JPH0583516B2 - - Google Patents

Info

Publication number
JPH0583516B2
JPH0583516B2 JP60290867A JP29086785A JPH0583516B2 JP H0583516 B2 JPH0583516 B2 JP H0583516B2 JP 60290867 A JP60290867 A JP 60290867A JP 29086785 A JP29086785 A JP 29086785A JP H0583516 B2 JPH0583516 B2 JP H0583516B2
Authority
JP
Japan
Prior art keywords
ceramic
particles
porous body
layer
pore diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60290867A
Other languages
Japanese (ja)
Other versions
JPS62149434A (en
Inventor
Satoru Hirose
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Cement Co Ltd
Original Assignee
Nihon Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Cement Co Ltd filed Critical Nihon Cement Co Ltd
Priority to JP29086785A priority Critical patent/JPS62149434A/en
Publication of JPS62149434A publication Critical patent/JPS62149434A/en
Publication of JPH0583516B2 publication Critical patent/JPH0583516B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はフイルター、隔膜に利用できる複層式
セラミツク多孔体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a multilayer ceramic porous body that can be used for filters and diaphragms.

〔従来の技術〕[Conventional technology]

従来複層式セラミツク多孔体は粒径の異なるセ
ラミツク粒子スラリーを時間差をおいて型に流し
込むか、あるいは多孔質支持体に流し込む鋳込み
法により製造されていた。
Conventionally, multilayer ceramic porous bodies have been manufactured by a casting method in which ceramic particle slurries of different particle sizes are poured into a mold at different times or poured into a porous support.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし鋳込法に用いられるセラミツク粒子スラ
リーは比較的濃度が濃いため、該粒子同志が凝集
して2次粒子になり易い。そこで、複層式セラミ
ツク多孔体をフイルターに使用するような場合、
透過孔径が揃つている方が望ましいが、1次粒子
同志の間にできる空隙即ち透過孔径は小さく、2
次粒子同志の間にできる透過孔径は大きいので、
これらが共存する鋳込法では当然透過孔径の揃つ
たものはできにくいという欠点があつた。また鋳
込法では平均粒径1μm以下の微細な粒子からなる
スラリーを用いて堆積層を形成しようとするとス
ラリー中の空気を完全に除去できないため堆積層
形成時に該空気を抱き込んでしまい、後段の工程
である焼成工程において該空気が膨張してポツピ
ングを起し、それがピンポールとして残り不良品
となつてしまうという欠点があつた。
However, since the ceramic particle slurry used in the casting method has a relatively high concentration, the particles tend to aggregate together and become secondary particles. Therefore, when using a multilayer ceramic porous material for a filter,
It is preferable that the diameters of the permeation pores are uniform, but the voids formed between the primary particles, that is, the diameter of the permeation pores, are small, and the diameter of the permeation pores is small.
The diameter of the permeation pores formed between secondary particles is large, so
Naturally, the casting method in which these factors coexist had the disadvantage that it was difficult to produce products with uniform diameters of permeation pores. In addition, in the casting method, when attempting to form a deposited layer using a slurry consisting of fine particles with an average particle size of 1 μm or less, the air in the slurry cannot be completely removed, so the air is trapped during the formation of the deposited layer, and the subsequent stage In the firing process, the air expands and causes popping, which remains as pin holes and results in defective products.

このような欠点を解決し、要望にこたえるため
には、セラミツク粒子をセラミツク多孔体よりな
る支持層上に緻密に堆積させることが必要である
と考え、その方法について鋭意研究した結果、下
記の本発明に到達した。
In order to solve these drawbacks and meet the demands, we believe that it is necessary to deposit ceramic particles densely on a support layer made of porous ceramic material, and as a result of intensive research on this method, we have published the following book. invention has been achieved.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はセラミツク多孔体を過体としてセラ
ミツク粒子の分散液をクロスフロー過すること
により、該多孔体表面にセラミツク粒子の薄い堆
積層を形成させ、これを乾燥、焼成することを特
徴とす複層式セラミツク多孔体の製造方法を提供
するものである。
The present invention is characterized by forming a thin deposited layer of ceramic particles on the surface of the porous body by cross-flowing a dispersion of ceramic particles using a ceramic porous body as a carrier, and drying and firing this layer. A method for manufacturing a layered ceramic porous body is provided.

本発明でいうクロスフロー過とは、過原液
を加圧下で材表面に流し、液は材裏面よ
り、材と平行に流れる原液に対して直角方向に
流れる過をいう。
Cross-flow filtration as used in the present invention refers to filtration in which an excess stock solution is flowed under pressure onto the surface of the material, and the liquid flows from the back surface of the material in a direction perpendicular to the stock solution flowing parallel to the material.

