JPH058323Y2 - - Google Patents

Info

Publication number
JPH058323Y2
JPH058323Y2 JP1984154034U JP15403484U JPH058323Y2 JP H058323 Y2 JPH058323 Y2 JP H058323Y2 JP 1984154034 U JP1984154034 U JP 1984154034U JP 15403484 U JP15403484 U JP 15403484U JP H058323 Y2 JPH058323 Y2 JP H058323Y2
Authority
JP
Japan
Prior art keywords
passage
valve
arm
hydraulic cylinder
poppet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1984154034U
Other languages
Japanese (ja)
Other versions
JPS6169504U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1984154034U priority Critical patent/JPH058323Y2/ja
Publication of JPS6169504U publication Critical patent/JPS6169504U/ja
Application granted granted Critical
Publication of JPH058323Y2 publication Critical patent/JPH058323Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Operation Control Of Excavators (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Flow Control (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、油圧シヨベルにおいて、アームの作
動速度を制御するための制御回路に関するもので
ある。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a control circuit for controlling the operating speed of an arm in a hydraulic excavator.

〔従来の技術〕[Conventional technology]

従来、油圧シリンダの制御回路として、油圧シ
リンダのロツド側とヘツド側の各油室に接続され
た二つの管路のうち、負荷を下げるときに油圧シ
リンダからタンクへの排出側となる管路たとえば
ロツド側油室に接続した管路に、油圧シリンダ側
への油の流入(順流)のみを許容しその逆流を阻
止するチエツク弁と、絞りとをパラレルに接続し
た所謂スローリターンチエツク弁を設けたものが
知られている。
Conventionally, as a control circuit for a hydraulic cylinder, one of the two pipes connected to the oil chambers on the rod side and the head side of the hydraulic cylinder, for example, the pipe that becomes the discharge side from the hydraulic cylinder to the tank when reducing the load. A so-called slow return check valve is installed in the conduit connected to the rod side oil chamber, in which a check valve that only allows oil to flow into the hydraulic cylinder side (forward flow) and prevents its reverse flow, and a throttle are connected in parallel. something is known.

〔考案が解決しようとする課題〕[The problem that the idea aims to solve]

上記従来の回路によれば、方向制御弁を切換
え、油圧ポンプの吐出油を油圧シリンダのヘツド
側油室に供給して負荷を下げるときに、油圧シリ
ンダのロツド側油室から排出される作動油の排出
流量を前記絞りによつて制限し、負荷の自重によ
る影響を少なくして負荷を下げる方向の作動速度
を安定させることができる。しかし、ロツド側油
室から流出する作動油が常に絞りによつて絞られ
るため、負荷を下げる方向の作動速度がほぼ一定
であり、たとえ方向制御弁のスプール開度を調節
したとしてもその作動速度を大幅に変更すること
は困難である。
According to the conventional circuit described above, when the directional control valve is switched and the discharge oil of the hydraulic pump is supplied to the head side oil chamber of the hydraulic cylinder to reduce the load, the hydraulic oil is discharged from the rod side oil chamber of the hydraulic cylinder. By restricting the discharge flow rate by the throttle, the influence of the load's own weight can be reduced, and the operating speed in the direction of lowering the load can be stabilized. However, since the hydraulic oil flowing out from the rod side oil chamber is always throttled by the throttle, the operating speed in the direction of lowering the load is almost constant, and even if the spool opening of the directional control valve is adjusted, the operating speed remains constant. It is difficult to change significantly.

ところで、油圧シヨベルでは、整地作業時にア
ーム用油圧シリンダの作動速度とくにアーム引き
の作動速度を遅くした低速域で作業し、その低速
域で微妙な速度制御ができるようにすることが要
求され、河川等の掘削ではアーム用油圧シリンダ
の作動速度を速くした高速域で作業し、アームの
作動サイクルタイムをできるだけ短縮することが
要求される。しかし、上記従来のスローリターン
チエツク弁を用いたものでは、アーム引きの作動
速度が一定で、アーム引きの作動速度を任意にか
つ大幅に変更することは困難であるため、上記の
ような整地作業と河川での掘削作業その他の各作
業をいずれも満足させるということは困難であつ
た。
By the way, when using a hydraulic excavator, it is required to work in a low speed range by slowing down the operating speed of the hydraulic cylinder for the arm, especially the operating speed of arm pulling, during ground leveling work, and to be able to perform delicate speed control in that low speed range. When excavating, it is necessary to operate the arm hydraulic cylinder in a high speed range and shorten the arm operation cycle time as much as possible. However, with the above conventional slow return check valve, the operating speed of the arm pull is constant, and it is difficult to arbitrarily and significantly change the operating speed of the arm pull, so it is difficult to perform the above-mentioned land leveling work. It has been difficult to satisfy all requirements for excavation work, river excavation work, and other work.

