JPH058312A - Manufacture of composite material made of reinforcing fiber and epoxy resin - Google Patents
Manufacture of composite material made of reinforcing fiber and epoxy resinInfo
- Publication number
- JPH058312A JPH058312A JP3161400A JP16140091A JPH058312A JP H058312 A JPH058312 A JP H058312A JP 3161400 A JP3161400 A JP 3161400A JP 16140091 A JP16140091 A JP 16140091A JP H058312 A JPH058312 A JP H058312A
- Authority
- JP
- Japan
- Prior art keywords
- epoxy resin
- composite material
- hours
- film
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
- Moulding By Coating Moulds (AREA)
- Reinforced Plastic Materials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、飛翔体の構造部材等
に使用される強化繊維・エポキシ樹脂複合材料の製造方
法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a reinforced fiber / epoxy resin composite material used as a structural member of a flying object.
【0002】[0002]
【従来の技術】図2は飛翔体のレドーム部分を示す一部
切断側面図、図3はリングの一部切断側面図である。図
において、1はセラミックからなるレドーム、2は強化
繊維・エポキシ樹脂複合材料からなるリングで、接着剤
3によりレドーム1に接着され、内周部に形成されたね
じ部4により、飛翔体本体5に接続されている。2. Description of the Related Art FIG. 2 is a partially cut side view showing a radome portion of a flying object, and FIG. 3 is a partially cut side view of a ring. In the figure, 1 is a radome made of ceramics, 2 is a ring made of a reinforced fiber / epoxy resin composite material, which is adhered to the radome 1 with an adhesive 3 and has a screw body 4 formed on an inner peripheral portion thereof, whereby a flying body 5 It is connected to the.
【0003】リング2は図3に示すように、アラミド繊
維等の強化繊維6とエポキシ樹脂7を積層した複合材料
からなる。As shown in FIG. 3, the ring 2 is made of a composite material in which a reinforcing fiber 6 such as an aramid fiber and an epoxy resin 7 are laminated.
【0004】上記の構成において、セラミックからなる
レドーム1と強化繊維・エポキシ樹脂複合材料からなる
リング2は、あらかじめエポキシ樹脂からなる接着剤3
により接着する。接着されたレドーム1とリング2は、
リング2のねじ部4により飛翔体本体5に接続される。In the above structure, the radome 1 made of ceramics and the ring 2 made of the reinforced fiber / epoxy resin composite material are provided with the adhesive 3 made of epoxy resin in advance.
To adhere. The bonded radome 1 and ring 2 are
The threaded portion 4 of the ring 2 is connected to the flying body 5.
【0005】飛翔体本体5は、内蔵するロケットによっ
て決められたコースを飛行する。この時、レドーム1に
応力が発生し、リング2には圧縮応力が作用する。そし
て飛翔体が旋回する場合には、リング2に曲げモーメン
トが発生する。The flying body 5 flies on a course determined by a built-in rocket. At this time, stress is generated in the radome 1 and compressive stress acts on the ring 2. When the flying body turns, a bending moment is generated in the ring 2.
【0006】強度部材であるリング2は強化繊維6とエ
ポキシ樹脂7を積層して硬化した複合材料であり、機械
加工により指定された寸法に仕上げられる。レドーム1
とリング2は、飛行中に作用する応力を模擬して、図5
に示すように、引張力Aを加えて構造試験を行う。The ring 2, which is a strength member, is a composite material obtained by laminating the reinforcing fiber 6 and the epoxy resin 7 and curing it, and is finished to a specified size by machining. Radome 1
The ring 2 and the ring 2 simulate the stress applied during flight, and
As shown in, a structural test is performed by applying a tensile force A.
【0007】リング2は次のようにして製造される。ま
ずマンドレルと呼ばれる成形型上に、エポキシ樹脂7を
含浸させたアラミド繊維等の強化繊維6を積層する。そ
して、積層体の上からプラスチックフィルムで覆い、内
部を吸引できるように吸引チューブを取付けた状態で、
オートクレーブにマンドレルごと挿入し、吸引チューブ
からフィルムの内部を吸引しながら、オートクレーブで
加熱、加圧して、エポキシ樹脂7を硬化させ複合材料を
製造する。The ring 2 is manufactured as follows. First, a reinforcing fiber 6 such as an aramid fiber impregnated with an epoxy resin 7 is laminated on a molding die called a mandrel. Then, cover the top of the laminate with a plastic film and attach the suction tube so that the inside can be sucked,
The mandrel is inserted into an autoclave, and while the inside of the film is being suctioned from the suction tube, the autoclave is heated and pressed to cure the epoxy resin 7 and produce a composite material.
