JPH058298U - Radome for flying body - Google Patents

Radome for flying body

Info

Publication number
JPH058298U
JPH058298U JP978791U JP978791U JPH058298U JP H058298 U JPH058298 U JP H058298U JP 978791 U JP978791 U JP 978791U JP 978791 U JP978791 U JP 978791U JP H058298 U JPH058298 U JP H058298U
Authority
JP
Japan
Prior art keywords
radome
tip
aerodynamic heating
stress
fiber layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP978791U
Other languages
Japanese (ja)
Inventor
公一 辻本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP978791U priority Critical patent/JPH058298U/en
Publication of JPH058298U publication Critical patent/JPH058298U/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B10/00Means for influencing, e.g. improving, the aerodynamic properties of projectiles or missiles; Arrangements on projectiles or missiles for stabilising, steering, range-reducing, range-increasing or fall-retarding
    • F42B10/32Range-reducing or range-increasing arrangements; Fall-retarding means
    • F42B10/38Range-increasing arrangements
    • F42B10/42Streamlined projectiles
    • F42B10/46Streamlined nose cones; Windshields; Radomes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B15/00Self-propelled projectiles or missiles, e.g. rockets; Guided missiles
    • F42B15/34Protection against overheating or radiation, e.g. heat shields; Additional cooling arrangements

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Details Of Aerials (AREA)

Abstract

(57)【要約】 【目的】 飛翔時の空力加熱によって生ずる熱応力を低
減するレドームを得る。 【構成】 レドーム先端部の外面にレドーム材料よりも
熱膨張率の小さい繊維を巻き付け接着する。 【効果】 レドーム先端部の外面に繊維層を接着し、飛
翔体が発射装置より発射された後、空力加熱によりレド
ーム先端部が加熱され、熱応力が発生するがレドーム先
端部外表面では、接着された繊維層がレドームよりも熱
膨張率が小さいことにより、レドームに締め付け力が作
用し、この締付け力によりレドームに圧縮応力が発生
し、空力加熱により発生する熱応力と同時に作用する
と、レドーム内表面での引張り応力が軽減されるという
効果がある。
(57) [Summary] [Purpose] To obtain a radome that reduces thermal stress caused by aerodynamic heating during flight. [Structure] A fiber having a coefficient of thermal expansion smaller than that of a radome material is wound around and adhered to the outer surface of the tip of the radome. [Effect] A fiber layer is adhered to the outer surface of the radome tip, and after the projectile is launched from the launching device, the radome tip is heated by aerodynamic heating, causing thermal stress. Because the fiber layer has a smaller coefficient of thermal expansion than the radome, a tightening force acts on the radome, and this tightening force causes compressive stress on the radome, which acts simultaneously with the thermal stress generated by aerodynamic heating. This has the effect of reducing the tensile stress on the surface.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

この考案は例えば飛翔体先端に取付けられ、飛翔する時の空力加熱によって生 じる熱応力を低減するレドームに関するものである。 The present invention relates to a radome attached to, for example, the tip of a flying body to reduce thermal stress generated by aerodynamic heating during flight.

【0002】[0002]

【従来の技術】[Prior Art]

従来の飛翔体レドームの一例を図4に示す。図4は飛翔体用レドームの軸に沿 った断面図であり、1はレドーム本体である。図5に発射後のレドームの機軸方 向の内外表面温度分布を示す。図5に示すように飛翔する飛翔体に取付けられた レドームは、発射後の急激な空力加熱によりレドーム外表面が高温に加熱され、 外表面から内面に向かう熱流束が生じる。この熱流束によってレドーム外表面付 近では急激に温度が上昇し、内面付近に近づくに従い遅れを生じながら温度が上 昇する。その際レドーム外表面と内表面では温度差を生じる。そしてこの温度差 により熱応力が発生する。図6にレドーム断面の応力分布を示す。図6に示すよ うに空力加熱によって生じた温度差によりレドーム外表面は内表面に比べ熱膨張 が大きく逆に内表面は外表面に比べて小さい。そこでこの熱膨張の差を補正する 熱応力が発生する。すなわちレドーム外表面では熱膨張を妨げる圧縮応力が発生 し、内面では熱膨張を助長する引張り応力が発生する。 FIG. 4 shows an example of a conventional flying object radome. FIG. 4 is a cross-sectional view along the axis of the flying object radome, and 1 is the radome body. Figure 5 shows the temperature distribution of the inner and outer surfaces of the radome in the axial direction after launch. As shown in FIG. 5, in a radome attached to a flying projectile, the outer surface of the radome is heated to a high temperature by rapid aerodynamic heating after launching, and a heat flux from the outer surface to the inner surface is generated. Due to this heat flux, the temperature rises rapidly near the outer surface of the radome, and rises with a delay as it approaches the inner surface. At that time, a temperature difference occurs between the outer surface and the inner surface of the radome. Then, this temperature difference causes thermal stress. FIG. 6 shows the stress distribution in the radome cross section. As shown in Fig. 6, due to the temperature difference caused by aerodynamic heating, the outer surface of the radome has a larger thermal expansion than the inner surface, while the inner surface is smaller than the outer surface. Therefore, thermal stress is generated to correct this difference in thermal expansion. That is, compressive stress that hinders thermal expansion occurs on the outer surface of the radome, and tensile stress that promotes thermal expansion occurs on the inner surface.