本発明に用いるセラミツク粒子としてはアルミ
ナ、チタニア、ムライトなどその種類は特に限定
しないが、小孔径のフイルタを製造するには粒子
が小さく粒度分布が狭いものの方がより透過孔径
の揃つた多孔体ができるため望ましい。
The ceramic particles used in the present invention include alumina, titania, and mullite, and are not particularly limited in type, but in order to manufacture a filter with a small pore size, it is better to have small particles and a narrow particle size distribution, since a porous body with uniform permeation pore sizes is better. Desirable because it can be done.

またセラミツク粒子の代りにセラミツクの前駆
体であるゾルまたはゲル粒子を用いることも可能
である。
It is also possible to use sol or gel particles, which are ceramic precursors, instead of ceramic particles.

分散媒としては水、アルコール等が用いられ
る。セラミツク粒子の分散液は粒子の凝集が生じ
なければその固液濃度は限定されないが、通常10
重量%以下、好ましくは1重量%以下である。
Water, alcohol, etc. are used as the dispersion medium. The solid-liquid concentration of a ceramic particle dispersion is not limited as long as particle aggregation does not occur, but it is usually 10
It is not more than 1% by weight, preferably not more than 1% by weight.

またセラミツク粒子の分散液に必要に応じて焼
結助剤、粒成長抑制剤などの添加物を同時に分散
しておいても、緻密な堆積層を形成するにあたつ
て特に問題となることはない。
Furthermore, even if additives such as sintering aids and grain growth inhibitors are simultaneously dispersed in the ceramic particle dispersion as necessary, there will be no particular problem in forming a dense deposited layer. do not have.

支持体層となるセラミツク多孔体は分散したセ
ラミツク粒子を過できるものであれば特に限定
されないが、焼結することによつてその表面に形
成された堆積層と結合するものであり、しかも該
堆積層を形成するセラミツク粒子とほぼ同程度の
熱膨張係数を有するものであることが必要であ
る。また堆積層の厚みは過圧、過時間および
流速を選ぶことにより調節することができる利点
がある。
The ceramic porous body serving as the support layer is not particularly limited as long as it can contain dispersed ceramic particles, but it can be bonded to the deposited layer formed on its surface by sintering, and the deposited It is necessary that the material has a coefficient of thermal expansion approximately equal to that of the ceramic particles forming the layer. There is also the advantage that the thickness of the deposited layer can be adjusted by selecting the overpressure, overtime and flow rate.

クロスフロー過で堆積層を形成させる理由は
他の過方法で堆積層を形成するよりも、緻密に
なるためである。
The reason why the deposited layer is formed by cross-flowing is that it becomes denser than when the deposited layer is formed by other methods.

例えば、平均粒径約0.5μmのアルミナ微粉末を
0.05〜0.5重量%の固液濃度に調整し、流速0.5〜
1.5m/sec、過圧1〜3Kgf/cm2で10〜40分間
クロスフロー過すると、肉厚10〜50μmの堆積
層が形成される。
For example, fine alumina powder with an average particle size of about 0.5 μm
Adjust the solid-liquid concentration to 0.05 to 0.5% by weight, and the flow rate to 0.5 to 0.5% by weight.
When cross-flowed for 10-40 minutes at 1.5 m/sec and an overpressure of 1-3 Kgf/cm 2 , a deposited layer with a thickness of 10-50 μm is formed.

〔実施例〕〔Example〕

実施例 1 セラミツク多孔体よりなる支持層として鋳込み
法で製造した外径19mmφ、内径16mmφ、長さ115
mm、最大透過孔径12μm、平均透過孔径7μm、透
過係数4.0ml/s・atm・cm2のアルミナ製フイル
ターを用い、この支持層の内表面に平均粒径
0.5μmの市販アルミナ(昭和軽金属(株)製、760SG
−1)に蒸留水を加えて遠心分離し、0.7μm以上
の粒子を除いた後、固液濃度を0.1重量%に調整
し、流速1m/sec、過圧2Kgf/cm2で約30分間
クロスフロー過を行い、α−アルミナの微粒子
からなる緻密な堆積層を形成した。
Example 1 A support layer made of ceramic porous material manufactured by casting method with an outer diameter of 19 mmφ, an inner diameter of 16 mmφ, and a length of 115 mm.
An alumina filter with a maximum permeation pore diameter of 12 μm, an average permeation pore diameter of 7 μm, and a permeability coefficient of 4.0 ml/s・atm・cm 2 is used to coat the inner surface of this support layer with an average particle size of
0.5 μm commercially available alumina (manufactured by Showa Light Metal Co., Ltd., 760SG)
- Add distilled water to 1) and centrifuge to remove particles larger than 0.7μm, adjust the solid-liquid concentration to 0.1% by weight, and cross-fry for about 30 minutes at a flow rate of 1m/sec and an overpressure of 2Kgf/ cm2. Flow filtration was performed to form a dense deposited layer consisting of α-alumina fine particles.