なお、上記絞りを可変絞りとし、その絞り開度
を調節できるようにしたものが公知である。しか
し、可変絞りによる調節だけでは、上記作動速度
を高速域と低速域のように大幅に変更することは
困難である。
It is known that the above-mentioned diaphragm is a variable diaphragm, and the opening degree of the diaphragm can be adjusted. However, it is difficult to significantly change the operating speed between a high speed range and a low speed range only by adjusting the variable throttle.

本考案は、このような点に鑑み、簡単な回路構
成で、アーム用油圧シリンダの作動速度を大幅に
変更でき、油圧シヨベルによる作業時に、低速域
での微妙な速度制御が要求される整地作業と、高
速域での速度制御が要求される河川での掘削作業
その他の各種作業を、その作業内容に応じた最適
な状態でいずれも効率よく遂行できる油圧シヨベ
ルにおけるアームの作動速度制御回路を提供する
ものである。
In view of these points, the present invention allows the operating speed of the hydraulic cylinder for the arm to be significantly changed with a simple circuit configuration, and is suitable for land leveling work that requires delicate speed control in the low speed range when working with a hydraulic excavator. We also provide arm operating speed control circuits for hydraulic excavators that can efficiently carry out excavation work on rivers and other various types of work that require speed control in high-speed ranges, in optimal conditions depending on the work. It is something to do.

〔課題解決のための手段〕[Means for solving problems]

本考案は、車体の前部にブーム、アーム、バケ
ツトの作業装置をそれぞれ油圧シリンダにより回
動自在に設けた油圧シヨベルにおいて、油圧ポン
プとアーム用油圧シリンダとの間に、油圧ポンプ
からアーム用油圧シリンダへの圧油の流れの方向
および流量を制御してアームの回動を制御する中
立ブロツク式の三位置切換弁からなるアーム用方
向制御弁を設け、このアーム用方向制御弁とアー
ム用油圧シリンダとを接続する2本の圧油給排管
路のうち、アームを引き方向に回動させるときに
アーム用油圧シリンダからの油の排出側となる管
路の中間に、ロジツク弁を接続してなるもので、
そのロジツク弁は、第1通路と第2通路を備えた
弁本体と、弁本体内で第1通路と第2通路の交差
部に摺動自在に挿入されたポペツトと、ポペツト
先端を第1通路側に設けた弁シートに圧接する閉
弁方向に付勢するばねとを備え、上記ロジツク弁
の第1通路を上記アーム用方向制御弁側の管路
に、第2通路をアーム用油圧シリンダ側の管路に
それぞれ接続し、かつ、ロジツク弁の第2通路か
ら取り出したパイロツト通路とポペツト背面のば
ね室から取り出したパイロツト通路との間に電磁
切換弁を設け、この電磁切換弁は、第2通路の圧
力を上記ばね室に導いて上記ポペツトを閉弁方向
に付勢することによつて第1通路から第2通路へ
の油の順流を許容しその逆流を阻止する第1制御
位置と、上記ばね室をタンクに連通させて上記順
流と逆流のいずれをも許容する第2制御位置とに
切換自在に構成し、さらに、上記ロジツク弁の弁
本体に、第1通路と第2通路とを常時連通させる
バイパス通路を設け、このバイパス通路に絞りを
設けてなることを特徴とするものである。
The present invention is a hydraulic excavator in which a boom, an arm, and a bucket are installed at the front of the vehicle body so that they can rotate freely using hydraulic cylinders. An arm directional control valve consisting of a neutral block type three-position switching valve that controls the rotation of the arm by controlling the flow direction and flow rate of pressure oil to the cylinder is provided, and the arm directional control valve and the arm hydraulic pressure are Of the two pressure oil supply and discharge pipes connecting the cylinder, a logic valve is connected in the middle of the pipe from which oil is discharged from the arm hydraulic cylinder when the arm is rotated in the pulling direction. That's what it is,
The logic valve includes a valve body having a first passage and a second passage, a poppet slidably inserted into the intersection of the first passage and the second passage within the valve body, and a poppet whose tip is connected to the first passage. a spring that presses against a valve seat provided on the side and biases the valve in the valve closing direction; the first passage of the logic valve is connected to a conduit on the arm directional control valve side, and the second passage is connected to the arm hydraulic cylinder side. An electromagnetic switching valve is provided between the pilot passage taken out from the second passage of the logic valve and the pilot passage taken out from the spring chamber on the back of the poppet. a first control position that guides pressure in the passageway to the spring chamber to bias the poppet in the valve-closing direction, thereby allowing forward flow of oil from the first passageway to the second passageway and preventing backflow thereof; The spring chamber is configured to communicate with the tank and can be freely switched to a second control position that allows both forward flow and reverse flow, and furthermore, a first passage and a second passage are provided in the valve body of the logic valve. The device is characterized in that a bypass passage is provided that is communicated at all times, and that this bypass passage is provided with a restriction.