【0003】 上記のような理由から、レドーム材料としては高熱伝導率で低熱膨張率の材料 が用いられている。そして、電波透過性のよい性質を持つことを要求されること から金属材料ではなくセラミック材料が用いられる。For the above reason, a material having a high thermal conductivity and a low thermal expansion coefficient is used as the radome material. Further, ceramic materials are used instead of metal materials because they are required to have good radio wave transmission properties.

【0004】[0004]

【考案が解決しようとする課題】[Problems to be solved by the device]

上記のような従来の飛翔体用レドームでは飛翔体の高速化に伴い、空力加熱の 影響が大きくなると、レドームの外表面と内表面の温度差が大きくなる。そして 発生する熱応力の大きさは一般にレドーム内外表面温度差に比例するため、空力 加熱の影響が大きくなると発生する熱応力が大きくなる。図4に示すようにレド ーム先端部はレドーム本体の内でも特に内外表面の温度差が大きい。そのためレ ドーム先端部に発生する熱応力がとりわけ大きくなる。特にセラミック材料の場 合圧縮よりも引張り応力に対する強度が弱く、よって、飛翔体の高速化に伴いレ ドーム先端部の熱応力すなわち、内面に発生する引張り応力によりレドームが破 壊する可能性があった。 In the conventional radome for a flying vehicle as described above, when the influence of aerodynamic heating increases with the speeding up of the flying vehicle, the temperature difference between the outer surface and the inner surface of the radome increases. Since the magnitude of the generated thermal stress is generally proportional to the temperature difference between the inside and outside surfaces of the radome, the greater the effect of aerodynamic heating, the greater the generated thermal stress. As shown in FIG. 4, the temperature difference between the inner and outer surfaces of the radome tip is particularly large even within the radome body. Therefore, the thermal stress generated at the tip of the radome becomes particularly large. In particular, in the case of ceramic materials, the strength against tensile stress is weaker than that of compression.Therefore, the thermal stress at the tip of the radome, that is, the tensile stress generated on the inner surface, may cause the radome to rupture as the flying speed increases. It was

【0005】 そこで発生する熱応力を小さくするため、レドーム内外表面での温度差を小さ くするには、レドームの厚みを薄くし、熱容量を小さくする。それによりレドー ム内表面に早く熱が伝わりレドーム内外表面の温度差が小さくなる。ところがレ ドームの厚みを薄くすることは電気的制約があり、またレドームに作用する空力 荷重に対する強度が弱まり、空力荷重による破壊が問題となり、空力加熱と空力 荷重の両方の課題を満足することは難しい。In order to reduce the thermal stress generated there, in order to reduce the temperature difference between the inner and outer surfaces of the radome, the thickness of the radome is reduced and the heat capacity is reduced. As a result, heat is quickly transferred to the inner surface of the radome, and the temperature difference between the inner and outer surfaces of the radome becomes smaller. However, reducing the thickness of the radome has electrical restrictions, and the strength against the aerodynamic load acting on the radome is weakened, and destruction due to the aerodynamic load becomes a problem, and it is not possible to satisfy the problems of both aerodynamic heating and aerodynamic load. difficult.