【0008】このときの温度および圧力の条件は図6に
示す通りであり、真空圧力−760mmHgでフィルム
内を吸引しながら、3kg/cm2Gで加圧し、80℃
で2時間、120℃で2時間加熱して、エポキシ樹脂7
を硬化させる。このような加熱、加圧の操作により、エ
ポキシ樹脂7は粘度が低下して強化繊維6の間に侵入し
て硬化する。このとき加圧および吸引を行うことによ
り、気泡が樹脂の一部とともに排出される。The conditions of temperature and pressure at this time are as shown in FIG. 6. While suctioning the inside of the film at a vacuum pressure of -760 mmHg, pressurizing at 3 kg / cm 2 G and 80 ° C.
2 hours at 120 ° C for 2 hours,
To cure. By such heating and pressurizing operations, the viscosity of the epoxy resin 7 is lowered and the epoxy resin 7 enters between the reinforcing fibers 6 and is cured. At this time, by applying pressure and suction, bubbles are discharged together with a part of the resin.
【0009】[0009]
【発明が解決しようとする課題】従来の飛翔体用強度部
材として用いられる強化繊維・エポキシ樹脂複合材料
は、上記のようにして製造されているため、高温加熱に
よりエポキシ樹脂の粘度が低下する。このとき高圧力が
かかるため、図7に示すように、流動化したエポキシ樹
脂7が、強化繊維6間の特定部分に形成された流路(チ
ャンネル)8を通って排出される。このためエポキシ樹
脂7が直径約12μmの強化繊維(フィラメント)6の
間隙の全体に含浸されず、強化繊維6間に空隙部9が形
成される。Since the conventional reinforced fiber / epoxy resin composite material used as a strength member for flying bodies is manufactured as described above, the viscosity of the epoxy resin is lowered by heating at a high temperature. Since high pressure is applied at this time, as shown in FIG. 7, the fluidized epoxy resin 7 is discharged through the flow channels (channels) 8 formed in specific portions between the reinforcing fibers 6. Therefore, the epoxy resin 7 is not impregnated into the entire gaps of the reinforcing fibers (filaments) 6 having a diameter of about 12 μm, and voids 9 are formed between the reinforcing fibers 6.
【0010】従って得られる強化繊維・エポキシ樹脂複
合材料の強度が小さく、図5に示す構造試験を行うと、
1599000kg・mmのモーメントで、リング2が
破壊するという問題点があった。Therefore, the strength of the obtained reinforced fiber / epoxy resin composite material is low, and the structural test shown in FIG.
There was a problem that the ring 2 was broken by the moment of 1599000 kg · mm.
【0011】この発明の目的は、エポキシ樹脂を強化繊
維の間隙のほぼ全体に含浸させることができ、これによ
り強度の大きい強化繊維・エポキシ樹脂複合材料を製造
する方法を提案することである。An object of the present invention is to propose a method for producing a reinforced fiber / epoxy resin composite material having a high strength, by which epoxy resin can be impregnated into almost all of the gaps between the reinforced fibers.
【0012】[0012]
【課題を解決するための手段】この発明は、エポキシ樹
脂を含浸させた強化繊維を積層し、得られる積層体をフ
ィルムで覆って、フィルムの内部を吸引し、外部から加
圧した状態で加熱してエポキシ樹脂を硬化させる方法に
おいて、0〜−500mmHgの真空圧力で吸引しなが
ら、0〜1kg/cm2Gの加圧力で加圧し、40〜6
5℃で3〜7時間、65〜95℃で1〜3時間、110
〜130℃で1〜3時間順次加熱して、エポキシ樹脂を
硬化させる方法である。The present invention is directed to laminating reinforcing fibers impregnated with an epoxy resin, covering the resulting laminate with a film, sucking the inside of the film, and heating it under pressure from the outside. In the method of curing the epoxy resin by applying a pressure of 0 to 1 kg / cm 2 G while suctioning at a vacuum pressure of 0 to −500 mmHg, 40 to 6
5 ° C for 3-7 hours, 65-95 ° C for 1-3 hours, 110
In this method, the epoxy resin is cured by sequentially heating at 130 ° C for 1 to 3 hours.