〔作用〕[Effect]

上記の構成によれば、電磁切換弁を第1制御位
置に保持すれば、アーム用油圧シリンダからの排
出油がロジツク弁を逆流することなく、バイパス
通路の絞りを経てアーム用方向制御弁側に流出す
ることになり、上記排出流量が絞りにより絞ら
れ、低速域でのアーム作業が精度よく行われる。
また、電磁切換弁を第2制御位置に切換えると、
アーム用油圧シリンダからの排出油がロジツク弁
をスムーズに逆流し、バイパス通路の絞り作用を
受けずにアーム用方向制御弁側に流出することに
なり、高速域での作業が効率よく行われる。すな
わち切換弁の切換えにより低速域での作業と高速
域での作業のように作業速度を大幅に変更でき、
低速域での微妙な速度制御が要求される整地作業
と、高速域での速度制御が要求される河川での掘
削作業その他の各種作業を、その作業内容に応じ
た最適な状態でいずれも効率よく遂行できる。
According to the above configuration, if the electromagnetic switching valve is held in the first control position, the oil discharged from the arm hydraulic cylinder will not flow backward through the logic valve, but will flow through the bypass passage to the arm directional control valve side. As a result, the discharge flow rate is restricted by the throttle, and the arm operation in the low speed range can be performed with high precision.
Also, when the electromagnetic switching valve is switched to the second control position,
The oil discharged from the arm hydraulic cylinder smoothly flows back through the logic valve and flows out to the arm directional control valve side without being subjected to the throttling action of the bypass passage, allowing work to be performed efficiently in the high-speed range. In other words, by switching the switching valve, the work speed can be changed significantly, such as working in a low speed range or working in a high speed range.
Efficiently perform both land leveling work, which requires delicate speed control at low speeds, river excavation work, and other various tasks, which require speed control at high speeds, in the optimal state according to the work content. Can perform well.

〔実施例〕〔Example〕

第1図は本考案の制御回路に用いられるロジツ
ク弁の実施例を示すもので、図において、1はロ
ジツク弁で、その弁本体2の入口側に設けた第1
通路3と出口側に設けた第2通路4との交差部
に、スリーブ5を介してポペツト6を摺動自在に
配置するとともに、ポペツト6の先端を第1通路
3側に設けた弁シート7に対して圧接するように
ばね8によつて付勢している。
FIG. 1 shows an embodiment of a logic valve used in the control circuit of the present invention. In the figure, 1 is a logic valve, and a first
A poppet 6 is slidably disposed via a sleeve 5 at the intersection of the passage 3 and a second passage 4 provided on the outlet side, and a valve seat 7 is provided with the tip of the poppet 6 on the first passage 3 side. It is biased by a spring 8 so as to be pressed against it.

上記ロジツク弁1において、この実施例では、
とくに第1通路3と第2通路4との間に両通路を
常時連通させるバイパス通路9を設け、このバイ
パス通路9に絞り穴10を有する弁体11を取替
自在に装着し、かつ、前記ポペツト6の背面のば
ね室に連通させたパイロツトポート12と、第2
通路4に連通させたパイロツトポート13との間
に、パイロツト管路14,15を介して電磁切換
弁16を接続している。
In the above logic valve 1, in this embodiment,
In particular, a bypass passage 9 is provided between the first passage 3 and the second passage 4 to constantly communicate the two passages, and a valve body 11 having a throttle hole 10 is replaceably installed in the bypass passage 9. The pilot port 12 communicates with the spring chamber on the back of the poppet 6, and the second
An electromagnetic switching valve 16 is connected to a pilot port 13 communicating with the passage 4 via pilot pipes 14 and 15.

電磁切換弁16は、運転室等に設けたスイツチ
操作によつて、第2通路4の圧力をポペツト6の
背面に導く第1制御位置16aと、ポペツト6の
背面をタンク17に連通させる第2制御位置16
bとに切換自在に設けている。18はプラグであ
る。なお、この電磁切換弁16は、運転室等に設
けたスイツチ操作によつて切換えられるものであ
り、また、上記パイロツト管路14,15間に設
けられるものであるので、小型、小容量のものを
使用できる。
The electromagnetic switching valve 16 has a first control position 16a that guides the pressure in the second passage 4 to the back of the poppet 6 and a second control position that communicates the back of the poppet 6 with the tank 17 by operating a switch installed in the driver's cab or the like. control position 16
It is provided so that it can be freely switched between 18 is a plug. Note that this electromagnetic switching valve 16 is switched by operating a switch installed in the operator's cab, etc., and is installed between the pilot pipes 14 and 15, so it is small and has a small capacity. can be used.