【0006】 この考案はかかる課題を解決するためになされたものであり、飛翔体が従来以 上の高温の空力加熱にさらされてもレドーム先端部に生じる内面の引張り応力を 減少させ、空力加熱によるレドーム本体の破壊を防ぐものである。The present invention has been made in order to solve the above problems, and reduces the tensile stress of the inner surface generated at the tip of the radome even if the flying object is exposed to aerodynamic heating at a higher temperature than ever before, thereby reducing the aerodynamic heating. It is intended to prevent the radome body from being destroyed.

【0007】[0007]

【課題を解決するための手段】[Means for Solving the Problems]

この考案に係る飛翔体用レドームは、レドーム先端部の外面にレドーム材料よ りも熱膨張率の小さい繊維を巻き付け接着したものである。 The radome for a flying vehicle according to the present invention is formed by winding and adhering fibers having a coefficient of thermal expansion smaller than that of the radome material on the outer surface of the tip of the radome.

【0008】[0008]

【作用】[Action]

この考案においては飛翔体が発射装置より発射された後、空力加熱によりレド ーム先端部が加熱された時にレドーム材と繊維層との熱膨張の差から繊維層がレ ドームに締付け力が作用する。この締付け力によりレドームに圧縮応力が発生し 、空力加熱により発生する熱応力と同時に作用すると、レドーム内表面での引張 り応力が軽減される。 In this invention, after the projectile is launched from the launch device, when the tip of the redome is heated by aerodynamic heating, the fiber layer exerts a clamping force on the radome due to the difference in thermal expansion between the radome material and the fiber layer. To do. Compressive stress is generated in the radome by this tightening force, and when it acts simultaneously with the thermal stress generated by aerodynamic heating, the tensile stress on the inner surface of the radome is reduced.

【0009】[0009]

【実施例】 実施例1. 図1はこの考案の一実施例を示す飛翔体レドームの軸に沿った断面図であり、 図2は飛翔体レドームの軸に垂直な断面から見たレドーム先端部の断面図である 。1は上記従来装置と同一のものである。2はレドーム本体1の外面に沿って接 着された繊維層である。EXAMPLES Example 1. FIG. 1 is a sectional view taken along the axis of a projectile radome showing one embodiment of the present invention, and FIG. 2 is a sectional view of the tip of the radome seen from a section perpendicular to the axis of the projectile radome. 1 is the same as the conventional device. Reference numeral 2 is a fiber layer attached along the outer surface of the radome body 1.

【0010】 この考案においては飛翔体が発射装置より発射された後、空力加熱によりレド ーム先端部が加熱され、熱応力が発生する。図3に繊維層をレドーム外表面に接 着したことによるレドーム先端部の応力分布を示す。図3に示すように発射後、 レドーム先端部外表面では、繊維層がレドームよりも熱膨張率が小さいことによ り、レドームに締め付け力が作用する。この締付け力によりレドームに圧縮応力 が発生し、空力加熱により発生する熱応力と同時に作用すると、レドーム内表面 での引張り応力が軽減される。In this invention, after the projectile is launched from the launching device, the tip of the redome is heated by aerodynamic heating, and thermal stress is generated. Figure 3 shows the stress distribution at the tip of the radome when the fiber layer is attached to the outer surface of the radome. As shown in FIG. 3, after firing, on the outer surface of the tip of the radome, the fiber layer has a smaller coefficient of thermal expansion than the radome, so that a tightening force acts on the radome. Compressive stress is generated in the radome by this tightening force, and when it acts simultaneously with the thermal stress generated by aerodynamic heating, the tensile stress on the inner surface of the radome is reduced.

【0011】[0011]

【考案の効果】[Effect of the device]

この考案は以上説明したとおり、レドーム先端部の外面に繊維層を接着してあ るので、飛翔体が発射装置より発射された後、空力加熱によりレドーム先端部が 加熱され、熱応力が発生するがレドーム先端部外表面では、接着された繊維層が レドームよりも熱膨張率が小さいことにより、レドームに締め付け力が作用し、 この締付け力によりレドームに圧縮応力が発生し、空力加熱により発生する熱応 力と同時に作用すると、レドーム内表面での引張り応力が軽減されるという効果 がある。 As described above, since the fiber layer is adhered to the outer surface of the radome tip as described above, after the projectile is launched from the launch device, the radome tip is heated by aerodynamic heating, causing thermal stress. On the outer surface of the tip of the radome, the bonded fiber layer has a smaller coefficient of thermal expansion than the radome, so a tightening force acts on the radome, and this tightening force causes compressive stress on the radome, which is generated by aerodynamic heating. If it acts simultaneously with the thermal response, it has the effect of reducing the tensile stress on the inner surface of the radome.