【0013】強化繊維としては、アラミド繊維、炭素繊
維、ガラス繊維などがあげられ、飛翔体用としては、ア
ラミド繊維、炭素繊維が好ましい。エポキシ樹脂として
は、ビスフェノール型エポキシ樹脂、フェノールノボラ
ック型エポキシ樹脂など、任意のものが使用できる。Examples of the reinforcing fiber include aramid fiber, carbon fiber, glass fiber and the like, and for the flying object, aramid fiber and carbon fiber are preferable. As the epoxy resin, any one such as bisphenol type epoxy resin and phenol novolac type epoxy resin can be used.
【0014】[0014]
【作用】この発明の強化繊維・エポキシ樹脂複合材料の
製造方法においては、エポキシ樹脂は低温加熱により、
粘度が若干低下した状態で、徐々にゲル化が起こり、こ
の間低真空圧力、低加圧力により、徐々に強化繊維間に
侵入して、強化繊維の間隙のほぼ全体に含浸される。こ
の状態で、温度を上げて加熱を行うことにより、エポキ
シ樹脂は完全に硬化する。これにより内部に間隙がな
く、強度の大きい強化繊維・エポキシ樹脂複合材料が得
られる。In the method for producing a reinforced fiber / epoxy resin composite material according to the present invention, the epoxy resin is heated by low temperature,
With a slight decrease in viscosity, gelation occurs gradually. During this time, low vacuum pressure and low pressure force gradually penetrate between the reinforcing fibers to impregnate almost the entire gaps between the reinforcing fibers. In this state, the epoxy resin is completely cured by raising the temperature and heating. As a result, a reinforced fiber / epoxy resin composite material having no internal void and high strength can be obtained.
【0015】[0015]
【実施例】以下、この発明の実施例を図について説明す
る。図1はこの発明の実施例による強化繊維・エポキシ
樹脂複合材料の製造方法を示す工程図である。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a process diagram showing a method for manufacturing a reinforced fiber / epoxy resin composite material according to an embodiment of the present invention.
【0016】本実施例の製造方法では、まずエポキシ樹
脂7を含浸させたアラミド繊維、炭素繊維等の強化繊維
6をマンドレル等の成形型に積層する。こうして形成さ
れた積層体の上からプラスチックフィルムで覆い、フィ
ルムの内部を吸引できるように吸引チューブを取付けた
状態で、オートクレーブにマンドレルごと挿入し、吸引
チューブからフィルムの内部を吸引しながら、オートク
レーブで加熱、加圧して、エポキシ樹脂7を硬化させ、
強化繊維・エポキシ樹脂複合材料を製造する。In the manufacturing method of this embodiment, first, the reinforcing fibers 6 such as aramid fibers and carbon fibers impregnated with the epoxy resin 7 are laminated on a molding die such as a mandrel. With the plastic film covering the laminated body formed in this way, with the suction tube attached so that the inside of the film can be sucked, insert the mandrel with the mandrel into the autoclave, and while sucking the inside of the film from the suction tube, Heat and pressurize to cure the epoxy resin 7,
Manufactures reinforced fiber / epoxy resin composite materials.
【0017】硬化の条件は、図1に示す通り、真空圧力
0〜−500mmHgでフィルムの内部を吸引しなが
ら、0〜1kg/cm2Gの加圧力で加圧する。このと
き圧差は0.13〜1.13kg/cm2Gとする。こ
の状態で、常温(13〜33℃)から加熱を開始し、第
1加熱工程として、40〜65℃で3〜7時間加熱を行
う。As for the curing conditions, as shown in FIG. 1, the inside of the film is sucked at a vacuum pressure of 0 to -500 mmHg and a pressure of 0 to 1 kg / cm 2 G is applied. At this time, the pressure difference is 0.13 to 1.13 kg / cm 2 G. In this state, heating is started from room temperature (13 to 33 ° C.), and as the first heating step, heating is performed at 40 to 65 ° C. for 3 to 7 hours.