上記の構成によれば、電磁切換弁16の切換え
により次のような制御を行うことができる。
According to the above configuration, the following control can be performed by switching the electromagnetic switching valve 16.

A 電磁切換弁16が第1制御位置16aにある
ときは、 第1通路3から第2通路4への流れ(順
流)は自由に許容するが、 第2通路4から第1通路3への流れ(逆
流)に対しては、第2通路4からのパイロツ
ト圧によつてポペツト6を閉鎖した状態で、
絞り穴10のみを通過して、その逆流の流量
を絞る。
A When the electromagnetic switching valve 16 is in the first control position 16a, the flow from the first passage 3 to the second passage 4 (forward flow) is freely allowed, but the flow from the second passage 4 to the first passage 3 is allowed. (backflow), with the poppet 6 closed by the pilot pressure from the second passage 4,
It passes only through the throttle hole 10, and the flow rate of the reverse flow is throttled.

B 電磁切換弁16を第2制御位置16bに切換
えると、 第1通路3から第2通路4への流れ(順
流)を自由に許容するとともに、 ポペツト6の背面をタンク17に連通さ
せ、第2通路4から第1通路3への流れ(逆
流)をも自由に許容する。
B When the electromagnetic switching valve 16 is switched to the second control position 16b, the flow (forward flow) from the first passage 3 to the second passage 4 is freely allowed, the back side of the poppet 6 is communicated with the tank 17, and the second Flow (backflow) from the passage 4 to the first passage 3 is also freely allowed.

すなわち、順流に対しては、電磁切換弁16が
いずれの位置にあつても、自由に許容するが、逆
流に対しては、切換弁16が第1制御位置16a
のときに絞り穴10によつてその通過流量を絞る
ように制御し、第2制御位置16bのときに逆流
を自由に許容することになる。すなわち逆流に対
して2通りの制御が可能となる。この場合、弁体
11を取換えて絞り穴10の開口面積を変更する
ことにより逆流時の絞り量を任意に設定できる。
That is, for forward flow, the solenoid switching valve 16 is freely allowed in any position, but for reverse flow, the switching valve 16 is set to the first control position 16a.
When the flow rate is at the second control position 16b, the flow rate passing through the throttle hole 10 is controlled to be restricted, and when the control position is at the second control position 16b, the backflow is freely allowed. In other words, two types of control are possible for backflow. In this case, by replacing the valve body 11 and changing the opening area of the throttle hole 10, the amount of throttle at the time of backflow can be arbitrarily set.

また、第2図のようにバイパス通路9に、軸方
向に対して傾斜した傾斜面からなる可変絞り部1
0′を備えた弁体11′を軸方向に位置調節自在に
取付け、可変絞り部10′の開口面積を外部から
調節できるようにすれば、前記切換弁16が第1
制御位置16aのときの逆流に対する絞り量を容
易にかつ任意に変更でき、その制御範囲を拡大し
て利用価値を一層高めることができる。なお、可
変絞り部10′の形状は傾斜面に限らず、傾斜溝
でもよく、また、弁体11′の軸方向の位置調節
あるいは回動によつて絞り効果を調節できるよう
にしてもよい。
In addition, as shown in FIG.
If the valve element 11' having a diameter of 0' is mounted so as to be adjustable in its position in the axial direction, and the opening area of the variable throttle part 10' can be adjusted from the outside, the switching valve 16 can be
The amount of throttling for backflow at the control position 16a can be easily and arbitrarily changed, and the control range can be expanded to further enhance the utility value. The shape of the variable throttle portion 10' is not limited to an inclined surface, but may be an inclined groove, and the throttle effect may be adjusted by adjusting the position or rotation of the valve body 11' in the axial direction.

次に、上記の回路を油圧シヨベルのアーム回路
に用いた場合の具体例について説明する。
Next, a specific example in which the above circuit is used in an arm circuit of a hydraulic excavator will be described.

第4図は油圧シヨベルの一例を示すものであ
り、この油圧シヨベルは、走行体20と、旋回体
21と、ブーム用油圧シリンダ22によつて俯仰
されるブーム23と、アーム用油圧シリンダ24
によつて回動されるアーム25と、バケツト用油
圧シリンダ26によつて回動されるバケツト27
とを具備している。
FIG. 4 shows an example of a hydraulic excavator, which includes a traveling body 20, a revolving body 21, a boom 23 that is lifted up and down by a boom hydraulic cylinder 22, and an arm hydraulic cylinder 24.
The arm 25 is rotated by the arm 25, and the bucket 27 is rotated by the bucket hydraulic cylinder 26.
It is equipped with.