【図面の簡単な説明】[Brief description of drawings]

【図1】この考案の実施例1を示す飛翔体レドームの軸
に沿った断面図である。
FIG. 1 is a sectional view taken along the axis of a flying object radome showing Example 1 of the present invention.

【図2】この考案の実施例1を示す飛翔体レドームの軸
に垂直な断面から見た断面図である。
FIG. 2 is a cross-sectional view as seen from a cross section perpendicular to the axis of the flying object radome showing the first embodiment of the present invention.

【図3】繊維層を付加したことによるレドーム先端部の
応力分布を示す図である。
FIG. 3 is a diagram showing a stress distribution at the tip of a radome due to the addition of a fiber layer.

【図4】従来の飛翔体レドームを示す飛翔体レドームの
軸に沿った断面図である。
FIG. 4 is a sectional view along the axis of a flying object radome showing a conventional flying object radome.

【図5】レドーム軸に沿ったレドーム内外表面の温度差
の分布を示す図である。
FIG. 5 is a diagram showing a distribution of temperature differences on the inner and outer surfaces of the radome along the radome axis.

【図6】レドーム本体に発生する熱応力の分布図であ
る。
FIG. 6 is a distribution diagram of thermal stress generated in the radome body.

【符号の説明】[Explanation of symbols]

1 レドーム本体 2 繊維層 1 radome body 2 fiber layer

Claims (1)

【実用新案登録請求の範囲】 【請求項1】 飛翔体の外殻に取付けられたレドーム先
端部の外面にレドーム材よりも熱膨張率の小さい繊維層
を装着したことを特徴とする飛翔体用レドーム。
[Claims for utility model registration] [Claim 1] For a flying object, a fiber layer having a coefficient of thermal expansion smaller than that of the radome material is attached to the outer surface of the tip of the radome attached to the outer shell of the flying object. Radome.
JP978791U 1991-02-27 1991-02-27 Radome for flying body Pending JPH058298U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP978791U JPH058298U (en) 1991-02-27 1991-02-27 Radome for flying body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP978791U JPH058298U (en) 1991-02-27 1991-02-27 Radome for flying body

Publications (1)

Publication Number Publication Date
JPH058298U true JPH058298U (en) 1993-02-05

Family

ID=11729938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP978791U Pending JPH058298U (en) 1991-02-27 1991-02-27 Radome for flying body

Country Status (1)

Country Link
JP (1) JPH058298U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4948140A (en) * 1972-09-12 1974-05-10

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4948140A (en) * 1972-09-12 1974-05-10

Similar Documents

Publication Publication Date Title
US4520364A (en) Attachment method-ceramic radome to metal body
US4747722A (en) Metal-ceramic fitting assembly
EP0483955B1 (en) Encapsulated ceramic device and method for embedding in composite structure
US9891031B2 (en) Missile structural wall for thermal protection fairing
US5038561A (en) Thermal insulators for rocket motors
EP3159652B1 (en) Whisker reinforced high fracture toughness ceramic tips for radomes
SE448925B (en) SET TO INSTALL A SYNTHETIC HEART ISOLATOR
US8505458B1 (en) Venting cap system
US3336873A (en) Radome nose for a missile, and method of making same
JPH058298U (en) Radome for flying body
US3745928A (en) Rain resistant, high strength, ablative nose cap for hypersonic missiles
JP6727151B2 (en) Radome for flying objects
JP6278924B2 (en) Method for manufacturing flying radome
US3103887A (en) Pre-stressed glass fiber attachment ring
JP3554882B2 (en) Insulation structure
RU2536361C1 (en) Antenna dome
JP3899858B2 (en) Flying radome
US4382409A (en) Longitudinal reinforcement of high explosive fill in projectiles
JP5790015B2 (en) Flying object and radome ring for flying object
US20090320589A1 (en) Methods and apparatus for non-axisymmetric radome
US3048110A (en) Frangible nose cone
JP2016161270A (en) Radome ring for flying body
JP6914187B2 (en) Flying body
US3161132A (en) Epoxy resin structural filler materials
JPH075648Y2 (en) Seed type thermocouple