキルジチオカー
バメイト以外の硫黄系極圧剤とからなる潤滑油組
成物であつて、上記硫黄系極圧剤は、下記(a)また
は(b)のうちの少なくとも一方または(c)であり、(a)
または(b)のうちの少なくとも一方よりなる硫黄系
極圧剤の配合量は、潤滑油に対して硫黄濃度に換
算して0.05〜0.2重量%であり、(c)よりなる硫黄
系極圧剤の配合量は、潤滑油に対して硫黄濃度に
換算して0.01〜0.03重量%であることを特徴とす
る潤滑油組成物。 (a) 硫化パラフイン系極圧剤 (b) 単体硫黄 (c) 硫化油脂系極圧剤。
[Scope of Claims] 1. A lubricating oil composition comprising a lubricating oil, a molybdenum dialkyl dithiocarbamate, and a sulfur-based extreme pressure agent other than the molybdenum dialkyl dithiocarbamate, wherein the sulfur-based extreme pressure agent comprises the following ( at least one of a) or (b) or (c), and (a)
The blending amount of the sulfur-based extreme pressure agent consisting of at least one of (b) or (b) is 0.05 to 0.2% by weight in terms of sulfur concentration based on the lubricating oil, and the sulfur-based extreme pressure agent consisting of (c) A lubricating oil composition characterized in that the blending amount is 0.01 to 0.03% by weight in terms of sulfur concentration based on the lubricating oil. (a) Sulfurized paraffin-based extreme pressure agent (b) Elemental sulfur (c) Sulfurized oil-based extreme pressure agent.
JP25103484A 1984-11-27 1984-11-27 Lubricant oil composition Granted JPS61127797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25103484A JPS61127797A (en) 1984-11-27 1984-11-27 Lubricant oil composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25103484A JPS61127797A (en) 1984-11-27 1984-11-27 Lubricant oil composition

Publications (2)

Publication Number Publication Date
JPS61127797A JPS61127797A (en) 1986-06-16
JPH0583599B2 true JPH0583599B2 (en) 1993-11-26

Family

ID=17216627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25103484A Granted JPS61127797A (en) 1984-11-27 1984-11-27 Lubricant oil composition

Country Status (1)

Country Link
JP (1) JPS61127797A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0699739A2 (en) 1994-09-05 1996-03-06 Japan Energy Corporation Engine oil composition

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3268730B2 (en) * 1995-12-26 2002-03-25 出光興産株式会社 Lubricating oil composition for sliding surfaces
JP4641567B2 (en) * 1997-10-30 2011-03-02 ザ ルブリゾル コーポレイション Method to improve copper corrosion performance of molybdenum dithiocarbamate and active sulfur by adding sunflower oil

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3509051A (en) * 1964-08-07 1970-04-28 T R Vanderbilt Co Inc Lubricating compositions containing sulfurized oxymolybdenum dithiocarbamates
US4098705A (en) * 1975-08-07 1978-07-04 Asahi Denka Kogyo K.K. Sulfur containing molybdenum dihydrocarbyldithiocarbamate compound
JPS5723693A (en) * 1980-06-06 1982-02-06 Vanderbilt Co R T Additive based on organic molybdenum and lubricant composition containing same
JPH032919A (en) * 1989-05-30 1991-01-09 Nec Corp Screen data input/output system for terminal equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3509051A (en) * 1964-08-07 1970-04-28 T R Vanderbilt Co Inc Lubricating compositions containing sulfurized oxymolybdenum dithiocarbamates
US4098705A (en) * 1975-08-07 1978-07-04 Asahi Denka Kogyo K.K. Sulfur containing molybdenum dihydrocarbyldithiocarbamate compound
JPS5723693A (en) * 1980-06-06 1982-02-06 Vanderbilt Co R T Additive based on organic molybdenum and lubricant composition containing same
US4360438A (en) * 1980-06-06 1982-11-23 R. T. Vanderbilt Company, Inc. Organomolybdenum based additives and lubricating compositions containing same
JPH032919A (en) * 1989-05-30 1991-01-09 Nec Corp Screen data input/output system for terminal equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0699739A2 (en) 1994-09-05 1996-03-06 Japan Energy Corporation Engine oil composition

Also Published As

Publication number Publication date
JPS61127797A (en) 1986-06-16

Similar Documents

Publication Publication Date Title
JP3927724B2 (en) Lubricating oil composition for internal combustion engines
CN105934504B (en) Lubricating oil composition for internal combustion engine
CN103509634B (en) Lubricating oil composition for engine employing methanol or methanol gasoline as fuel
JPH06313183A (en) Lubricant composition
JPS63223094A (en) Base oil of lubricating oil for internal combustion engine and composition
CN107502434A (en) A kind of electric automobile gear-box special oil and preparation method thereof
CN104449972A (en) Lubricating oil compound additive for compressed natural gas engine
Agocs et al. Comparing oil condition in diesel and gasoline engines
KR101080784B1 (en) Gasoline engine oil compositions
CN102295978A (en) Lubricating oil for internal combustion engines and preparation method thereof
CN101381649A (en) Non-sulphur and phosphorus antiwear and friction reducing multifunctional additive agent and preparation method
JPH0583599B2 (en)
US4336149A (en) Fuel economy in internal combustion engines
CN101348745B (en) Energy-saving wear-reducing gasoline engine oil
JPH0662983B2 (en) Lubricating oil composition
Richman et al. An engine oil formulated for optimized engine performance
CN101760287B (en) Combined energy-conserving synergistic agent composition of lubricating oil nanometer material
US4584112A (en) Fuel-efficient lubricating oil
RU2202601C2 (en) Average-temperature lubricant for heavily loaded units friction, roller and slider units
JP4204340B2 (en) Lubricating oil for ultra-low sulfur internal combustion engines
JP4567157B2 (en) Grease composition for constant velocity joints
CN103468374B (en) High-temperature-resisting liquefied natural gas automobile engine oil
CN110016380B (en) Diesel engine oil composition
JP5344424B2 (en) Grease composition for constant velocity joint and constant velocity joint
CN110029000A (en) A kind of lube oil additive