第3図は第4図に示す油圧シヨベルのアーム用
油圧シリンダ24の制御回路に第1図に示した制
御回路を組み込んだものである。すなわち、この
制御回路は、油圧ポンプ28の吐出油をアーム用
方向制御弁29の切換えによつてアーム用油圧シ
リンダ24のロツド側油室24aとヘツド側油室
24bに切換自在に供給できるようにし、かつ、
前記各油室24a,24bに接続された管路3
0,31のうち、アーム引き作動時にシリンダか
らの排出側となる管路30に、第1図に示す制御
回路を設けている。この場合、ロジツク弁1の第
1通路3を方向制御弁29側に接続し、第2通路
4を油圧シリンダ24側に接続する。
FIG. 3 shows a control circuit in which the control circuit shown in FIG. 1 is incorporated into the control circuit for the arm hydraulic cylinder 24 of the hydraulic excavator shown in FIG. 4. In FIG. That is, this control circuit is configured so that the oil discharged from the hydraulic pump 28 can be supplied to the rod-side oil chamber 24a and the head-side oil chamber 24b of the arm hydraulic cylinder 24 by switching the arm directional control valve 29. ,and,
Pipe line 3 connected to each oil chamber 24a, 24b
A control circuit shown in FIG. 1 is provided in the pipe line 30, which is the discharge side from the cylinder when the arm is pulled. In this case, the first passage 3 of the logic valve 1 is connected to the directional control valve 29 side, and the second passage 4 is connected to the hydraulic cylinder 24 side.

上記の制御回路によれば、たとえば整地作業の
ように低速域でアーム引き作業を行いたいとき
は、電磁切換弁16を図示の第1制御位置16a
に保持しておく。
According to the above control circuit, when it is desired to perform arm pulling work in a low speed range, such as when leveling the ground, the electromagnetic switching valve 16 is moved to the first control position 16a shown in the figure.
Keep it in.

この状態で、アーム用方向制御弁29を図面下
位置に切換えると、油圧ポンプ28の吐出油が油
圧シリンダ24のヘツド側油室24bに導かれ、
油圧シリンダ24が伸ばされて第4図に示すアー
ム25が時計方向に回動され、アーム引き作業が
行われる。このとき、油圧シリンダ24のロツド
側油室24aから排出される油の圧力によつてロ
ジツク弁1のポペツト6が閉鎖され、該ロツド側
油室24aから排出される油がバイパス通路9の
絞り穴10のみを通過するだけとなり、その排出
流量が絞られる。このため、前記油圧シリンダ2
4の伸長速度の最高速度が遅くなるように制御さ
れ、整地作業に適した低速域でのアーム引き作業
が円滑に行われる。
In this state, when the arm directional control valve 29 is switched to the lower position in the figure, the oil discharged from the hydraulic pump 28 is guided to the head side oil chamber 24b of the hydraulic cylinder 24,
The hydraulic cylinder 24 is extended and the arm 25 shown in FIG. 4 is rotated clockwise to perform an arm pulling operation. At this time, the poppet 6 of the logic valve 1 is closed by the pressure of the oil discharged from the rod side oil chamber 24a of the hydraulic cylinder 24, and the oil discharged from the rod side oil chamber 24a flows through the throttle hole of the bypass passage 9. 10, and the discharge flow rate is restricted. For this reason, the hydraulic cylinder 2
The maximum speed of extension speed No. 4 is controlled to be slow, and the arm pulling work is performed smoothly in a low speed range suitable for ground leveling work.

次に、河川での掘削作業のように高速域でアー
ム引き作業を行いたいときは、前記切換弁16を
第2制御位置16bに切換える。
Next, when it is desired to perform arm pulling work in a high-speed range, such as excavation work in a river, the switching valve 16 is switched to the second control position 16b.

この状態で、アーム用方向制御弁29を図面下
位置に切換えると、前記と同様に油圧ポンプ28
の吐出油が前記油圧シリンダ24のヘツド側油室
24bに導かれ、油圧シリンダ24が伸ばされて
アーム引き作業が行われるが、このとき、前記ポ
ペツト6の背面のばね室がタンク17に連通され
ているので、前記油圧シリンダ24のロツド側油
室24aから排出される油は、バイパス通路9の
絞り穴10のほか、ロジツク弁1の第2通路4か
らポペツト6を開きながら第1通路3に流出す
る。従つて、前記整地作業の場合に比べてロツド
側油室24aからの排出油に対する絞り効果は小
さく、排出流量は多くなり、油圧シリンダ24の
伸長速度すなわちアーム引きの作動速度の上限値
が高くなる。そして、高速域での作業が可能とな
り、作業のサイクルタイムを速くできる。
In this state, when the arm directional control valve 29 is switched to the lower position in the drawing, the hydraulic pump 28
The discharged oil is led to the head side oil chamber 24b of the hydraulic cylinder 24, and the hydraulic cylinder 24 is extended to perform the arm pulling operation. At this time, the spring chamber on the back side of the poppet 6 is communicated with the tank 17. Therefore, the oil discharged from the rod-side oil chamber 24a of the hydraulic cylinder 24 flows not only through the throttle hole 10 of the bypass passage 9 but also from the second passage 4 of the logic valve 1 to the first passage 3 while opening the poppet 6. leak. Therefore, compared to the case of the above-mentioned ground leveling work, the throttling effect on the oil discharged from the rod side oil chamber 24a is small, the discharge flow rate is increased, and the upper limit value of the extension speed of the hydraulic cylinder 24, that is, the operating speed of arm pulling is increased. . This makes it possible to work in a high-speed range and shorten the work cycle time.