【0018】このように低温で加熱を行うことにより、
エポキシ樹脂7は若干粘度が低下するが、従来のように
大幅に低下することなく、徐々にゲル化が起こる。この
間エポキシ樹脂7は低真空圧力、低加圧力により、徐々
に強化繊維6間に侵入する。このとき従来のような高い
圧力による加圧がないから、エポキシ樹脂7は特定部分
に流路(チャンネル)8を形成することなく、図4に示
すように、強化繊維6の間隙のほぼ全体を埋める。これ
に伴って気泡は樹脂の一部とともに排出され、エポキシ
樹脂7がほぼ均一に含浸され、空隙部9がない積層体が
得られる。By heating at a low temperature in this way,
Although the viscosity of the epoxy resin 7 is slightly lowered, it is gradually gelled without being significantly lowered as in the conventional case. During this time, the epoxy resin 7 gradually penetrates between the reinforcing fibers 6 due to low vacuum pressure and low pressure. At this time, since there is no pressurization by a high pressure as in the conventional case, the epoxy resin 7 does not form the flow channel (channel) 8 in a specific portion, and as shown in FIG. fill in. Along with this, the bubbles are discharged together with a part of the resin, the epoxy resin 7 is substantially uniformly impregnated, and a laminated body having no voids 9 is obtained.
【0019】この状態で昇温して、第2加熱工程として
65〜95℃で1〜3時間、さらに第3加熱工程とし
て、110〜130℃で1〜3時間加熱を行う。これら
の第2および第3加熱工程は従来の加熱工程とほぼ同程
度の加熱処理であり、これによりエポキシ樹脂7は完全
に硬化して、強化繊維・エポキシ樹脂複合材料が得られ
る。In this state, the temperature is raised and heating is performed at 65 to 95 ° C. for 1 to 3 hours as the second heating step, and 110 to 130 ° C. for 1 to 3 hours as the third heating step. The second and third heating steps are almost the same as the conventional heating step, whereby the epoxy resin 7 is completely cured and a reinforced fiber / epoxy resin composite material is obtained.
【0020】上記により得られる強化繊維・エポキシ樹
脂複合材料は、強化繊維6の間隙のほぼ全域に、均一に
エポキシ樹脂7が含浸され、空隙部9がない状態で、エ
ポキシ樹脂7が硬化するから、強度の大きい強化繊維・
エポキシ樹脂複合材料が得られる。In the reinforced fiber / epoxy resin composite material obtained as described above, the epoxy resin 7 is uniformly impregnated in almost all the gaps of the reinforced fiber 6, and the epoxy resin 7 is cured without the voids 9. Reinforcing fiber with high strength
An epoxy resin composite material is obtained.
【0021】実施例1 強化繊維6として、デュポン社製アラミド繊維ケブラー
ロービング1420デニール(商品名)を使用し、エポ
キシ樹脂としてヘキセル社製APCO 2447、硬化
剤としてヘキセル社製APCO 2347(いずれも商
品名)を使用し、図1の工程に従って、図3に示すリン
グ2を製造した。Example 1 Aramid fiber Kevlar roving 1420 denier (trade name) manufactured by DuPont was used as the reinforcing fiber 6, APCO 2447 manufactured by Hexel as an epoxy resin, and APCO 2347 manufactured by Hexel as a curing agent (both are trade names. ) Was used and the ring 2 shown in FIG. 3 was manufactured according to the process of FIG.
【0022】このときの温度および圧力条件は、真空圧
力−100mmHgでフィルムの内部を吸引しながら、
0.5kg/cm2Gで加圧し、23℃の状態から加熱
して、50℃で5時間、次いで80℃で2時間、さらに
120℃で2時間加熱した。こうして得られたリング2
を、図5に示すように構造試験を行った結果、破壊時の
モーメントは2132000kg・mmであり、従来法
よりもはるかに強度の大きい複合材料が得られた。The temperature and pressure conditions at this time are as follows: vacuum pressure -100 mmHg while suctioning the inside of the film.