これを1300℃で焼成したところフイルター層の
厚さ約40μm、平均透過孔径0.20μm、最大透過孔
径0.33μm、純水透過係数6×10-3ml/s・atm・
cm2の複層式セラミツク多孔体が得られた。
When this was fired at 1300℃, the thickness of the filter layer was approximately 40μm, the average permeation pore diameter was 0.20μm, the maximum permeation pore diameter was 0.33μm, and the pure water permeability coefficient was 6×10 -3 ml/s・atm・
A multi-layered ceramic porous body with a size of cm 2 was obtained.

実施例 2 図のような断面が1辺20mmの6角形で、その中
に直径10mmの円柱状の穴が7本通つている蓮根状
のアルミナ質多孔体を用いてその内側に緻密な二
次層を形成した。
Example 2 A lotus root-shaped alumina porous body with a hexagonal cross section of 20 mm on a side and seven cylindrical holes with a diameter of 10 mm passing through it as shown in the figure was used. formed a layer.

この蓮根状のアルミナ質多孔体は平均透過孔径
10μm、最大透過孔径23μm、純水透過係数10ml/
s・atm・cm2以上(内表面積あたり)である。
This lotus root-shaped alumina porous material has an average permeation pore diameter of
10μm, maximum permeation pore diameter 23μm, pure water permeability coefficient 10ml/
s・atm・cm 2 or more (per inner surface area).

これを実施例1と同じようにして同じアルミナ
微粉末の分散液を流速1m/sec、過圧2Kgf/
cm2で約30分間クロスフロー過した。
This was carried out in the same manner as in Example 1, and the same dispersion of fine alumina powder was mixed at a flow rate of 1 m/sec and an overpressure of 2 Kgf/
Crossflow was carried out at cm2 for approximately 30 minutes.

これを1300℃で焼成したところ、フイルター層
の厚さ約35μm、最大透過孔径0.30μm、平均透過
孔径0.24μm、純水透過係数6×10-3ml/s・
atm・cm2(内表面積あたり)の複層式セラミツク
多孔体が得られた。
When this was fired at 1300℃, the thickness of the filter layer was approximately 35μm, the maximum permeation pore diameter was 0.30μm, the average permeation pore diameter was 0.24μm, and the pure water permeability coefficient was 6×10 -3 ml/s・
A multi-layer ceramic porous body of atm·cm 2 (per inner surface area) was obtained.

比較例 実施例1に用いたと同じアルミナ製フイルター
とアルミナ粒子を用いて鋳込み法で堆積層を形成
した。
Comparative Example Using the same alumina filter and alumina particles as used in Example 1, a deposited layer was formed by a casting method.

アルミナ粒子50gを蒸留水に分散して固液濃度
5重量%のスラリーとし、これを下端を塞いだア
ルミナ製フイルターに流し込み、内側堆積層を形
成した。これを乾燥した後再びスラリーを流し込
み堆積層の厚みをます。この操作を3回くり返し
た後、1300℃で焼成し、実施例と同等の約40μm
厚のフイルター層を形成した。
50 g of alumina particles were dispersed in distilled water to form a slurry with a solid-liquid concentration of 5% by weight, and this was poured into an alumina filter whose lower end was closed to form an inner deposited layer. After this is dried, the slurry is poured again to increase the thickness of the deposited layer. After repeating this operation three times, it was fired at 1300℃ and the thickness was about 40 μm, which was the same as in the example.
A thick filter layer was formed.

この複層フイルターの平均透過孔径は0.30μm、
最大透過孔径は0.81μm、純水透過係数は7.4×
10-2ml/s・atm・cm2であつた。
The average permeation pore diameter of this multilayer filter is 0.30μm,
Maximum permeation pore diameter is 0.81μm, pure water permeability coefficient is 7.4×
It was 10 -2 ml/s・atm・cm 2 .