なお、上記各作業において、アーム用方向制御
弁29のレバー操作によりスプール開度を調節
し、アーム用油圧シリンダ24のヘツド側油室2
4bに供給する油量およびロツド側油室24aか
らタンクへの排出流量を調節することにより、ア
ーム用油圧シリンダ24の伸長速度すなわちアー
ム引きの作動速度を、前記絞り穴10またはポペ
ツト6の開口面積によつて決められた上限値以内
で任意に制御できる。とくに、整地作業のように
低速域での作業時にはアーム用方向制御弁29の
レバー操作による細かい制御が可能となる。
In addition, in each of the above operations, the spool opening degree is adjusted by operating the lever of the arm directional control valve 29, and the head side oil chamber 2 of the arm hydraulic cylinder 24 is adjusted.
By adjusting the amount of oil supplied to the rod side oil chamber 4b and the discharge flow rate from the rod side oil chamber 24a to the tank, the extension speed of the arm hydraulic cylinder 24, that is, the arm pulling operation speed can be controlled by adjusting the opening area of the throttle hole 10 or the poppet 6. can be controlled arbitrarily within the upper limit determined by Particularly, when working in a low speed range such as when leveling the ground, detailed control is possible by operating the lever of the arm directional control valve 29.

このように電磁切換弁16を切換えるだけで、
整地作業のように微妙な制御が要求される低速域
での作業と、河川での掘削作業のようにサイクル
タイムを速くすることが要求される高速域での作
業、その他各種の作業をその作業内容に応じた速
度で、それぞれ効率よく行うことができる。
By simply switching the electromagnetic switching valve 16 in this way,
Work in low speed ranges that require delicate control such as land leveling work, work in high speed ranges that require fast cycle times such as river excavation work, and various other types of work. Each can be done efficiently and at a speed appropriate to the content.

なお、上記アーム回路に対し、第2図に示すよ
うにロジツク弁1に可変絞り付バイパス通路9を
設けたものを組込めば、上記整地作業と、河川で
の掘削作業以外の作業において、可変絞り10′
の絞り量を調節することにより、アーム引きの作
業速度の上限値を任意にかつ無段階に設定でき、
その作業に応じた最適な速度域で作業できる。
In addition, if a bypass passage 9 with a variable throttle is installed in the logic valve 1 as shown in Fig. 2 in the arm circuit described above, the variable Aperture 10'
By adjusting the amount of throttle, the upper limit of the arm pulling speed can be set arbitrarily and steplessly.
You can work at the optimal speed range according to the task.

〔考案の効果〕[Effect of idea]

以上のように、本考案によれば、電磁切換弁を
切換えるだけで、逆流方向の流量の最大値を、予
め任意に設定したバイパス通路の絞り効果を発揮
する状態と、発揮しない状態との2種類に任意に
選択でき、アーム用油圧シリンダによるアーム引
き方向の作動速度を低速域と高速域とに大幅に変
更することができる。
As described above, according to the present invention, by simply switching the electromagnetic switching valve, the maximum value of the flow rate in the reverse flow direction can be set to two states, one in which the throttling effect of the bypass passage, which is arbitrarily set in advance, is exerted and the other in which it is not exerted. The type can be arbitrarily selected, and the operating speed in the arm pulling direction by the arm hydraulic cylinder can be significantly changed between a low speed range and a high speed range.

そして、油圧シヨベルにおける整地作業のよう
に低速域での作業時には上記絞り効果を発揮させ
て微妙な速度制御を行いながら円滑に作業でき、
また、河川での掘削作業のように高速域での作業
時には上記絞り効果を発揮させずにその作業速度
を速くして作業能率を大幅に向上できる。しか
も、上記各作業において、上記逆流方向の流量の
最大値の範囲内で、方向制御弁による流量制御に
よつてアーム用油圧シリンダからタンクへの排出
流量の調節も容易に行うことができ、低速域から
高速域までの各作業を、それぞれの作業内容に応
じた最適な状態で、いずれも効率よく行うことが
できる。
When working in a low speed range, such as during ground leveling work with a hydraulic excavator, the above-mentioned throttling effect can be used to perform delicate speed control and work smoothly.
Further, when working in a high-speed region such as excavating in a river, the work speed can be increased without exerting the above-mentioned throttling effect, and work efficiency can be greatly improved. Moreover, in each of the above operations, the discharge flow rate from the arm hydraulic cylinder to the tank can be easily adjusted by controlling the flow rate with the directional control valve within the range of the maximum value of the flow rate in the reverse flow direction. Each type of work, from high-speed to high-speed, can be carried out efficiently under optimal conditions according to the content of each work.