It was pressurized with 0.5 kg / cm 2 G, heated from the state of 23 ° C., heated at 50 ° C. for 5 hours, then at 80 ° C. for 2 hours, and further at 120 ° C. for 2 hours. Ring 2 thus obtained
As a result of conducting a structural test as shown in FIG. 5, a moment at break was 2132000 kg · mm, and a composite material having much higher strength than the conventional method was obtained.
【0023】なお、上記実施例のように、オートクレー
ブによりエポキシ樹脂の硬化を行うと、吸引と加圧およ
び加熱を同時に行うことができるため好ましいが、乾燥
炉のように、加熱のみ行える装置を使用し、加圧するこ
となく、吸引を行いながら加熱して硬化を行ってもよ
い。また吸引を行うことなく、加圧と加熱によって硬化
を行ってもよい。It is preferable to cure the epoxy resin by an autoclave as in the above-mentioned embodiment, since it is possible to perform suction, pressurization and heating at the same time, but a device capable of only heating such as a drying furnace is used. However, the curing may be performed by heating while suctioning without applying pressure. Curing may be performed by pressurization and heating without suction.
【0024】また、強化繊維としては、アラミド繊維に
限らず、炭素繊維その他の繊維でもよい。The reinforcing fibers are not limited to aramid fibers, but carbon fibers and other fibers may be used.
【0025】[0025]
【発明の効果】この発明によれば、低真空圧力、低加圧
力、低温で加圧、加熱した後、高温に加熱して、エポキ
シ樹脂を硬化させるようにしたので、エポキシ樹脂を強
化繊維の間隙のほぼ全体に含浸させることができ、これ
により空隙部がなく、強度の大きい強化繊維・エポキシ
樹脂複合材料を製造することができる。According to the present invention, the epoxy resin is hardened by heating it to a high temperature after applying pressure and heat at a low vacuum pressure, a low pressurizing force, and a low temperature. It is possible to impregnate almost all of the gaps, and thereby, it is possible to manufacture a reinforced fiber / epoxy resin composite material having no void and high strength.
【図1】実施例の製造方法を示す工程図。FIG. 1 is a process drawing showing a manufacturing method of an example.
【図2】飛翔体のレドーム部分を示す一部切断側面図。FIG. 2 is a partially cut side view showing a radome portion of a flying object.
【図3】リングの一部切断側面図。FIG. 3 is a partially cut side view of the ring.
【図4】実施例により製造された複合材料の模式的断面
図。FIG. 4 is a schematic sectional view of a composite material manufactured according to an example.
【図5】構造試験法を示す正面図。FIG. 5 is a front view showing a structural test method.
【図6】従来の製造方法を示す工程図。FIG. 6 is a process drawing showing a conventional manufacturing method.
【図7】従来法により製造された複合材料の模式的断面
図。FIG. 7 is a schematic cross-sectional view of a composite material manufactured by a conventional method.
1 レドーム 2 リング 3 接着剤 5 飛翔体本体 6 強化繊維 7 エポキシ樹脂 8 流路 9 空隙部 1 Radome 2 Ring 3 Adhesive 5 Flying body 6 Reinforcing fiber 7 Epoxy resin 8 Flow path 9 Void
フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 B29L 31:30 4F Continuation of front page (51) Int.Cl. 5 Identification code Office reference number FI Technical display area B29L 31:30 4F
Claims (1)
層し、得られる積層体をフィルムで覆って、フィルムの
内部を吸引し、外部から加圧した状態で加熱してエポキ
シ樹脂を硬化させる方法において、0〜−500mmH
gの真空圧力で吸引しながら、0〜1kg/cm2Gの
加圧力で加圧し、40〜65℃で3〜7時間、65〜9
5℃で1〜3時間、110〜130℃で1〜3時間順次
加熱して、エポキシ樹脂を硬化させることを特徴とする
強化繊維・エポキシ樹脂複合材料の製造方法。Claims: 1. Reinforcement fibers impregnated with an epoxy resin are laminated, the resulting laminate is covered with a film, the inside of the film is sucked, and heated under pressure from the outside. In a method of curing an epoxy resin, 0 to -500 mmH
While aspirating with a vacuum pressure of g, pressurizing with a pressure of 0 to 1 kg / cm 2 G, 40 to 65 ° C. for 3 to 7 hours, 65 to 9
A method for producing a reinforced fiber / epoxy resin composite material, which comprises sequentially heating at 5 ° C. for 1 to 3 hours and 110 to 130 ° C. for 1 to 3 hours to cure the epoxy resin.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3161400A JP2658631B2 (en) | 1991-07-02 | 1991-07-02 | Method of manufacturing reinforced fiber / epoxy resin composite material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3161400A JP2658631B2 (en) | 1991-07-02 | 1991-07-02 | Method of manufacturing reinforced fiber / epoxy resin composite material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH058312A true JPH058312A (en) | 1993-01-19 |