〔発明の効果〕〔Effect of the invention〕

本発明によれば、従来の鋳込み法と比べて平均
透過孔径が小さく、しかも平均透過孔径と最大透
過孔径との差が小さい複層式セラミツク多孔体が
得られるため精密過用フイルターおよび電気分
解用隔膜などに用いることができる。
According to the present invention, a multi-layer ceramic porous body with a smaller average permeation pore diameter and a smaller difference between the average permeation pore diameter and the maximum permeation pore diameter than the conventional casting method can be obtained, so it can be used for precision filters and electrolysis. It can be used for diaphragms, etc.

【図面の簡単な説明】[Brief explanation of drawings]

図は実施例2に使用した蓮根状アルミナ質多孔
体の概略図である。
The figure is a schematic diagram of a lotus root-shaped alumina porous body used in Example 2.

Claims (1)

【特許請求の範囲】[Claims] 1 セラミツク多孔体を過体としてセラミツク
粒子の分散液をクロスフロー過することによ
り、該多孔体表面にセラミツク粒子の薄い堆積層
を形成させ、これを乾燥、焼成することを特徴と
する複層式セラミツク多孔体の製造方法。
1. A multilayer system characterized in that a dispersion of ceramic particles is passed through a cross-flow through a ceramic porous body as a carrier to form a thin deposited layer of ceramic particles on the surface of the porous body, which is then dried and fired. A method for producing a ceramic porous body.
JP29086785A 1985-12-25 1985-12-25 Manufacture of double layer type ceramic porous body Granted JPS62149434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29086785A JPS62149434A (en) 1985-12-25 1985-12-25 Manufacture of double layer type ceramic porous body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29086785A JPS62149434A (en) 1985-12-25 1985-12-25 Manufacture of double layer type ceramic porous body

Publications (2)

Publication Number Publication Date
JPS62149434A JPS62149434A (en) 1987-07-03
JPH0583516B2 true JPH0583516B2 (en) 1993-11-26

Family

ID=17761522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29086785A Granted JPS62149434A (en) 1985-12-25 1985-12-25 Manufacture of double layer type ceramic porous body

Country Status (1)

Country Link
JP (1) JPS62149434A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6509060B1 (en) 1999-02-01 2003-01-21 Ngk Insulators, Ltd. Method for manufacturing filter having ceramic porous film as separating film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS548471A (en) * 1977-06-22 1979-01-22 Hitachi Ltd Selection method for transistor
JPS61238315A (en) * 1985-04-12 1986-10-23 Ngk Insulators Ltd Preparation of double-layered filter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS548471A (en) * 1977-06-22 1979-01-22 Hitachi Ltd Selection method for transistor
JPS61238315A (en) * 1985-04-12 1986-10-23 Ngk Insulators Ltd Preparation of double-layered filter

Also Published As

Publication number Publication date
JPS62149434A (en) 1987-07-03

Similar Documents

Publication Publication Date Title
US7767257B2 (en) Method for preparing a porous inorganic coating on a porous support using certain pore formers
US20190202747A1 (en) Inorganic membrane filter and methods thereof
US4056586A (en) Method of preparing molten metal filter
CA1196873A (en) Filtration structure of ceramic material
JP5997818B2 (en) Sinter bonded porous metal coating
AU2014279933B2 (en) Method for manufacturing filtering membranes by additive technique and resulting membranes
EP2117687B1 (en) Method of making an inorganic membrane
US5773103A (en) Inorganic membranes using porous cordierite support
JPH04231387A (en) Titania supporting body and preparation thereof
JPH0378130B2 (en)
US6551369B1 (en) Ceramic flat membrane and method for producing the same
JPH0295423A (en) Inorgannic film
CN115090122A (en) Ceramic membrane with alumina whisker film layer structure and preparation method and application thereof
JPH03284329A (en) Ceramic membraneous filter and production thereof
GB2223690A (en) Filter tubes
BR112016027032B1 (en) TANGENTIAL FILTER WITH A SUPPORT ELEMENT INCLUDING A SET OF CHANNELS
AU779345B2 (en) Method for the removal of particulate matter from aqueous suspension
JPH0583516B2 (en)
JPH06198147A (en) Production of ceramic membrane for microfiltration
JP3569682B2 (en) High corrosion resistance metal sintered filter
JPWO2013145317A1 (en) Honeycomb filter and method for manufacturing honeycomb filter
JPH0243928A (en) Inorganic porous membrane
JPH01299607A (en) Inorganic porous membrane
JP7191861B2 (en) Integral membrane filtration structure
JPH03284328A (en) Ceramic membraneous filter and production thereof