さらに、市販のロジツク弁に絞り付のバイパス
通路を設け、電磁切換弁を付加するだけの簡単な
回路で、上記の制御が可能であり、また、電磁切
換弁はメインの管路ではなく、パイロツト管路に
設けるので小型、小容量のものでよく、頗る簡単
にかつ安価に実施でき、制御性ならびに実用性に
秀れたものである。
Furthermore, the above control can be achieved with a simple circuit such as providing a bypass passage with a restriction in a commercially available logic valve and adding an electromagnetic switching valve. Since it is installed in the conduit, it can be small and small in capacity, can be implemented very simply and at low cost, and has excellent controllability and practicality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の実施例を示すロジツク弁の断
面図と切換弁を組合せた要部の回路説明図、第2
図は別の実施例を示す第1図相当図、第3図は本
考案の実施例を示す油圧回路図、第4図は油圧シ
ヨベルの一例を示す側面図である。 1……ロジツク弁、2……弁本体、3……第1
通路、4……第2通路、6……ポペツト、8……
ばね、9……バイパス通路、10……絞り穴、1
0′……可変絞り部、11,11′……弁体、1
2,13……パイロツトポート、16……切換
弁、16a……第1制御位置、16b……第2制
御位置、17……タンク。
Fig. 1 is a sectional view of a logic valve showing an embodiment of the present invention and an explanatory diagram of the main part of the circuit in which a switching valve is combined;
The drawings are a diagram corresponding to FIG. 1 showing another embodiment, FIG. 3 is a hydraulic circuit diagram showing an embodiment of the present invention, and FIG. 4 is a side view showing an example of a hydraulic excavator. 1...Logic valve, 2...Valve body, 3...First
Passage, 4...Second aisle, 6...Poppet, 8...
Spring, 9... Bypass passage, 10... Throttle hole, 1
0'...Variable throttle part, 11, 11'...Valve body, 1
2, 13...Pilot port, 16...Switching valve, 16a...First control position, 16b...Second control position, 17...Tank.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 車体の前部にブーム、アーム、バケツトの作業
装置をそれぞれ油圧シリンダにより回動自在に設
けた油圧シヨベルにおいて、油圧ポンプとアーム
用油圧シリンダとの間に、油圧ポンプからアーム
用油圧シリンダへの圧油の流れの方向および流量
を制御してアームの回動を制御する中立ブロツク
式の三位置切換弁からなるアーム用方向制御弁を
設け、このアーム用方向制御弁とアーム用油圧シ
リンダとを接続する2本の圧油給排管路のうち、
アームを引き方向に回動させるときにアーム用油
圧シリンダからの油の排出側となる管路の中間
に、ロジツク弁を接続してなるもので、そのロジ
ツク弁は、第1通路と第2通路を備えた弁本体
と、弁本体内で第1通路と第2通路の交差部に摺
動自在に挿入されたポペツトと、ポペツト先端を
第1通路側に設けた弁シートに圧接する閉弁方向
に付勢するばねとを備え、上記ロジツク弁の第1
通路を上記アーム用方向制御弁側の管路に、第2
通路をアーム用油圧シリンダ側の管路にそれぞれ
接続し、かつ、ロジツク弁の第2通路から取り出
したパイロツト通路とポペツト背面のばね室から
取り出したパイロツト通路との間に電磁切換弁を
設け、この電磁切換弁は、第2通路の圧力を上記
ばね室に導いて上記ポペツトを閉弁方向に付勢す
ることによつて第1通路から第2通路への油の順
流を許容しその逆流を阻止する第1制御位置と、
上記ばね室をタンクに連通させて上記順流と逆流
のいずれをも許容する第2制御位置とに切換自在
に構成し、さらに、上記ロジツク弁の弁本体に
は、第1通路と第2通路とを常時連通させるバイ
パス通路を設け、このバイパス通路に絞りを設け
てなることを特徴とする油圧シヨベルにおけるア
ームの作動速度制御回路。
In a hydraulic excavator, a boom, an arm, and a bucket are installed at the front of the vehicle body so that they can rotate freely using hydraulic cylinders. An arm directional control valve consisting of a neutral block three-position switching valve that controls the rotation of the arm by controlling the direction and flow rate of oil flow is provided, and the arm directional control valve is connected to the arm hydraulic cylinder. Of the two pressure oil supply and drainage pipes,
A logic valve is connected to the middle of the pipe that is the discharge side of the oil from the arm hydraulic cylinder when the arm is rotated in the pulling direction, and the logic valve is connected to the first passage and the second passage. a poppet slidably inserted into the intersection of the first passage and the second passage within the valve body, and a valve closing direction in which the tip of the poppet comes into pressure contact with a valve seat provided on the first passage side. and a spring biasing the first logic valve.
The passage is connected to the pipe line on the side of the arm directional control valve, and the second
The passages are connected to the pipes on the arm hydraulic cylinder side, and an electromagnetic switching valve is provided between the pilot passage taken out from the second passage of the logic valve and the pilot passage taken out from the spring chamber on the back of the poppet. The electromagnetic switching valve allows the forward flow of oil from the first passage to the second passage and prevents the reverse flow by guiding the pressure of the second passage to the spring chamber and biasing the poppet in the valve closing direction. a first control position to
The spring chamber is configured to communicate with the tank and can be freely switched to a second control position that allows both forward flow and reverse flow, and the valve body of the logic valve further includes a first passage and a second passage. 1. An operating speed control circuit for an arm in a hydraulic excavator, characterized in that a bypass passage is provided for constant communication between the arms, and a throttle is provided in the bypass passage.
JP1984154034U 1984-10-11 1984-10-11 Expired - Lifetime JPH058323Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1984154034U JPH058323Y2 (en) 1984-10-11 1984-10-11