JP2658631B2 JP2658631B2 (en) | 1997-09-30 |
Family
ID=15734377
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3161400A Expired - Lifetime JP2658631B2 (en) | 1991-07-02 | 1991-07-02 | Method of manufacturing reinforced fiber / epoxy resin composite material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2658631B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016510087A (en) * | 2013-03-15 | 2016-04-04 | ヘンケル アイピー アンド ホールディング ゲゼルシャフト ミット ベシュレンクテル ハフツング | Pre-preg curing method for preparing composite materials with excellent surface finish and high fiber compaction |
-
1991
- 1991-07-02 JP JP3161400A patent/JP2658631B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016510087A (en) * | 2013-03-15 | 2016-04-04 | ヘンケル アイピー アンド ホールディング ゲゼルシャフト ミット ベシュレンクテル ハフツング | Pre-preg curing method for preparing composite materials with excellent surface finish and high fiber compaction |
JP2018062669A (en) * | 2013-03-15 | 2018-04-19 | ヘンケル アイピー アンド ホールディング ゲゼルシャフト ミット ベシュレンクテル ハフツング | Prepreg curing method for preparing composite material having excellent surface finish and high fiber consolidation |
Also Published As
Publication number | Publication date |
---|---|
JP2658631B2 (en) | 1997-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6739861B2 (en) | High pressure co-cure of lightweight core composite article utilizing a core having a plurality of protruding pins | |
US5683646A (en) | Fabrication of large hollow composite structure with precisely defined outer surface | |
US5849234A (en) | Multilayer radome structure and its fabrication | |
EP1005978B1 (en) | Methods of forming honeycomb sandwich composite panels | |
US5527414A (en) | Method for high pressure co-cure molding of lightweight honeycomb core composite articles having ramped surfaces utilizing low density, stabilized ramped honeycomb cores | |
US20050126699A1 (en) | Process for the manufacture of composite structures | |
US8961724B2 (en) | Structural composite panel with metallic foam core | |
US5618606A (en) | Process for bonding staged composites with a cobonded staged adhesive and article | |
EP2895318B1 (en) | Apparatus for manufacturing a flanged component and method of manufacturing the same | |
AU709483B2 (en) | Process for the production of a composite material panel with resin transfer moulding | |
US7484593B2 (en) | Acoustic structure and method of manufacturing thereof | |
EP0866991B1 (en) | Optical fiber entry strain relief interface for compression-molded structures | |
JP2658631B2 (en) | Method of manufacturing reinforced fiber / epoxy resin composite material | |
US7695662B2 (en) | Method for producing resin structure | |
US11338529B2 (en) | Repair patch, method for molding repair patch, method for repairing composite material, and molding jig | |
KR100209304B1 (en) | Manufacturing method of insulation for composite material | |
JP4696654B2 (en) | Manufacturing method of hollow molded body made of fiber reinforced resin | |
US20180126687A1 (en) | Composite Structure | |
JP2020515435A (en) | Tools for manufacturing complex components | |
JP7101606B2 (en) | Manufacturing method of composite molded product | |
JPH076453B2 (en) | Pressure vessel and method for manufacturing the pressure vessel | |
JP2992089B2 (en) | Method of resin impregnation into wood board | |
JPH10193467A (en) | Production of resin composite pipe | |
JPH0818372B2 (en) | How to join the cylinders | |
JPH0611522B2 (en) | Honeycomb core structure and manufacturing method thereof |