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1984154034U JPH058323Y2 (en) 1984-10-11 1984-10-11

Publications (2)

Publication Number Publication Date
JPS6169504U JPS6169504U (en) 1986-05-13
JPH058323Y2 true JPH058323Y2 (en) 1993-03-02

Family

ID=30712028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1984154034U Expired - Lifetime JPH058323Y2 (en) 1984-10-11 1984-10-11

Country Status (1)

Country Link
JP (1) JPH058323Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0520885Y2 (en) * 1987-08-03 1993-05-28

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56147903A (en) * 1980-04-14 1981-11-17 Toshiba Mach Co Ltd Hydraulic cylinder provided with speed reduction mechanism
JPS57146502A (en) * 1981-03-06 1982-09-10 Iseki Agricult Mach Lifting and lowering control device of working machine
JPS5947103B2 (en) * 1976-07-16 1984-11-16 シャープ株式会社 Flush toilet operation control device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5375694U (en) * 1976-11-29 1978-06-23
JPS58114905U (en) * 1982-01-29 1983-08-05 三菱重工業株式会社 Actuator hydraulic circuit
JPS5947103U (en) * 1982-09-22 1984-03-29 株式会社神崎高級工機製作所 Hydraulic supply device for agricultural hydraulic lift equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5947103B2 (en) * 1976-07-16 1984-11-16 シャープ株式会社 Flush toilet operation control device
JPS56147903A (en) * 1980-04-14 1981-11-17 Toshiba Mach Co Ltd Hydraulic cylinder provided with speed reduction mechanism
JPS57146502A (en) * 1981-03-06 1982-09-10 Iseki Agricult Mach Lifting and lowering control device of working machine

Also Published As

Publication number Publication date
JPS6169504U (en) 1986-05-13

Similar Documents

Publication Publication Date Title
JP3550260B2 (en) Actuator operating characteristic control device
US4250794A (en) High pressure hydraulic system
EP0331076B1 (en) Hydraulic circuit for cylinder
US5862831A (en) Variable-regeneration directional control valve for construction vehicles
KR101155717B1 (en) Apparatus for controlling the boom-swing combined motion of an excavator
US5791226A (en) Fluid regeneration device for construction vehicles
GB2072260A (en) Fuel control system for an earth-moving vehicle
US5218897A (en) Hydraulic circuit apparatus for operating work-implement actuating cylinders
US20220170241A1 (en) Flow Control Valve
US7059237B2 (en) Multiple-directional switching valve
JP3549126B2 (en) Directional control valve
US5609088A (en) Hydraulic control system for excavations with an improved flow control valve
US3746040A (en) Directional control valve
JPH058323Y2 (en)
JPH10168949A (en) Floating device of hydraulic cylinder
JP3794927B2 (en) Hydraulic control circuit for work machines
US3776273A (en) Directional control valve
JP3149974B2 (en) Hydraulic circuit of excavator
US4163628A (en) Implement circuit for motor with slow and fast dump
JP3590197B2 (en) Hydraulic excavator control circuit
US3872883A (en) Spool-type relief valve
JPH0457881B2 (en)
JPH0459484B2 (en)
KR200257578Y1 (en) A flow rate controlling apparatus for operating boom of an excavator
KR200153467Y1 (en) Excavator arm cylinder velocity control device